首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A denitrification reactor packed with polycaprolactone (PCL) as a carbon source and biofilm carrier was developed to remove nitrate nitrogen (\( {\mathrm{NO}}_3^{-}-\mathrm{N} \)) from the water of a recirculating aquaculture system for 115 days. The hydraulic retention time was set to 6 h, and the water flow rate was 0.95 L h?1. The removal rates of \( {\mathrm{NO}}_3^{-}-\mathrm{N} \) ranged from 34.67 to 155.7 g \( {\mathrm{NO}}_3^{-}-\mathrm{N} \) m?3 day?1 when the effluent \( {\mathrm{NO}}_3^{-}-\mathrm{N} \) concentrations ranged between 1.62 and 72.25 mg L?1. No obvious changes in the Fourier transform infrared spectra of the PCL before and after use were observed. Bacterial community structure in the biofilm of the PCL granules was analyzed using Illumina MiSeq sequencing technology. Proteobacteria and Bacteroidetes were predominant in the biofilm, with relative abundances of 63.9 and 27.4%, respectively. Three genera, Acidovorax, Azospira, and Diaphorobacter, were capable of both denitrification and PCL degradation. This study indicates that PCL-packed reactors may be used and optimized for removing nitrate from aquaculture effluents.  相似文献   

2.
Growth, nitrogenous excretion and energy budget of juvenile yellow catfish, Pelteobagrus fulvidraco (initial body weight 1.17 ± 0.28 g) at various levels (50%, 60%, 70%, 80%, 90% and 100% satiation per day) were investigated with feeding diet containing 40% protein. Specific growth rate of yellow catfish increased (2.79–3.34% day) significantly (P<0.05) with ration level (RL) increasing. Feed conversion efficiency, feed protein retention efficiency and feed energy retention efficiency increased with the increase in RL, peaked at 70% of satiation, and then decreased at higher ration, with the ranges of 78.97–97.28%, 31.31–37.93% and 26.55–31.88% respectively. Both nitrogenous excretion (u, mg g?1 day?1) and faecal production (f, mg g?1 day?1) increased significantly with the increased RL, and ranged between 0.94–1.38 and 0.69–1.24 mg g?1 day?1 respectively. Apparent digestibility coefficients in dry matter, protein, energy decreased significantly as ration increased, with ranges of 54.42–69.64%, 78.24–89.90% and 69.66–82.07% respectively. Energy budgets of juvenile yellow catfish at satiation RL was: 100C=30F+8U+33R+29G or 100A=54R+46G.  相似文献   

3.
The growth and reproductive characteristics of dolphinfish Coryphaena hippurus collected in the waters off western Kyushu from May 2008 to April 2011 were determined based on scale and otolith readings and gonad histological examinations, respectively. Based on annual increments in scales and daily increments in sagittal otoliths, the von Bertalanffy growth curves in male and females were determined as $ FL_{t} = 1049[1 - \exp \{ - 0.835(t + 6.975 \times 10^{ - 14} )\} ] $ and $ FL_{t} = 938[1 - \exp \{ - 1.029(t + 6.975 \times 10^{ - 14} )\} ] $ , respectively, where FL t is the mean fork length (mm) at age t. The spawning period was found to last from June to August for dolphinfish, based on an examination of the monthly changes in the gonadosomatic index and histological observations. Therefore, based on the relationship between the fork length and the developmental stage of the testes or ovaries, male and female dolphinfish were found to reach sexual maturity by the following spawning season after hatching in the northern East China Sea.  相似文献   

4.
This study was conducted to assess the optimum clam size and substratum type for the culture of Galatea paradoxa. The experiment was conducted over a 90‐day period at the Volta Estuary, Ghana. Three size classes of G. paradoxa categorized as small (27.6 ± 0.4 mm), medium (36.8 ± 0.4 mm) and large (50.0 ± 0.6 mm), were used to ascertain the effect of a sandy and muddy substratum on growth performance and survival. Growth increased from the small‐sized clams to the large‐sized clams at 2.54, 3.03 and 3.43 g, respectively, over the experimental period. Growth was higher (P < 0.05) in the muddy substratum (3.58 g) compared with sandy (2.41 g). Similarly, the specific growth rate increased from 0.99% day?1 in the small‐sized clams to 1.36% day?1 in the large‐sized clams. Survival rates were significantly higher (99.4%) for the large‐sized clams compared with the medium (78.8%) and the small‐size clams (74.1%). There was significant interaction between the size class and the substratum type with a trend towards increasing survival rate from the small to the large size clams in both substrata. The survival rate was lower in the muddy substratum (71.4%) compared with the sandy substratum (96.7%). The yield was significantly higher in the muddy (2.01 kg m?2 90 day?1) compared with sandy substratum (1.87 kg m?2 90 day?1). The results of this study indicate that the culture of small‐sized clams is best practiced on sandy substratum due to their elevated survival rates, whereas the muddy substratum appears most suitable for the culture of larger clams (>40 mm) because of their relatively higher survivorship and better growth performance.  相似文献   

5.
We attempted to estimate the survival rates of larval cohorts (3–15 mm in body length) of the Japanese anchovy Engraulis japonicus population in Hiuchi‐nada, Seto Inland Sea, Japan, and examined the relationship to their food availability. The survival rates were directly calculated from the change in larval density during the survey. The estimated daily survival rate ranged between 0 and 89% d−1, but increased with the increase in the mean concentration of small‐sized copepod nauplii (<100 μm in body length) sampled at 10 m depth. When the food concentration was higher than about 5 nauplii L−1, the daily survival rate of larval anchovy reached an asymptote of approximately 89% day−1. It might be possible to provide a framework for the forecast for larval abundance immediately prior to recruitment size (10–15 mm SL), based on larval abundance of the monitored size (3–8 mm SL) and the survival rate which is estimated from the concentration of small‐sized nauplii.  相似文献   

6.
Four isonitrogenous [30% crude protein (CP)] diets containing different gross energy levels (13.39, 16.74, 20.50 and 23.85 kJ g−1) were evaluated to determine the optimum energy for the Malawian tilapia Oreochromis shiranus. Each tank (120 L) was stocked with 18 juvenile tilapia (average weight 7.32±0.25 g) and they were fed the experimental diets for 10 weeks. The final average weight of the fish was approximately twofold higher (range: 12.64–16.77 g) than the initial weight. The dietary energy significantly (P<0.05) influenced growth. The average weight of fish fed dietary energy level 20.50 kJ g−1 was significantly higher (P<0.05) than the weight of the fish fed any of the other experimental diets. There was no significant difference in growth of fish fed 13.39 and 16.74 kJ g−1 energy levels, but 23.85 kJ g−1 produced the lowest growth rates. There were no significant differences (P>0.05) between feed intake across the treatments. Feed conversion ratio (range: 2.2–3.0) and protein efficiency ratio (range: 1.10–1.50) among the dietary treatment groups were in agreement with trends for weight gain. Dietary energy level significantly (P<0.05) influenced the body composition of O. shiranus. Whole‐body moisture (range: 64.27–67.15%) and ash (range: 13.21–14.73%) decreased in all treatments. Whole‐body protein (range: 63.57–66.16%) increased only in groups fed on the diet containing 20.50 kJ g−1. Whole‐body fat (range: 13.58–17.27%) and gross energy (range: 28.411–33.210 kJ g−1) increased significantly (P<0.05). Fish survival was 100% in all treatments. The results demonstrated that to maximize growth at a temperature of 23°C, O. shiranus should be fed diets containing 20.50 kJ g−1 gross energy.  相似文献   

7.
A feeding trial was conducted using isoenergetic practical diets to evaluate the effects of the dietary protein level on growth performance, feed utilization and digestive enzyme activity of the Chinese mitten crab, Eriocheir sinensis. Four experimental diets were formulated containing 250, 300, 350 and 400 g kg?1 protein and 16 kJ g?1 gross energy. Each diet was randomly assigned to triplicate groups of juvenile crab with mean initial body weight 3.56 ± 0.16 g and mean shell width 15.31 ± 0.06 mm. Juvenile crab were reared in indoor flow‐through system consisting of 12 plastic tanks (1.0 m × 0.6 m × 0.5 m) and fed diets twice daily at 6–8% of body weight for 12 weeks. Performance was judged on the basis of growth (specific growth rate of weight, SGRG; specific growth rate of shell width, SGRSW), feed conversion ratio (FCR) and protein efficiency ratio (PER). A decreased FCR was observed with increasing dietary protein levels. Both SGRG and SGRSW significantly increased with increasing dietary protein levels up to 350 g kg?1, whereas there were no significant differences for protein levels from 350–400 g kg?1. Application of broken line regression analysis to SGRG provided an estimate of 347.8 g kg?1 dietary protein for maximal growth. The highest PER was observed in crab fed the diet containing 350 g kg?1 protein (P < 0.05). The percent survival was not affected (P > 0.05) by the different dietary treatments. No significant differences were observed in the apparent digestibility coefficients of crude lipid and dry matter among dietary treatments (P > 0.05). However, the apparent digestibility coefficients of crude protein and energy in crab fed different protein levels significantly increased with increasing dietary protein level (P < 0.05). Both amylase and protease activities in the intestine of E. sinensis were studied. The amylase activity decreased significantly (P < 0.05) with increased dietary protein level and protease activity increased. Regression analysis showed a negative effect of inclusion of dietary protein level on amylase activity (P < 0.05). However, protease activities were found to be positively correlated (P < 0.05) with dietary protein level. The protein content of the crab significantly increased with dietary protein levels up to 350 g kg?1 (P < 0.05), but no significant differences (P > 0.05) were founded with protein levels higher than 350 g kg?1.  相似文献   

8.
In experimental culture conditions in tanks, the effect of weight (W: 11–452 g) and temperature (T: 14–29°C) on the growth rate (SGR, % bw day−1) and maximum daily food intake (SFR, % bw day−1) in sharpsnout sea bream (Diplodus puntazzo) was studied. The possible combined effect of both independent variables (W and T) was also analyzed by multiple regression analysis, fitting the data to the equation Ln Y = Ln a + b Ln W + cT + dT 2 + eT Ln W. Both SGR and SFR, and therefore feed efficiency (FE = SGR/SFR), were significantly influenced by the interaction between temperature and weight and may be expressed by means of the following equations: Ln SGR = −6.1705 + 0.5809T − 0.0087T 2 − 0.0249T Ln W ( R\textadj2 R_{\text{adj}}^{2}  = 0.949; ANOVA P < 0.0001); Ln SFR = −4.8257 + 0.4425T − 0.0063T 2 − 0.0163T Ln W ( R\textadj2 R_{\text{adj}}^{2}  = 0.964; ANOVA P < 0.0001).The results suggest that the optimum temperature for SGR and FE (T SGRopt and T FEopt), and the temperature at which the maximum SFR (T SFRmax) is reached, decreases with body weight, in accordance with the equations: T SGRopt = 33.297 − 1.435 Ln W; T FEopt = 29.332 − 1.890 Ln W; and T SFRmax = 34.941 − 1.304 Ln W, respectively. In this way, T SGRopt is 28.4, 26.7, and 24.7°C; T SFRmax is 30.5, 28.9, and 27.1°C and T FEopt is 22.9, 20.6, and 18°C for 30, 100 and 400 g body weight, respectively.  相似文献   

9.
This study investigated the effect of the replacement of fish oil (FO) with DHA‐Gold (DHA‐G)‐supplemented plant oils (PO) in rainbow trout fed plant‐protein‐based diets. Five diets (450 mg g?1 digestible protein and 150 mg g?1 crude lipid) were fed to rainbow trout (initial weight 37 ± 0.5 g) for 12 weeks in a 15 °C recirculating water system. The lipid inclusion types and levels were FO, PO and PO with DHA‐G supplemented at 30 mg g?1, 60 mg g?1 or 90 mg g?1 of the diet replacement for corn oil. Fish fed 90 mg g?1 DHA‐G were significantly larger and consumed more feed than fish‐fed PO or FO (218 g and 2.6% bwd?1 versus 181 g and 2.4% and 190 g and 2.3%, respectively). Feed conversion ratio was significantly increased in fish fed 90 mg g?1 DHA‐G (0.99) as compared to fish‐fed FO (0.90) and 30 mg g?1 DHA‐G (0.91). Panellists found trout fillets from fish fed the 90 mg g?1 DHA‐G diet to have significantly fishier aroma and flavour than fish fed the FO diet. Fatty acid analysis demonstrated that 60 mg g?1 or 90 mg g?1 DHA‐G supplementation increased PO fed fish fillet DHA to fatty acid levels equivalent or higher than those fish fed a FO diet.  相似文献   

10.
To investigate the effects of body size and water temperature on feeding and growth in the sea cucumber Apostichopus japonicus (Selenka), the maximum rate of food consumption in terms of energy (Cmaxe; J day?1) and the specific growth rate in terms of energy (SGRe; % day?1) in animals of three body sizes (mean±SE) – large (134.0±3.5 g), medium (73.6±2.2 g) and small (36.5±1.2 g) – were determined at water temperatures of 10, 15, 20, 25 and 30°C. Maximum rate of food consumption in terms of energy increased and SGRe decreased with increasing body weight at 10, 15 and 20°C. This trend, however, was not apparent at 25 and 30°C, which could be influenced by aestivation. High water temperatures (above 20°C) were disadvantageous to feeding and growth of this animal; SGRe of A. japonicus during aestivation was negative. The optimum temperatures for food consumption and for growth were similar and were between 14 and 15°C, and body size seemed to have a slight effect on the optimal temperature for food consumption or growth. Because aestivation of A. japonicus was temperature dependent, the present paper also documented the threshold temperatures to aestivation as indicated by feeding cessation. Deduced from daily food consumption of individuals, the threshold temperature to aestivation for large and medium animals (73.3–139.3 g) was 24.5?25.5°C, while that for small animals (28.9–40.7 g) was between 25.5 and 30.5°C. These values are higher than previous reports; differences in sign of aestivation, experimental condition and dwelling district of test animals could be the reasons.  相似文献   

11.
This study was conducted to investigate protein synthesis rates and metabolism of histidine (His)‐derivatives in lenses of Atlantic salmon (Salmo salar L.) of different dietary His background during parr–smolt transformation. Two populations of Atlantic salmon parr of equal origin were established in freshwater (FW), 3 months prior to transfer to seawater (SW). The populations were fed either a control diet (CD) containing 8.9 g kg?1 His or the same diet added crystalline His to a total level of 14.2 g kg?1 (HD). On the basis of these two populations, 14C His force‐feeding studies were performed; in FW 3 weeks prior to sea transfer and in SW 6 weeks after transfer. The studies were conducted by force‐feeding the respective diets enriched with 14C labelled His, with subsequent measurements of incorporation of 14C His into lens free amino acid pool, as well as into lens proteins and other free His pool fractions. The latter included the major lens imidazole N‐acetylhistidine (NAH). Lens concentrations of His and NAH were clearly influenced by dietary His history, both in parr and smolt. The lens His and NAH concentrations in the CD population were considerably lower in SW than in FW, while in the HD group the His level was equal and the NAH level 50% higher in SW than in FW. Fractional synthesis rate for NAH, KS (NAH), in FW was 8.2 and 4.2 μmol g?1 day?1 for fish in the CD and HD populations, respectively. The corresponding KS (NAH) values in SW were 5.1 and 33.0 μmol g?1 day?1. Our data show that free His is rapidly converted to NAH in the lens, and that NAH seems to have a very high turnover, especially in salmon reared in SW. Fractional synthesis rate for lens proteins, KS (PROTEIN), ranged between 1.8 and 17.3% day?1 (182 and 2791 μg g?1 day?1, respectively), and was generally higher in SW than in FW (P < 0.01). In SW, KS (PROTEIN) was highest in fish in the HD population (P < 0.05), whereas lens protein retention in the HD group was significantly lower than the CD group (P = 0.01). In a second model assuming that His from lens NAH is available for protein synthesis, calculated values of KS (PROTEIN) ranged between 0.17% day?1 (17.6 μg g?1 day?1) and 0.48% day?1 (70.2 μg g?1 day?1). Cataract scores recorded in the His populations at a later point (day 204), showed that the CD fish had significantly higher mean cataract scores than individuals in the HD population (P < 0.01), confirming that low levels of lens His and NAH are associated with cataract development.  相似文献   

12.
Two feeding trials were carried out to determine the optimum feeding rates in juvenile olive flounder, Paralichthys olivaceus, at the optimum rearing temperature. Fish averaging 5.0 ± 0.11 g (mean ± SD) in experiment 1 and 20.2 ± 0.54 g (mean ± SD) in experiment 2 were fed a commercial diet at the feeding rates of 0%, 3.0%, 4.0%, 4.25%, 4.5% and 4.75% body weight (BW) day?1 and satiation (5.52% BW day?1) in experiment 1 and 0%, 1.0%, 2.0%, 3.0% and 3.5% BW day?1 and satiation (4.12% BW day?1) in experiment 2 at 20 ± 1 °C. Both feeding trials lasted for 2 weeks. Results from experiment 1 indicated that weight gain (WG) and specific growth rate (SGR) of fish fed to satiation were significantly higher than those of fish fed at other feeding rates while feed efficiency (FE) and protein efficiency ratio (PER) of fish fed at 4.25% BW day?1 were significantly higher than those of fish fed to satiation and fish fed at 3.0% BW day?1 (< 0.05). In experiment 2 WG, SGR and PER leveled out after the feeding rate of 3.5% BW day?1 whereas FE reached a plateau at 3.0% BW day?1. anova of FE indicated that the optimum feeding rates in 5.0 and 20 g juvenile olive flounder could be 4.25% and 3.0% BW day?1, respectively. Broken line analysis of WG suggested the optimum feeding rates of 5.17% and 3.47% BW day?1 in 5.0 and 20 g fish, respectively. Therefore, these results indicated that the optimum feeding rates could be >4.25 but <5.17% BW day?1 for 5.0 g, and it could be >3.0 but <3.47% BW day?1 for 20 g size of juvenile olive flounder at the optimum rearing temperature.  相似文献   

13.
Growout production of the camouflage grouper, Epinephelus polyphekadion (Bleeker), in a 10-m3-capacity fibreglass tank culture system was evaluated, using hatchery-produced fingerlings (56-59 g initial weight) at stocking densities of five, 15 and 45 fish m?3. During the first 9 months of a 12-month growout period, the fish were fed twice a day with a moist pellet feed containing 40.9% protein. From month 10 onwards until harvest, the fish were fed moist pellets in the morning and trash fish in the evening at a 1:1 ratio. The final weight of fish at harvest was up to 900 g, with mean weights of 544.6 ± 170.72 g at five fish m?3, 540.2 ± 150.82 g at 15 fish m-?3 and 513.3 ± 134.52 g at 45 fish m?3. The results showed no significant differences (P > 0.05) in growth rate and fish size between the different stocking densities tested. The average daily growth rate ranged from 0.62 to 3.38 g fish?1 day?1, with mean weights of 1.49 ± 0.74 g fish?1 day?1 at five fish m?3 through 0.53 to 2.38 g fish?1 day?1, 1.32 ± 0.57 g fish?1 day?1 at 15 fish m?3 to 0.48-3.32 g fish?1 day?1 and 1.31 g fish?1 day?1 at 45 fish m?3 stocking density. Although up to 100% survival was observed at the lowest stocking density, the survival rate significantly decreased (P < 0.05) with increasing stocking density. The food conversion ratio (FCR) significantly decreased (P <0.05) with increasing stocking densities, showing efficient feed utilization with increasing stocking densities of E. polyphekadion. The FCR averaged 2.1 at a stocking density of 45 fish m?3. The yield in terms of kg fish produced m?3 of water used in the culture system significantly increased (P < 0.001) from five to 45 fish m?3. The yield averaged 17.3 ±0.53 kg m?3 at a stocking density of 45 fish m?3. The present results show that the present tank culture system could sustain more biomass in terms of increasing fish stocking densities. The growth performance of E. polyphekadion observed during this investigation has been reviewed with other grouper species.  相似文献   

14.
Effects of temperature on food consumption, growth and oxygen consumption were estimated for the freshwater prawn Macrobrachium rosenbergii postlarvae at 23 °C, 28 °C and 33 °C in the laboratory. The results showed that the animal's initial body weight had a close linear relationship with food consumption and growth. Food consumption increased directly with temperature. Consumption rates (C; mg day?1 ind?1 ) of the 28 °C and 33 °C groups were much higher than that of the 23 °C group (P < 0.001), and the 33 °C group's consumption rate was higher than that of the 28 °C group (P < 0.05). The relationship of food consumption with temperature and initial body weight (W; mg) could be described as: C = 0.0679W + 0.185t? 3.17. Growth increased significantly with increased temperature. The relationship among specific growth rate, temperature and initial body weight was as follows: SGR = ?0.110W + 0.213t + 0.176. However, temperature showed no effect on growth efficiency. Oxygen consumption increased significantly with temperature (P < 0.01). The weight‐specific oxygen consumption rates (mg O2 g?1 h?1) at 23 °C, 28 °C and 33 °C were 0.83, 1.16 and 1.49 mg O2 g?1 h?1 for 61.92 mg M. rosenbergii.  相似文献   

15.
The effect of thermal history (16 and 20°C) on growth of juvenile turbot, Scophthalmus maximus (initial mean weight 72.6 g, n = 157) was studied. Fish were divided into four groups, two groups remaining at constant temperature (C16, C20), while fish in the other groups were transferred from either 16 to 20°C (F16-20) or from 20 to 16°C (F20-16). Between 35 and 42 fish in each tank were individually tagged at the start of the experiment. The final mean weights were significantly higher in the F20-16 group (230 g) than in the C20 (213 g), F16-20 (211 g) and C16 (205 g) groups. The overall growth rate was highest in the F20-16 group (1.17% day−1) but comparable in the three other groups (1.00–1.04% day−1). Our findings indicate that, even at near-optimal temperature for a given size, the temperature history of the fish may influence future growth. Based on these indications, we conclude that as turbot grow larger, the temperature should be reduced to take advantage of the change in optimal temperature for growth with increasing fish size rather than rearing at constant temperatures.  相似文献   

16.
The combined effects of stocking density and microalgae ration on survival and size of Saccostrea echinata larvae were studied in two‐factor experiments for the major developmental stages: D‐veliger (1‐day posthatch [dph], Experiment 1), umbonate (12 dph, Experiment 2), and eyed (19 dph, Experiment 3) larvae. Larvae were stocked into replicate sets of four 10‐L aquaria with ambient 1‐μm filtered sea water (28 ± 1.5°C and 36 ppt) and cultured for four days at densities of 0.5, 2, 5, 7, or 10 larvae/mL and provided with microalgae rations at each of five densities (cells larvae?1 day?1); 0, 1, 3, 5, or 8 × 103 (D‐veliger larvae, Experiment 1); 0, 5, 12, 18, or 25 × 103 (umbonate larvae, Experiment 2); and 0, 15, 30, 40, or 60 × 103 (eyed larvae, Experiment 3). Microalgae rations for each larval life stage were selected on the basis of increasing food requirement with larval size and comprised a 2:1:1 mixture of Chaetoceros calcitrans, Tisochrysis lutea, and Pavlova spp., calculated on an equal dry‐weight basis. Contour plots were generated from larval survival and larval size (dorso‐ventral measurement [DVM]) data to determine optimal culture conditions. Larvae showed high survival (54–100%) over a wide range of both treatment parameters across all life stages, confirming broad tolerance limits for this species. The interaction effects of larval stocking density and microalgae ration on larval size were significant (p < 0.001) across all life stages. Results indicate that maximum larval size (DVM) is achieved when S. echinata are cultured at: 6–8 larvae/mL and fed 5–6 × 103 cells larvae?1 day?1 for D‐veligers (mean DVM >80 μm), at 2–8 larvae/mL and fed 11–25 × 103 cells larvae?1 day?1 for umbonate larvae (mean DVM > 190 μm), and at 1–4 larvae/mL and fed 15–40 × 103 cells larvae?1 day?1 for eyed larvae (mean DVM >230 μm). Results will help refine current hatchery methods for S. echinata supporting further development toward commercial aquaculture production of this species.  相似文献   

17.
Temperature increases due to climate change over the coming century will likely affect smallmouth bass (Micropterus dolomieu) growth in lotic systems at the southern extent of their native range. However, the thermal response of a stream to warming climate conditions could be affected by the flow regime of each stream, mitigating the effects on smallmouth bass populations. We developed bioenergetics models to compare change in smallmouth bass growth rate potential (GRP) from present to future projected monthly stream temperatures across two flow regimes: runoff and groundwater‐dominated. Seasonal differences in GRP between stream types were then compared. The models were developed for fourteen streams within the Ozark–Ouachita Interior Highlands in Arkansas, Oklahoma and Missouri, USA, which contain smallmouth bass. In our simulations, smallmouth bass mean GRP during summer months decreased by 0.005 g g?1 day?1 in runoff streams and 0.002 g g?1 day?1 in groundwater streams by the end of century. Mean GRP during winter, fall and early spring increased under future climate conditions within both stream types (e.g., 0.00019 g g?1 day?1 in runoff and 0.0014 g g?1 day?1 in groundwater streams in spring months). We found significant differences in change in GRP between runoff and groundwater streams in three seasons in end‐of‐century simulations (spring, summer and fall). Potential differences in stream temperature across flow regimes could be an important habitat component to consider when investigating effects of climate change as fishes from various flow regimes that are relatively close geographically could be affected differently by warming climate conditions.  相似文献   

18.
Abstract.— The present study was conducted to investigate the effects of dietary supplementation of β‐1,3 glucan and a laboratory developed feed stimulant, BAISM, as feed additives for juvenile olive flounder, Paralichthys olivaceus. Eight experimental diets were formulated to be isonitrogenous and isocaloric and to contain 50.0% crude protein and 16.4 kJ of available energy/g with or without dietary β‐1,3 glucan and BAISM supplementation. β‐1,3 glucan (G) and BAISM (B) were provided at 0% in the control diet (G0B0) and at 0.05% G + 0.45% B (G0.05B0.45), 0.05% G + 0.95% B (G0.05B0.95), 0.1% G + 0.90% B (G0.1B0.9), 0.10% G + 1.90% B (G0.1B1.9), 0.15% G + 1.35% B (G0.15B1.35), 0.15% G + 2.85% B (G0.15B2.85), and 0.30% G + 2.70% B (G0.3B2.7) in experimental diets. After the feeding trial, fish fed G0.1B0.9, G0.1B1.9, and G0.15B1.35 diets had higher percent weight gain (WG), feed efficiency ratio (FER), specific growth rate (SGR), protein efficiency ratio (PER), and condition factor (CF) than those fed G0B0, G0.05B0.45, G0.05B0.95, G0.15B2.85, and G0.3B2.7 diets (P < 0.05); however, there was no significant differences among fish fed G0.1B0.9, G0.1B1.9, and G0.15B1.35 diets. Fish fed G0.1B0.9 and G0.1B1.9 diets had higher chemiluminescent responses (CL) than those fed the other diets (P < 0.05). Lysozyme activity of fish fed G0.1B0.9 diet was significantly higher than that of fish fed the other diets (P < 0.05). These results indicated that the optimum dietary supplementation level of β‐1,3 glucan and BAISM could be approximately 0.10% β‐1,3 glucan + 0.90% BAISM (G0.1B0.9) of diet based on WG, FER, SGR, PER, CF, CL, and lysozyme activity in juvenile olive flounder, P. olivaceus.  相似文献   

19.
Six size groups of hatchery produced turbot (2–499 g) were reared at six constant temperatures (10–25 °C). The results were used to develop a mathematical model for growth rate and feed conversion in turbot. At each temperature there were linear relationships between logarithms of (a) specific growth rate (G%/day) and body weight (W g), and (b) feed conversion ratio (FCR) and W. The slopes of the regressions were linearly related to temperature and the intercepts of the regression changed with temperature according to a second order polynomial. The optimal temperature for growth (Topt.G) is predicted to decline with increasing body weight: Topt.G = 22.45 − 0.713lnW, i.e. 22.5, 20.8, 19.1 and 17.5 °C for 1, 10, 100 and 1000 g fish, respectively, and the growth rates of these fish sizes at their optimal temperature (Gmax) were predicted to be 7.63, 2.73, 1.03 and 0.40%/day, respectively. The optimal temperature for feed conversion (Topt.FCR) is also predicted to decline with increasing fish size: Topt.FCR = 18.80 − 0.625lnW, i.e. 18.8, 17.4, 15.9 and 14.5 °C for 1, 10, 100 and 1000 g fish, respectively, and the predicted feed conversions of these fish sizes (FCRmin) were 0.44, 0.56, 0.68 and 0.82 for the present feed types. The growth model predicts that 2 g turbot can reach 743 and 619 g in 1 year when reared at Topt.G and Topt.FCR, respectively.  相似文献   

20.
This study compares the effect of food type (formulated diet vs. natural food) and fish size on protein and energy utilization efficiencies for growth in common sole, Solea solea (L.). Replicate groups of common sole (mean initial body weight ± SD was 45.7 g ± 2.1 and 111.2 g ± 4.2) received the diets at five (natural feed) or four (formulated diet) feeding levels. The protein utilization efficiency for growth (kgCP) was higher (> 0.001) in common sole fed ragworms than in common sole fed the formulated diet (respectively, 0.40 and 0.31). Likewise, the energy utilization efficiency for growth (kgGE) was higher (= 0.001) in common sole fed ragworms than in common sole fed the formulated diet (respectively, 0.57 and 0.33). The protein maintenance requirement was not different between food types (= 0.64) or fish size (= 0.41) being on average 0.82 g kg?0.8 day?1. The energy maintenance requirement was not different between food type (= 0.390) but differed between fish size (= 0.036). The gross energy maintenance requirement of small common sole was 35 kJ g?0.8 day?1. The gross energy maintenance requirement of large common sole was 25 kJ g?0.8 day?1. In conclusion, the low growth of common sole fed formulated diets was related to reduced feed utilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号