首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Faecal samples were collected from 573 slaughtered cattle aged between three and 24 months in seven abattoirs. After enrichment (mTSB with novobiocin), samples were screened by real‐time PCR first for stx and if positive, tested for the top‐five Shiga toxin‐producing Escherichia coli (STEC) serogroups using PCR assays targeting genes specific for serogroups O26, O103, O111, O145 and O157. Of 563 samples with available results, 74.1% tested positive for stx genes. Amongst them, the serogroups O145, O103, O26, O157 and O111 were detected in 41.9%, 25.9%, 23.9%, 7.8% and 0.8%, respectively. From 95 O26, 166 O145 and 30 O157 PCR‐positive samples, 17 O26, 28 O145 and 12 O157 strains were isolated by colony hybridization after immunomagnetic separation. The 17 O26 strains were eae‐positive, but only nine strains harboured stx (eight possessing stx1 and one stx2). Of the 28 O145 strains, ten were eae‐positive including four harbouring stx1 or stx2, whereas 18 were negative for stx and eae. Five of the 12 O157 strains harboured stx2 and eae, did not ferment sorbitol, and were identified as STEC O157:H7/H?. The other seven O157 strains were negative for stx and eae or positive only for eae. Shiga toxin genes and the top‐five STEC serogroups were frequently found in young Swiss cattle at slaughter, but success rates for strain isolation were low and only few strains showed a virulence pattern of human pathogenic STEC.  相似文献   

2.
Shiga toxin‐producing Escherichia coli (STEC) can cause diarrhoea and severe diseases in humans, such as haemolytic uraemic syndrome. STEC virulence is considered to correlate with the amount of Shiga toxins (Stx) produced, especially Stx2, whose subtype Stx2a is most frequently associated with high virulence. Stx are encoded in prophages, which play an important role in STEC pathogenesis. The aim of this study was to evaluate stx2a expression levels and Stx2a phage production using qPCR and the double‐agar‐layer method in 29 STEC strains, corresponding to serotypes O26:H11 (6), O91:H21 (1), O145:H‐ (11) and O157:H7 (11), isolated from cattle and humans. Results were then tested for possible associations with serotype, origin or some genetic features. We observed heterogeneous levels of stx2a expression and Stx2a phage production. However, statistical comparisons identified a higher stx2a expression in response to mitomycin C in strains isolated from cattle than in those from humans. At the same time, compared to stx2a/stx2c strains, stx2a strains showed a higher increase in phage production under induced conditions. Notably, most of the strains studied, regardless of serotype and origin, carried inducible Stx2a phages and evidenced expression of stx2a that increased along with phage production levels under induced conditions.  相似文献   

3.
A total of 107 faecal samples were collected from diarrhoeic lambs of high altitude terrains (2,000 to 5,000 m above the mean sea level) of Tawang and West Kameng districts of Arunachal Pradesh, India. Total 234 Escherichia coli were isolated and further subjected to PCR for the study of virulence repertoire characteristics of Shiga toxin-producing E. coli (STEC) and enterotoxigenic E. coli (ETEC). Out of the 234 isolated E. coli, 32% were found positive for STEC, and 9% were carrying virulence gene for ETEC. The isolated STEC serogroups were O159, O127, O120, O113, O60, O30, O25, O8 and O2. Of all the 74 STEC strains, PCR showed that 18% isolates carried stx 1 , 26% possessed stx 2 and 47% produced positive amplicon for both. Other virulent attributes like intimin (eaeA), enterohaemolysin (ehxA) and STEC auto-agglutinating adhesin (saa) were present in 18%, 43% and 44% of the isolates, respectively. The isolated ETEC serogroups were O172, O170, O159, O146, O127, O120, O113, O86, O75, O60, O30, O25, O8, O2, OR and OUT. Of the 22 ETEC-positive isolates, 23%, 18% and 4.5% possessed the gene only for LT, STa and STb, respectively, whereas 54% carried genes for both LT and STb. Some serogroups of E. coli like O159, O127, O120, O113, O60, O30, O25, O8 and O2 possessed genes for both Shiga toxin and enterotoxin. This study is the first report of ETEC isolation from diarrhoeic lambs in India. The moderately high proportion of STEC and ETEC in the diarrhoeic lambs implicated that these animals are important reservoir of STEC and ETEC. This is really a grave concern for the ‘brokpas’ and nomads (shepherds) who share a close relationship with this animals for their livelihood. This study also indicates that ETEC may be a major cause for frequent diarrhoeal episodes in lambs of this region.  相似文献   

4.
The contamination of lettuce, spinach and basil with pathogenic E. coli has caused numerous illnesses over the past decade. E. coli O157:H7, E. coli O104:H4 and avian pathogenic E. coli (APECstx‐ and APECstx+) were inoculated on basil plants and in promix substrate using drip and overhead irrigation. When overhead inoculated with 7 log CFU/ml of each strain, E. coli populations were significantly (= 0.03) higher on overhead‐irrigated plants than on drip‐irrigated plants. APECstx‐, E. coli O104:H4 and APECstx+ populations were recovered on plants at 3.6, 2.3 and 3.1 log CFU/g at 10 dpi (days post‐inoculation), respectively. E. coli O157:H7 was not detected on basil after 4 dpi. The persistence of E. coli O157:H7 and APECstx‐ were similar when co‐inoculated on lettuce and spinach plants. On spinach and lettuce, E. coli O157:H7 and APEC populations declined from 5.7 to 6.1 log CFU/g and 4.5 log CFU/g, to undetectable at 3 dpi and 0.6–1.6 log CFU/g at 7 dpi, respectively. The detection of low populations of APEC and E. coli O104:H4 strains 10 dpi indicates these strains may be more adapted to environmental conditions than E. coli O157:H7. This is the first reported study of E. coli O104:H4 on a produce commodity.  相似文献   

5.
Faecal samples from 76 diarrhoeic calves belonging to 36 farms located in the Pampas plain, Argentina, were examined for Shiga toxin‐producing Escherichia coli (STEC). A total of 15 STEC strains were isolated from 12 (15.8%) calves which came from six different farms. All stx positive strains assayed by PCR were also positives in the Vero cell cytotoxicity test. The majority (60.0%) of the STEC strains carried the stx1 gene. Twelve (80.0%) of the STEC isolates which belonged to serotypes O5:H‐ (n = 4), O26:H11 (n = 4), O26:H‐ (n = 1), O111:H‐ (n = 2), and O123:H38 (n = 1) were also enterohaemolysin (EHly) positive and carried the gene encoding for intimin (eae). All the stx positive strains were negative for the bfpA gene. Localized adherence to HEp‐2 cells were observed in 83.3% of the eae+ STEC strains. STEC belonging to serotype O5:H‐ showed atypical biochemical properties, including urease production. Urease was also produced by two strains belonging to serotypes O153:H? and non‐typeable, respectively. Resistance to three or more antibiotics was observed in 12 (80.0%) of the STEC isolates. Most of the serotypes of STEC recovered in this survey carried virulence traits that are associated with increased human and bovine pathogenicity. The present study shows that highly virulent STEC strains are being shed by diarrhoeic calves from farms located in a high incidence area of human STEC infections.  相似文献   

6.
Shiga toxigenic Escherichia coli (STEC) are an important group of pathogens and can be transmitted to humans from direct or indirect contact with cattle faeces. This study investigated the shedding of E. coli O157 and O26 in cattle at the time of slaughter and factors associated with super‐shedding (SS) animals. Rectoanal mucosal swab (RAMS) samples were collected from cattle (n = 1,317) at three large Irish commercial beef abattoirs over an 18 month period, and metadata were collected at the time of sampling regarding farm of origin, animal age, breed and gender. RAMS swabs were examined for the presence and numbers of E. coli O157 and O26 using a previously developed quantitative real‐time PCR protocol. Samples positive by PCR were culturally examined and isolates analysed for the presence of stx subtypes, eae and phylogroup. Any samples with counts >104 CFU/swab of STEC O157 or O26 were deemed to be super‐shedders. Overall, 4.18% (55/1,317) of RAMS samples were positive for STEC O157, and 2.13% (28/1,317) were classified as STEC O157 SS. For STEC O26, 0.76% (10/1,317) of cattle were positive for STEC O26, and 0.23% (3/1,317) were classified as super‐shedders. Fewer STEC shedders and SS were noted among older animals (>37 months). There was a seasonal trend observed for STEC O157, with the highest prevalence of shedding and SS events in the autumn (August to October). The majority of E. coli O157 (50/55) isolates had stx2 and were eae positive, with no significant difference between SS and low shedders (LS). Interestingly, all STEC O26 (n = 10) were eae negative and had varied stx profiles. This study demonstrates that, while the overall shedding rates are relatively low in cattle at slaughter, among positive animals there is a high level of SS, which may pose a higher risk of cross‐contamination during slaughter.  相似文献   

7.
The serotype O113:H21 is considered one of the relevant non‐O157 STEC serotypes associated with severe human infections. Due to the increased detection of O113 strains and their relationship with clinical cases, which emphasizes the importance of this serogroup as an emerging pathogen, our aim was to determine the characteristics of STEC O113:H21 strains circulating in bovine cattle and retail meat from Argentina. For this purpose, we determined the presence and combinations of various virulence genes (and their variants) related to adhesion and toxicity in a collection of 34 isolates. Their genetic relatedness using multiple‐locus variable‐number tandem repeat analysis (MLVA) was also studied. Subtyping of stx genes indicated that O113:H21 strains circulating in Argentina mainly present stx2a alone or together with stx2c or, less frequent, with stx2d, all of which are subtypes associated with human disease. We found plasmid markers, such as saa, ehxA and subA, in a higher proportion than previous studies, and five variants of saa, two of which were novel ones. In relation to MLVA subtyping, we detected a limited diversity among the isolates considering that several loci were not discriminative and, that in some farms, the same clone seemed to remain circulating throughout the year. The O113:H21 strains studied harbour several toxin and adhesion genes (saa, espP, fimCD, ehaA, iha, hcpA, elfA, lpfO113, ecpA, subA, cdt‐V) and Stx subtypes associated with human disease. Results also highlighted that subtyping of stx and saa is useful to discriminate O113:H21 strains that share virulence genes. In conclusion, this study shows that a number of O113:H21 strains that occur in foods and bovines could be pathogenic for humans. This situation calls for further attention in the prevention and control of foodborne disease caused by these strains.  相似文献   

8.
Cattle faecal samples (n = 480) were collected from a cluster of 12 farms, and PCR screened for the presence of the intimin gene (eae). Positive samples were cultured, and colonies were examined for the presence of eae and verocytotoxin (vtx) genes. Colonies which were positive for the intimin gene and negative for the verocytotoxin genes were further screened using PCR for a range of virulence factors including bfpA, espA, espB, tir ehxA, toxB, etpD, katP, saa, iha, lpfAO157/OI‐141 and lpfAO157/OI‐154. Of the 480 faecal samples, 5.8% (28/480) were PCR positive, and one isolate was obtained from each. All 28 isolates obtained were bfpA negative and therefore atypical EPEC (aEPEC). The serotypes detected included O2:H27, O8:H36, O15:H2, O49:H+, O84:H28, O105:H7 and O132:H34 but half of the isolates could not be serogrouped using currently available antisera. Twenty‐two (79%) of the isolates carried the tir gene but only 25% were espB positive, and all other virulence genes tested for were scarce or absent. Several isolates showed intermediate resistance to ciprofloxacin, kanamycin, nalidixic acid, minocycline and tetracycline; full resistance to nalidixic acid or tetracycline with one isolate (O?:H8) displaying resistance to aminoglycosides (kanamycin and streptomycin), quinolones (nalidixic acid) and sulphonamides. This study provides further evidence that cattle are a potential source of aEPEC and add to the very limited data currently available on virulence genes and antibiotic resistance in this pathogenic E. coli group in animals.  相似文献   

9.
Shiga toxin-producing Escherichia coli (STEC) are an important group of emerging pathogens, with ruminants recognised as their main natural reservoir. The aim of this work was to establish the prevalence of non-O157 STEC in free-ranging wild ruminants in the Extremadura region of Spain and to characterise them phenogenotypically. Faecal samples were collected from 243 wild ruminants, including Cervus elaphus, Capreolus capreolus, Dama dama and Ovis musimon and were examined for STEC using both phenotypic (Vero cells) and genotypic (PCR and PFGE) methods.Shiga toxin-producing Escherichia coli were isolated from 58 (23.9%) of the samples and a total of 65 isolates were characterised. A PCR method indicated that 11 (16.9%) strains carried the stx1 gene, 44 (67.7%) carried the stx2 gene and 10 (15.4%) carried both these genes. The ehxA gene was detected in 37 (57%) of the isolates but none contained either the eae or saa genes. The isolates were from a total of 12 ‘O’ serogroups, although 80% were restricted to the O2, O8, O128, O146, O166 and O174 serogroups. The most commonly isolated STEC bacteria, which were from the O146 serogroup, exhibited a high degree of polymorphism as indicated by PFGE. Shiga toxin-producing Escherichia coli isolates of serogroups O20, O25, O166, O171, O174 and O176 had not previously been found in wild ruminants. This is the first study to confirm that wild ruminants in Spain are a reservoir of STEC and are thus a potential source of human infection.  相似文献   

10.
Of 273 samples (rectal swab) collected from free-ranging yaks of Tawang district, Arunachal Pradesh, 42 Shiga toxin-producing Escherichia coli (STEC), six enteropathogenic E. coli (EPEC) and 27 enterotoxigenic E. coli (ETEC) strains were isolated. All the STEC and EPEC strains were further investigated for respective stx variants (for STEC only) and additional putative virulence factors. The 27 ETEC strains were also screened for characteristic enterotoxin gene(s) and colonization factors. Occurrence of ETEC was significantly (p < 0.05) higher in the diarrheic yaks and yaks of less than 1 year of age. Majority of enterovirulent E. coli isolates were resistant to amikacin, azithromycin, chloramphenicol, colistin, doxycycline, furazolidone, nalidixic acid, nitrofurantoin, streptomycin and tetracycline. Dendrogram, constructed with molecular fingerprinting profiles obtained from RAPD (Randomly Amplified Polymorphic DNA) and ERIC (Enterobacterial Repetitive Intergenic Consensus) PCR, placed the isolates in different clusters irrespective of their serotypes, virulence gene and drug resistance pattern. Collectively, the study indicates that yaks, being a potential reservoir of multidrug resistant STEC and EPEC, may represent significant risk to public health in this region. Higher recovery of ETEC isolates from yaks with diarrhea points out that ETEC may be a major determinant for repeated occurrence of diarrhea in yaks.  相似文献   

11.
The aims of this study were to investigate prevalence, O-genotype, and virulence gene profile including Shiga toxin (Stx) 2 gene-subtype of Stx-producing Escherichia coli (STEC) in beef cattle from the Bahía Blanca in Argentina. Rectal swabs were collected from 283 beef cattle in 2012. stx genes were detected in 90 (32%) out of the 283 rectal swabs by stx gene-specific PCR assay. The positive cases were 13 with stx1, 58 with stx2, and 19 with both stx1 and stx2. Among 90 stx gene-positive samples, 45 STEC strains were isolated, which included 3 stx1, 34 stx2, and eight stx1 and stx2 genes positive isolates. O-genotyping grouped 45 STEC strains into 19 different O-genotypes such as Og8, Og145, Og171, Og185 (4 from each), Og22, Og153, Og157 (3 from each) and others. Various stx2 gene-subtypes were identified in 42 STEC strains: 13 positive cases for stx2a, 11 for stx2c, 3 for stx2g, 10 for stx2a and stx2d, 4 for stx2a and stx2c, and 1 for stx2b, stx2c and stx2g. efaI gene, generally prevalent in clinical strains, was detected in relatively high in the STEC strains. These data suggest that stx2a and stx2c were distributed not only in O145 and O157 but also in minor O-genotypes of STEC in Argentina.  相似文献   

12.
The ecology of shiga‐toxigenic Escherichia coli (STEC) is important in the animal production environment. We investigated fecal shedding of STEC in one town in Miyagi, Japan by multiplex polymerase chain reaction (PCR) targeting shiga toxin gene 1 (stx1), gene 2 (stx2) and malB promoter gene, and analyzed the PCR products of stx1 or stx2 (54 samples) by direct sequencing. Three of 46 (6.5%) beef cattle in the University Farm of Tohoku University (Kawatabi Farm) and 11 of 70 (15.7%) calves in neighboring dairy farms carried STEC. Rate of detecting genes of stx1, stx2 and stx1+2 was 3.4% (4/116), 8.6% (10/116) and 0.9% (1/116), respectively. Serotyping indicated that STEC contaminated farms at different times or through different routes. Isolates harbored no mutation among stx1, but six (Kawatabi Farm) and 38 (neighboring farms) base substitutions among stx2, respectively. The diversity of substitutions of stx2 was observed among farms or even in a farm. Phylogenic analysis revealed that STEC detected in the area were classified into three clusters by the variety of stx2. Sequence analysis of stx2 will be one of the tools for clarifying the source of outbreaks and the route of contamination of STEC.  相似文献   

13.
A multiplex loop-mediated isothermal amplification (mLAMP) assay was developed for simultaneous detection of the stx1 and stx2 genes and applied for detection of shiga toxin-producing Escherichia coli (STEC) in cattle farm samples. Two target genes were distinguished based on Tm values of 85.03 ± 0.54℃ for stx1 and 87.47 ± 0.35℃ for stx2. The mLAMP assay was specific (100% inclusivity and exclusivity), sensitive (with a detection limit as low as 10 fg/µL), and quantifiable (R2 = 0.9313). The efficacy and sensitivity were measured to evaluate applicability of the mLAMP assay to cattle farm samples. A total of 12 (12/253; 4.7%) and 17 (17/253; 6.7%) STEC O157, and 11 (11/236; 4.7%) non-O157 STEC strains were isolated from cattle farm samples by conventional selective culture, immunomagnetic separation, and PCR-based culture methods, respectively. The coinciding multiplex PCR and mLAMP results for the types of shiga toxin revealed the value of the mLAMP assay in terms of accuracy and rapidity for characterizing shiga toxin genes. Furthermore, the high detection rate of specific genes from enrichment broth samples indicates the potential utility of this assay as a screening method for detecting STEC in cattle farm samples.  相似文献   

14.
The zoonotic potential of Escherichia coli from chicken‐source food products is important to define for public health purposes. Previously, genotypic and phenotypic screening of E. coli isolates from commercial chicken meat and shell eggs identified some E. coli strains that by molecular criteria resembled human‐source extraintestinal pathogenic E. coli (ExPEC). Here, to clarify the zoonotic risk of such chicken‐source E. coli, we compared selected E. coli isolates from chicken meat and eggs, stratified by molecularly defined ExPEC status, to human‐source ExPEC and to laboratory E. coli for virulence in rodent models of sepsis, meningitis and UTI, and evaluated whether specific bacterial characteristics predict experimental virulence. Multiple chicken‐source E. coli resembled human‐source ExPEC in their ability to cause one or multiple different ExPEC‐associated infections. Swimming ability corresponded with urovirulence, K1 capsule corresponded with ability to cause neonatal meningitis, and biofilm formation in urine corresponded with ability to cause sepsis. In contrast, molecularly defined ExPEC status and individual genotypic traits were uncorrelated with ability to cause sepsis, and neither complement sensitivity nor growth in human urine corresponded with virulence in any infection model. These findings establish that chicken‐derived food products contain E. coli strains that, in rodent models of multiple human‐associated ExPEC infections, are able to cause disease comparably to human‐source E. coli clinical isolates, which suggests that they may pose a significant food safety threat. Further study is needed to define the level of risk they pose to human health, which if appreciable would justify efforts to monitor for and reduce or eliminate them.  相似文献   

15.
To investigate public health implications of antibiotics to control post‐weaning scours, we surveyed 22 commercial pig herds in southeastern Australia. Fifty faecal samples per herd were collected from pre‐ and post‐weaned piglets. Presumptive Escherichia coli isolates were confirmed by MALDI‐TOF MS. Isolates (n = 325) were screened for susceptibility to 19 veterinary antibiotics using MIC broth microdilution. All 325 E. coli isolates underwent further testing against 27 antibiotics used in human medicine and were screened for ETEC adhesin and enterotoxin genes (F4 (K88), F5 (K99), F6 (987P), F18, F41, STa, STb, Stx2e and LT) by multiplex PCR. Isolates identified as phenotypically resistant to third‐generation cephalosporin (3GC) and aminoglycoside antibiotics were screened by multiplex PCR/reverse line blot to detect common β‐lactam and aminoglycosides resistance genes, confirmed by sequencing. Twenty (6.1%) of the E. coli isolates were resistant to 3GC antibiotics and 24 (7.4%) to the aminoglycoside antibiotic gentamicin. Genetic analysis revealed six different extended spectrum β‐lactamase (ESBL) genes (blaCTX‐M‐1, ‐14, ‐15, ‐27, blaSHV‐12 and blaCMY‐2‐like genes), four of which have not been previously reported in Australian pigs. Critically, the prevalence of 3GC resistance was higher in non‐pathogenic (non‐ETEC) isolates and those from clinically normal (non‐diarrhoeal) samples. This highlights the importance of non‐ETECE. coli as reservoirs of antimicrobial resistance genes in piglet pens. Antimicrobial resistance surveillance in pig production focused on diagnostic specimens from clinically‐affected animals might be potentially misleading. We recommend that surveillance for emerging antimicrobial resistance such as to 3GC antibiotics should include clinically healthy pigs.  相似文献   

16.
Cryptosporidium spp. and Shiga toxin‐producing Escherichia coli strains (STEC) are important causes of human illness. Incidence rates of these illnesses are high in South Dakota compared to the USA as a whole. Direct animal contact has been identified as a possible route of exposure for these illnesses. Ruminant animals may carry STEC subclinically, while young ruminants are common sources of zoonotic strains of Cryptosporidium. South Dakota patients with either STEC or cryptosporidiosis during 2012 were interviewed regarding seven categories of animal exposure: (i) petting zoo/fair attendance, (ii) animal event/rodeo attendance, (iii) feed/pet store visits, (iv) farm visits, (v) employment or residence at a farm, (vi) residence with pets and (vii) visiting other households with pets. Of the 50 STEC cases, 78.0% reported animal exposure prior to illness onset, with 23.3% having lived or worked on a farm. Farm visitors in particular had high degrees of animal contact and infrequently practiced personal protective measures. Of the 115 cryptosporidiosis cases, 87.8% reported animal exposures, with 45.6% having lived or worked on a farm and 29.0% having visited a farm prior to illness. Cases with farm exposures reported a high degree of direct animal contact and inconsistent use of personal protective measures. Cryptosporidiosis patients were significantly more likely than STEC patients to have lived or worked on a farm prior to their illness and were older on average. Patients with these illnesses had high rates of animal contact prior to illness. Animal contact on farms emerged as an important exposure route. Educational messages about personal protective measures should be directed at these individuals.  相似文献   

17.
A simple, rapid and specific PCR‐based method for identification of shiga toxin‐producing Escherichia coli (STEC) was developed. The procedure involves amplification of the E. coli‐specific universal stress protein A (uspA) gene (uspa‐PCR), with the primer pair described by other authors, which allows differentiation of E. coli (STEC and non‐STEC) from other gram‐negative bacteria followed by identification of the main genetic virulence traits of the uspA‐positive isolates. For this purpose, two multiplex PCR assays, based on previously published primer sequences, were established. Assay 1 (mPCR‐1) uses three primer pairs and detects the genes encoding O157 (rfb), enterohemolysin (ehly) and shiga toxin (stx), generating amplification products of 420, 534 and 230 bp, respectively. Assay 2 (mPCR‐2) uses four primer pairs specific for rfb (E. coli O157), eaeA (intimin), stx1 and stx2 (shiga toxin 1 and 2, respectively), generating PCR amplicons of 420, 840, 348 and 584 bp, respectively. These two assays were validated by testing several E. coli reference strains and 202 previously characterized E. coli isolates originating from calves and from children, and 100% agreement with previous results was obtained. The method developed can be used for specific identification of STEC bacteria including those of the O157 serogroup.  相似文献   

18.
Shiga toxin‐producing Escherichia coli (STEC) is a zoonotic pathogen of public health concern whose sources and transmission routes are difficult to trace. Using a combined source attribution and case–control analysis, we determined the relative contributions of four putative livestock sources (cattle, small ruminants, pigs, poultry) to human STEC infections and their associated dietary, animal contact, temporal and socio‐econo‐demographic risk factors in the Netherlands in 2010/2011–2014. Dutch source data were supplemented with those from other European countries with similar STEC epidemiology. Human STEC infections were attributed to sources using both the modified Dutch model (mDM) and the modified Hald model (mHM) supplied with the same O‐serotyping data. Cattle accounted for 48.6% (mDM) and 53.1% (mHM) of the 1,183 human cases attributed, followed by small ruminants (mDM: 23.5%; mHM: 25.4%), pigs (mDM: 12.5%; mHM: 5.7%) and poultry (mDM: 2.7%; mHM: 3.1%), whereas the sources of the remaining 12.8% of cases could not be attributed. Of the top five O‐serotypes infecting humans, O157, O26, O91 and O103 were mainly attributed to cattle (61%–75%) and O146 to small ruminants (71%–77%). Significant risk factors for human STEC infection as a whole were the consumption of beef, raw/undercooked meat or cured meat/cold cuts. For cattle‐attributed STEC infections, specific risk factors were consuming raw meat spreads and beef. Consuming raw/undercooked or minced meat were risk factors for STEC infections attributed to small ruminants. For STEC infections attributed to pigs, only consuming raw/undercooked meat was significant. Consuming minced meat, raw/undercooked meat or cured meat/cold cuts were associated with poultry‐attributed STEC infections. Consuming raw vegetables was protective for all STEC infections. We concluded that domestic ruminants account for approximately three‐quarters of reported human STEC infections, whereas pigs and poultry play a minor role and that risk factors for human STEC infection vary according to the attributed source.  相似文献   

19.
A total of 156 Shiga-like toxin producing Escherichia coli (STEC) were isolated from fecal samples of Korean native (100/568, 18%) and Holstein dairy cattle (56/524, 11%) in Korea between September 2010 and July 2011. Fifty-two STEC isolates (33%) harbored both of shiga toxin1 (stx1) and shiga toxin2 (stx2) genes encoding enterohemolysin (EhxA) and autoagglutinating adhesion (Saa) were detected by PCR in 83 (53%) and 65 (42%) isolates, respectively. By serotyping, six STEC from native cattle and four STEC from dairy cattle were identified as O-serotypes (O26, O111, O104, and O157) that can cause human disease. Multilocus sequence typing and pulsed-field gel electrophoresis patterns highlighted the genetic diversity of the STEC strains and difference between strains collected during different years. Antimicrobial susceptibility tests showed that the multidrug resistance rate increased from 12% in 2010 to 42% in 2011. Differences between isolates collected in 2010 and 2011 may have resulted from seasonal variations or large-scale slaughtering in Korea performed to control a foot and mouth disease outbreak that occurred in early 2011. However, continuous epidemiologic studies will be needed to understand mechanisms. More public health efforts are required to minimize STEC infection transmitted via dairy products and the prevalence of these bacteria in dairy cattle.  相似文献   

20.
《Veterinary microbiology》2015,175(1):150-156
Sheep constitute an important source of zoonotic pathogens as Shiga toxin-producing Escherichia coli (STEC). In this study, the prevalence, serotypes and virulence profiles of STEC were investigated among 130 healthy sheep from small and medium farms in southern Brazil. STEC was isolated from 65 (50%) of the tested animals and detected in all flocks. A total of 70 STEC isolates were characterized, and belonged to 23 different O:H serotypes, many of which associated with human disease, including hemolytic-uremic syndrome (HUS). Among the serotypes identified, O76:H19 and O65:H– were the most common, and O75:H14 and O169:H7 have not been previously reported in STEC strains. Most of the STEC isolates harbored only stx1, whereas the Stx2b subtype was the most common among those carrying stx2. Enterohemolysin (ehxA) and intimin (eae) genes were detected in 61 (87.1%) and four (5.7%) isolates, respectively. Genes encoding putative adhesins (saa, iha, lpfO113) and toxins (subAB and cdtV) were also observed. The majority of the isolates displayed virulence features related to pathogenesis of STEC, such as adherence to epithelial cells, high cytotoxicity and enterohemolytic activity. Ovine STEC isolates belonged mostly to phylogenetic group B1. PFGE revealed particular clones distributed in some farms, as well as variations in the degree of genetic similarity within serotypes examined. In conclusion, STEC are widely distributed in southern Brazilian sheep, and belonged mainly to serotypes that are not commonly reported in other regions, such as O76:H19 and O65:H–. A geographical variation in the distribution of STEC serotypes seems to occur in sheep.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号