首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
分析2013—2019年中国西北部分省区不同基因亚型牛病毒性腹泻病毒(BVDV)抗原基因Erns的分子特征,了解其遗传演化规律。从甘肃、青海、宁夏规模化牛场送检的疑似牛病毒性腹泻发病牛150份EDTA抗凝血提取总RNA,利用RT-PCR扩增病毒基因组Erns-E1区,克隆测序后比对,构建系统进化树进行遗传演化关系分析。利用牛肾细胞MDBK对检出的不同基因亚型BVDV进行分离,并鉴定其生物型。RT-PCR扩增结果表明,BVDV总体阳性率为37.33%,其中甘肃省、青海省、宁夏回族自治区BVDV阳性率分别为37.68%、35.71%、40.00%。获得56份Erns-E1 DNA,克隆测序获得33条不同的Erns序列,长度均为681 bp,分析表明流行株分属10个BVDV基因亚型:BVDV-1a (2株)、BVDV-1b (5株)、BVDV-1c (1株)、BVDV-1d (3株)、BVDV-1m (11株)、BVDV-1o (1株)、BVDV-1p (4株)、BVDV-1q (4株)、BVDV-1v (1株)、BVDV-2a (1株)。分离获得BVDV-1a亚型、BVDV-1b亚型、BVDV-1v亚型、BVDV-2a亚型分离株各1株,BVDV-1 d亚型分离株2株,均为非致细胞病变型。各亚型株间Erns基因核苷酸相似性以BVDV-1a~1d经典亚型株(79.8%~85.9%)或1m~1q及1v新亚型株(81.0%~87.3%)较高,以BVDV-1 m和BVDV-1p流行株亚型间相似性最高(87.3%)。各亚型株Erns基因编码蛋白的RNA酶活性位点以及双链RNA作用基序(139KKGK142)保守,但Erns第26位糖基化位点(26 NRSL)在1m~1q、1v亚型株移位(24 NVSR)。首次以Erns核苷酸序列构建系统进化树,结果显示1m~1q及1v等亚型BVDV株在进化上关系较为密切。本研究首次选用Erns靶标基因对甘肃、青海、宁夏部分省区牛源BVDV株进行同源性及系统进化分析,发现10个基因亚型流行株,以1m亚型株最为普遍,1m~1q及1v等亚型株亲缘关系密切。  相似文献   

2.
Genotypes and subgenotypes of bovine viral diarrhea virus (BVDV) field isolates from Japan, Germany and the United States of America (USA) were identified, and the prevalent pattern of BVDV in individual countries was estimated genetically. Subgenotypes were determined based on phylogenetic analyses of nucleotide sequences of a part of the E2-coding gene of BVDV. Forty-five, 61 and 56 BVDV strains were isolated from naturally infected cattle in Japan, Germany and USA, respectively, between 1980 and 2003. The most prevalent BVDV in these three countries was BVDV-1b. The second most prevalent BVDV strains were 1a, 1d and BVDV-2 in Japan, Germany and USA, respectively. The most prevalent subgenotype 1b in each country constructed individual small clusters in the subgenotype 1b branch in the phylogenetic tree. Although cattle and/or cattle products were moving among the three countries as part of international trade, the distribution of BVDV in the field in each country showed long-standing individual patterns.  相似文献   

3.
Vilcek S  Durkovic B  Kolesarova M  Paton DJ 《Preventive veterinary medicine》2005,72(1-2):31-5; discussion 215-9
Genetic typing of bovine viral diarrhoea virus (BVDV) is important for the precise classification of viruses as well as for the development of molecular epidemiology. BVDV isolates were usually typed based on comparison of genomic sequences from the 5'-untranslated region (5'-UTR), N(pro) and E2 region. Recently we have identified 11 genetic groups (subgenotypes) of BVDV-1. Our further experiments confirmed a new subgenotype, BVDV-1k, isolated from cattle in Switzerland. BVDV isolates from India were typed as BVDV-1b whereas BVDV-1c is a predominant subgenotype in Australia. The results of genetic typing of BVDV indicate that distribution of subgenotypes has no relationship to the geographic origin of viral isolates.  相似文献   

4.
5.
Bovine viral diarrhea virus (BVDV) is a causative agent of bovine viral diarrhea. In Japan, a previous study reported that subgenotype 1b viruses were predominant until 2014. Because there is little information regarding the recent epidemiological status of BVDV circulating in Japan, we performed genetic characterization of 909 BVDV isolates obtained between 2014 and 2020. We found that 657 and 252 isolates were classified as BVDV-1 and BVDV-2, respectively, and that they were further subdivided into 1a (35 isolates, 3.9%), 1b (588, 64.7%), 1c (34, 3.7%), and 2a (252, 27.7%). Phylogenetic analysis using entire E2 coding sequence revealed that a major domestic cluster in Japan among BVDV-1b and 2a viruses were unchanged from a previous study conducted from 2006 to 2014. These results provide updated information concerning the epidemic strain of BVDV in Japan, which would be helpful for appropriate vaccine selection.  相似文献   

6.
In our previous study, we genetically analyzed bovine viral diarrhea viruses (BVDVs) isolated from 2000 to 2006 in Japan and reported that subgenotype 1b viruses were predominant. In the present study, 766 BVDVs isolated from 2006 to 2014 in Hokkaido, Japan, were genetically analyzed to understand recent epidemics. Phylogenetic analysis based on nucleotide sequences of the 5′-untranslated region of viral genome revealed that 766 isolates were classified as genotype 1 (BVDV-1; 544 isolates) and genotype 2 (BVDV-2; 222). BVDV-1 isolates were further divided into BVDV-1a (93), 1b (371) and 1c (80) subgenotypes, and all BVDV-2 isolates were grouped into BVDV-2a subgenotype (222). Further comparative analysis was performed with BVDV-1a, 1b and 2a viruses isolated from 2001 to 2014. Phylogenetic analysis based on nucleotide sequences of the viral glycoprotein E2 gene, a major target of neutralizing antibodies, revealed that BVDV-1a, 1b and 2a isolates were further classified into several clusters. Cross-neutralization tests showed that BVDV-1b isolates were antigenically different from BVDV-1a isolates, and almost BVDV-1a, 1b and 2a isolates were antigenically similar among each subgenotype and each E2 cluster. Taken together, BVDV-1b viruses are still predominant, and BVDV-2a viruses have increased recently in Hokkaido, Japan. Field isolates of BVDV-1a, 1b and 2a show genetic diversity on the E2 gene with antigenic conservation among each subgenotype during the last 14 years.  相似文献   

7.
The aim of this study was to investigate the frequency and diversity of bovine viral diarrhea viruses (BVDV) infecting cattle in Turkey. A total of 1124 bovine blood samples from 19 farms in 4 different Turkish regions were tested by antigen capture ELISA (ACE). BVDV antigen was found in 26 samples from 13 farms. Only 20 of the 26 initial test positive cattle were available for retesting. Of these, 6 of 20 tested positive for BVDV, by ACE and real-time RT-PCR, one month after initial testing. Phylogenetic analysis, based on comparison of the E2 or the 5'UTR coding regions, from 19 of the 26 initial positive samples, indicated that 17 belonged to the BVDV-1 genotype and 2 to the BVDV-2 genotype. Comparison of 5'UTR sequences segregated 8 BVDV-1 strains (strains 5, 6, 10, 11, 12, 13, 17, and 19) to the BVDV1f, 1 strain (strain 8) to the BVDV1i and 1 strain (strain 14) to the BVDV1d subgenotypes. One strain (strain 4) did not group with other subgenotypes but was closer to the BVDV1f. The remaining 6 BVDV-1 strains (strains 1, 2, 3, 7, 9, and 18) segregated to a novel subgenotype. The E2 sequence comparison results were similar, with the exception that strain 5 grouped with the novel subgenotype rather than BVDV1f subgenotype. It appears that among the diverse BVDV strains in circulation there may be a subgenotype that is unique to Turkey. This should be considered in the design of diagnostics and vaccines to be used in Turkey.  相似文献   

8.
9.
To acquire epidemiological data on the bovine viral diarrhea virus (BVDV) and identify cattle persistently infected (PI) with this virus, 4,327 samples from Holstein dairy cows were screened over a four-year period in Beijing, China. Eighteen BVD viruses were isolated, 12 from PI cattle. Based on genetic analysis of their 5''-untranslated region (5''-UTR), the 18 isolates were assigned to subgenotype BVDV-1m, 1a, 1d, 1q, and 1b. To investigate the innate immune responses in the peripheral-blood mononuclear cells of PI cattle, the expression of Toll-like receptors (TLRs), RIG-I-like receptors, interferon-α (IFN-α), IFN-β, myxovirus (influenza virus) resistance 1 (MX1), and interferon stimulatory gene 15 (ISG15) was assessed by qPCR. When compared with healthy cattle, the expression of TLR-7, IFN-α, and IFN-β mRNA was downregulated, but the expression of MX1 and ISG-15 mRNA was upregulated in PI cattle. Immunoblotting analysis revealed that the expression of interferon regulatory factor 3 (IRF-3) and IRF-7 was lower in PI cattle than in healthy cattle. Thus, BVDV-1m and 1a are the predominant subgenotypes in the Beijing region, and the strains are highly divergent. Our findings also suggest that the TLR-7/IRF-7 signaling pathway plays a role in evasion of host restriction by BVDV.  相似文献   

10.
Previous studies have shown that bovine viral diarrhoea virus type 1 (BVDV-1) subtype b is predominantly circulating in Indian cattle. During testing for exotic pestiviruses between 2007 and 2010, BVDV-2 was identified by real time RT-PCR in two of 1446 cattle blood samples originating from thirteen states of India. The genetic analysis of the isolated virus in 5′ UTR, Npro, entire structural genes (C, Erns, E1 and E2), nonstructural genes NS2-3 besides 3′ UTR demonstrated that the nucleotide and amino acid sequences showed highest similarity with BVDV-2. The entire 5′ and 3′ UTR consisted of 387 and 204 nucleotides, respectively, and an eight nucleotide repeat motif was found twice within the variable part of 3′ UTR that may be considered as a characteristic of BVDV-2. The phylogenetic analysis revealed that the cattle isolate and earlier reported goat BVDV-2 isolate fall into separate clades within BVDV-2a subtype. Antigenic typing with monoclonal antibodies verified the cattle isolate also as BVDV-2. In addition, cross-neutralization tests using antisera raised against Indian BVDV strains circulating in ruminants (cattle, sheep, goat and yak) displayed significant antigenic differences only between BVDV-1 and BVDV-2 strains. This is the first identification of BVDV-2 in Indian cattle that may have important implications for immunization strategies and molecular epidemiology of BVD.  相似文献   

11.
Bovine viral diarrhea virus (BVDV) has various economic impacts associated with diarrhea, poor performance, an increase in the frequency of other infections and lethal outcomes. Both genotypes, namely BVDV-1 and BVDV-2, as well as different subgroups within these genotypes have been reported worldwide. Understanding the serological differences among the BVDV subgroups is important for disease epidemiology and prevention as well as vaccination programs. The aim of this study was to determine the serological relatedness among the subgroups in BVDV-1. For that purpose, sheep hyperimmune sera were collected against representative strains from 6 of the subgroups of BVDV-1 (BVDV-1a, -1b, -1d, -1f, -1h and -1l). The serum samples that gave the peak antibody titer to the homologous strains were used to perform cross neutralization assays. The highest homologous antibody titer (1:5160) was obtained against BVDV-1h. Regarding the cross neutralizing (heterologous) antibodies, the lowest titer (1:20) was produced by the BVDV-1f antiserum against the BVDV-1a and BVDV1-b viruses. The highest cross neutralizing titer (1:2580) achieved by the BVDV-1h antiserum was against the BVDV-1b strain. The cross neutralization results indicated particular serological differences between the recently described subgroup (BVDV-1l) and BVDV-1a/-1b, which are widely used in commercial vaccines. Considering the cross neutralization titers, it is concluded that selected BVDV-1l and BVDV-1h strains can be used for the development of diagnostic and control tools.  相似文献   

12.
A non-cytopathic strain of BVDV-2 was isolated from a batch of live infectious bovine rhinotracheitis (IBR) vaccine, and inoculated intranasally into four 3-month-old calves. Severe signs of disease developed by days 4 and 6 in three of the calves, free of BVDV and antibodies to BVDV, that had been exposed to the virus. These calves survived the acute phase of the infection and progressively recovered. BVDV was consistently isolated, or the respective viral RNA was detected, in the buffy coats from blood samples collected starting from days 2 or 4 up to days 11 or 14 after the experimental infection. Viral RNA was also detected in sera from these infected calves until the presence in the serum of virus neutralizing antibodies was demonstrated. By contrast, the only calf having pre-existing neutralizing antibodies to BVDV at the start of the study was protected from the disease. No virus was detected at any time after experimental inoculation of this calf. Genomic characterization of the BVDV-2 isolated in cell cultures, or detected in sera from the experimentally infected animals, revealed 100% homology in the nucleotide sequence with the BVDV-2 detected as a contaminant of the live IBR virus vaccine. These findings provided evidence of the infective nature of the contaminant BVDV-2 and of its potential to generate disease outbreaks when inoculated into susceptible animals.  相似文献   

13.
Bovine viral diarrhea virus (BVDV) is one of the most important pathogens to the cattle industry, causing a significant economic loss throughout the world. Despite the wide use of various control measures for BVDV, the disease remains prevalent. In this study, we achieved an efficient inhibition of NADL strain replication by plasmid-mediated shRNA targeting conserved regions of the viral genome. To further enhance the inhibiting efficiency, a dual shRNA expression plasmid, which could simultaneously express two different shRNA, was established and showed stronger inhibitory effects on virus replication. Moreover, the antiviral activity induced by the dual shRNA expression system was also evident on other BVDV-1 subgenotypes (BVDV-1a, BVDV-1b and BVDV-1c). Therefore, the dual shRNA system provides a more powerful strategy for inhibiting BVDV replication in a cross-resistance manner.  相似文献   

14.
The prevalence of antibodies to pestiviruses was investigated in 4931 sheep, in 377 flocks, in four federal states of Austria, by means of an indirect elisa that detected antibodies to Border disease virus (BDV) and bovine viral diarrhoea virus (BVDV). The mean flock prevalence was 62.9 per cent and the mean individual prevalence was 29.4 per cent. Comparative neutralisation studies on the elisa-positive samples with BVDV type 1 (BVDV-1), BVDV type 2 (BVDV-2) and BDV recorded 336 samples with higher titres (more than four times average) to BVDV-1, three samples with higher titres to BVDV-2 and 55 samples with higher titres to BDV. The other samples did not show clear differences in antibody titres against the strains of pestivirus tested because of cross-reactions. The seroprevalence of pestiviruses in sheep was significantly higher on farms with cattle. There were significant regional differences between the prevalences in flocks and individual sheep, the highest prevalences being in the region of Austria where communal alpine pasturing of sheep, goats and cattle is an important part of farming.  相似文献   

15.
Several tests for Bovine viral diarrhea virus (BVDV) were applied to samples collected monthly from December 20, 2005, through November 27, 2006 (day 0 to day 342) from 12 persistently infected (PI) cattle with BVDV subtypes found in US cattle: BVDV-1a, BVDV-1b, and BVDV-2a. The samples included clotted blood for serum, nasal swabs, and fresh and formalin-fixed ear notches. The tests were as follows: titration of infectious virus in serum and nasal swabs; antigen-capture (AC) enzyme-linked immunosorbent assay (ELISA), or ACE, on serum, nasal swabs, and fresh ear notches; gel-based polymerase chain reaction (PCR) testing of serum, nasal swabs, and fresh ear notches; immunohistochemical (IHC) testing of formalin-fixed ear notches; and serologic testing for BVDV antibodies in serum. Of the 12 animals starting the study, 3 died with mucosal disease. The ACE and IHC tests on ear notches had positive results throughout the study, as did the ACE and PCR tests on serum. There was detectable virus in nasal swabs from all the cattle throughout the study except for a few samples that were toxic to cell cultures. The serum had a virus titer ≥ log10 1.60 in all samples from all the cattle except for 3 collections from 1 animal. Although there were several equivocal results, the PCR test most often had positive results. The BVDV antibodies were due to vaccination or exposure to heterologous strains and did not appear to interfere with any BVDV test. These findings illustrate that PI cattle may be identified by several tests, but differentiation of PI cattle from cattle with acute BVDV infection requires additional testing, especially of blood samples and nasal swabs positive on initial testing. Also, calves PI with BVDV are continual shedders of infectious virus, as shown by the infectivity of nasal swabs over the 11-mo study.  相似文献   

16.
Bovine viral diarrhoea virus (BVDV) is an important cattle pathogen that causes acute or persistent infections. These are associated with immunotolerance to the viral strain persisting in animals that became infected early in their intrauterine development. To this date, the epidemiology of BVD in Switzerland runs virtually undisturbed by control measures such as restrictions on animal traffic or vaccination. Here, we analysed the viral genetics of 169 Swiss isolates and carried out crossed serum neutralisation tests to assess the antigenic spectrum of BVDV strains present in the cattle population. Besides confirming the presence of BVDV type 1 subgroups b, e, h and k, a single "orphan" BVDV-1 virus was detected that does not belong to any known BVDV-1 subgroup. No BVDV type 2 viruses were detected, suggesting that they are rare or not present in the cattle population. Antigenic comparison revealed significant differences between the different subgroups, with anti-1k immune serum having up to tenfold lower neutralising activity against 1b, 1e and 1h subgroup viruses, which however may still suffice to protect 1k-immune animals against superinfection by viruses of those other subgroups. Serum from routinely vaccinated animals revealed generally low titres but good cross-neutralisation. A geographic information system revealed that the viruses of the different subgroups are distributed in an apparently randomised fashion in the cattle population. This geographic distribution pattern may reflect peculiarities of the management practice in the Swiss cattle industry that, especially through annual transhumance of up to 25% of the entire population in the alpine region, tend to optimise the spread of BVDV.  相似文献   

17.
We report DNA immunisation experiments in cattle using plasmid constructs that encoded glycoprotein E2 from bovine viral diarrhoea virus (BVDV)-1 (E2.1) and BVDV-2 (E2.2). The coding sequences were optimised for efficient expression in mammalian cells. A modified leader peptide sequence from protein gD of BoHV1 was inserted upstream of the E2 coding sequences for efficient membrane export of the proteins. Recombinant E2 were efficiently expressed in COS7 cells and they presented the native viral epitopes as judged by differential recognition by antisera from cattle infected with BVDV-1 or BVDV-2. Inoculation of pooled plasmid DNA in young cattle elicited antibodies capable of neutralising viral strains representing the major circulating BVDV genotypes.  相似文献   

18.
19.
Serological investigations were carried out to determine the prevalence of pestiviral infections in goats in Austria, and to investigate the possible relations to herd management practices. The prevalence of antibodies to pestiviruses was investigated in 549 goats in 80 flocks from four regions of Austria. The examination for antibodies was performed using an indirect enzyme-linked immunosorbent assay detecting antibodies to the border disease virus (BDV) and bovine viral diarrhoea virus (BVDV). The observed individual prevalence was 11.5% and the flock prevalence was 31.3%. Comparative neutralization studies on the 63 seropositive samples with BVDV-1, BVDV-2 and the BDV yielded in 32 samples higher titres (> or =4-fold) to BVDV-1 and in two samples to BDV. The remaining samples did not show distinct differences in antibody titres against the pestivirus strains tested because of the cross-reactions. There was a significant (P < 0.05) association between the prevalence of antibodies to pestiviruses and the presence of cattle on the farm. Significant (P < 0.05) geographical variations in individual prevalence were obtained, ranging from 3.5% in lower Austria to 20.2% in Vorarlberg.  相似文献   

20.
The genetic characteristics, of 38 field isolates of bovine viral diarrhoea virus (BVDV) collected in 1999 from sick or healthy and persistently infected cattle of dairy farms situated in northern Italy, were investigated. A partial 5-untranslated region (5-UTR) sequence of each isolate was determined and a phylogenetic analysis was performed. All the isolates were classified as belonging to the BVDV-1 genotype and could be assigned to different BVDV-1 groups, namely BVDV-1b (n = 20), BVDV-1d (n = 6) and BVDV-1e (n = 10). Two remaining isolates could be classified as BVDV-1f and BVDV-1h, respectively. These results provided evidence for genetic heterogeneity of BVDV in Italy, and contribute to a better knowledge of the circulation of BVDV strains, and to their classification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号