首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Forest soils and carbon sequestration   总被引:36,自引:0,他引:36  
R. Lal   《Forest Ecology and Management》2005,220(1-3):242-258
Soils in equilibrium with a natural forest ecosystem have high carbon (C) density. The ratio of soil:vegetation C density increases with latitude. Land use change, particularly conversion to agricultural ecosystems, depletes the soil C stock. Thus, degraded agricultural soils have lower soil organic carbon (SOC) stock than their potential capacity. Consequently, afforestation of agricultural soils and management of forest plantations can enhance SOC stock through C sequestration. The rate of SOC sequestration, and the magnitude and quality of soil C stock depend on the complex interaction between climate, soils, tree species and management, and chemical composition of the litter as determined by the dominant tree species. Increasing production of forest biomass per se may not necessarily increase the SOC stocks. Fire, natural or managed, is an important perturbation that can affect soil C stock for a long period after the event. The soil C stock can be greatly enhanced by a careful site preparation, adequate soil drainage, growing species with a high NPP, applying N and micronutrients (Fe) as fertilizers or biosolids, and conserving soil and water resources. Climate change may also stimulate forest growth by enhancing availability of mineral N and through the CO2 fertilization effect, which may partly compensate release of soil C in response to warming. There are significant advances in measurement of soil C stock and fluxes, and scaling of C stock from pedon/plot scale to regional and national scales. Soil C sequestration in boreal and temperate forests may be an important strategy to ameliorate changes in atmospheric chemistry.  相似文献   

2.
Community forests of developing countries are eligible to participate in the Reducing Emissions from Deforestation and Forest Degradation (REDD+) scheme. For this, estimation of carbon stock and the sequestration is essential. The carbon stock in the living biomass of nine community managed Shorea robusta forests of the mid hill regions of central Nepal (managed for 4–29 yr) were estimated. The carbon stock of trees and shrubs was estimated using an allometric equation while the biomass of herbaceous vegetation was estimated by the harvest method. The carbon stock in the living biomass of the studied forests ranged from 70–183 Mg ha?1(mean: 120 Mg ha?1) and it increased with increasing soil organic carbon. However, the carbon stock did not vary significantly with species richness and litter cover. The biomass and carbon stock in the forests managed for >20 yr were significantly higher than in the forests managed for < 20 yr. The carbon stock increased with the management duration (p < .05) with sequestration rate of 2.6 Mg C ha?1 yr?1. The local management has had positive effects on the carbon stock of the forests and thus the community forests have been acting as a sink of the atmospheric CO2. Therefore, the community managed forests of Nepal are eligible to participate in the REDD+ scheme.  相似文献   

3.
This study assessed the net above-ground carbon stock in six community forests in the Dolakha district, Nepal. A survey was conducted of above-ground timber species, using random sampling. A tree-ring chronology for Pinus roxburghii was created to construct a growth model representative of the various mainly-pine species. The allometric model combined with tree ring analysis was used to estimate carbon stock and annual growth in the above-ground tree biomass. The out-take of forest biomass for construction material and fuelwood was estimated on the basis of interviews and official records of community forest user groups. The average annual carbon increment of the community forests was 2.19 ton/ha, and the average annual carbon out-take of timber and fuelwood was 0.25 ton/ha. The net average carbon balance of 1.94 ton/ha was equivalent to 117.44 tons of carbon per community forest annually. All the community forests were actively managed leading to a sustainable forest institution, which acts as a carbon sink. It is concluded that community forests have the potential to reduce emissions by avoiding deforestation and forest degradation, enhance forest carbon sink and improve livelihoods for local communities.  相似文献   

4.
抚育间伐对人工林影响的研究进展   总被引:5,自引:2,他引:3  
抚育间伐对人工林有重要影响。针对抚育间伐对人工林的林下植被多样性、生物量、凋落物分解、土壤肥力和森林生态系统碳储量影响的研究进行综述,并提出今后的研究重点应该放在抚育间伐后人工林的生物多样性和生物量的长期定位研究,抚育间伐调控人工林凋落物分解的机制和对人工林生态系统碳储量影响的研究等方面,并需要开展各地区主要森林类型、多种立地条件和不同密度森林的抚育间伐研究。  相似文献   

5.
油松人工林碳汇功能的研究   总被引:2,自引:0,他引:2  
对木兰林管局油松人工林19块标准地分林木层、灌木层、草本植物层、枯落物层和土壤层进行了生物现存量的实测与碳储量的研究,结果表明林木层和土壤层的碳储量构成了林分碳储量的主体.分配次序为土壤层>林木层>地表枯落物层>草本层>根桩>灌木层,林木层碳储量分配次序为干>枝>根>叶.建立了林木蓄积与生物量、碳储量的回归模型,认为幂函数形式有较好的适用性.以林龄(A)和3株优势木平均高(H)建立了土壤有机碳密度(Soc)拟合方程,可用于具体小班土壤碳密度的估测.木兰林管局油松人工林林分碳密度为76.586 2~284.417 8t/hm2,平均值为143.1 t/hm2,其中林木平均碳密度为30.454 5t/hm2,土壤平均碳密度为110.773 5t/hm2;现有油松人工林碳储量估测结果为983 314.0 t,其中林木碳储量为208 923.0 t,占总碳储量的21.25%,土壤碳储量为760 881.0 t,占总碳储量的77.38%.  相似文献   

6.
Tropical forests play a critical role in mitigating climate change because they account for large amount o terrestrial carbon storage and productivity.However,there are many uncertainties associated with the estimation o carbon dynamics.We estimated forest structure and carbon dynamics along a slope(17.3°–42.8°)and to assess the relations between forest structures,carbon dynamics,and slopes in an intact lowland mixed dipterocarp forest,in Kuala Belalong,Brunei Darussalam.Living biomass,basa area,stand density,crown properties,and tree family composition were measured for forest structure.Growth rate,litter production,and litter decomposition rates were also measured for carbon dynamics.The crown form index and the crown position index were used to assess crown properties,which we categorized into five stages,from very poor to perfect.The living biomass,basal area and stand density were 261.5–940.7 Mg ha~(-1),43.6–63.6 m~2ha~(-1)and 6,675–8400 tree ha~(-1),respectively.The average crown form and position index were 4,which means that the crown are mostly symmetrical and sufficiently exposed for photosynthesis.The mean biomass growth rate,litter production,litter decomposition rate were estimated as11.9,11.6 Mg ha~(-1)a~(-1),and 7.2 g a~(-1),respectively.Biomass growth rate was significantly correlated with living biomass,basal area,and crown form.Crown form appeared to strongly influence living biomass,basal area and biomass growth rate in terms of light acquisition.However,basal area,stand density,crown properties,and biomass growth rate did not vary by slope or tree family composition.The results indicate that carbon accumulation by tree growth in an intact lowland mixed dipterocarp forest depends on crown properties.Absence of any effect of tree family composition on carbon accumulation suggests that the main driver of biomass accumulation in old-growth forests of Borneo is not species-specific characteristics of tree species.  相似文献   

7.
中亚热带天然林改造成人工林后土壤呼吸的变化特征   总被引:1,自引:0,他引:1  
【目的】研究中亚热带常绿阔叶林(天然林)改造成人工林后土壤碳排放量的变化及主要影响因子,为评估森林类型转换对土壤碳排放的影响提供科学依据。【方法】在福建农林大学西芹教学林场的常绿阔叶林及由其改造而来的38年生闽楠人工林与35年生杉木人工林中分别设置4块20 m×20 m样地,利用Li-8100土壤碳通量观测系统于2014年9月—2016年9月进行定点观测,并同期观测土壤温度、含水量、有机碳含量(SOC)、微生物生物量碳含量(MBC)、可溶性有机碳含量(DOC)、0~20 cm土层细根生物量和年凋落物量及凋落物碳氮比(C/N)。【结果】常绿阔叶林改造成闽楠(38年后)和杉木人工林(35年后),年均土壤碳排放通量由16. 22显著降为12. 71和4. 83 tC·hm-2a-1,分别减少21. 60%和70. 20%;各林分类型的土壤呼吸温度敏感性Q10值表现为常绿阔叶林(1. 97)<闽楠人工林(2. 03)<杉木人工林(2. 91),转换为杉木人工林后,Q10值显著升高(P<0. 05);土壤温度能分别解释常绿阔叶林、闽楠人工林与杉木人工林土壤呼吸速率变化的89. 70%、88. 50%和87. 90%,土壤呼吸速率和土壤含水量相关不显著(P>0. 05);土壤呼吸速率和SOC、MBC、DOC、年凋落物量及0~20 cm土层细根生物量均极显著正相关(P<0. 01);土壤呼吸温度敏感性指数Q10值和凋落物C/N极显著正相关(P<0. 01),而与年均土壤呼吸速率及MBC极显著负相关(P<0. 01);进一步分析发现土壤MBC和SOC含量是影响土壤呼吸速率的2个最重要因子,而凋落物C/N在影响土壤呼吸温度敏感性中的贡献最大。【结论】中亚热带地区常绿阔叶林改造成闽楠(38年)或杉木(35年)人工林后,土壤碳排放通量显著降低。林分类型转换后树种组成和林分结构发生改变,凋落物数量、质量及细根生物量显著降低,土壤SOC和MBC含量显著下降可共同导致土壤呼吸通量的下降。土壤温度是3种林分类型土壤呼吸季节变化的主导因素,而土壤总有机碳库和土壤微生物量碳库的差异是不同林分之间土壤呼吸差异的主导因素,凋落物C/N对土壤呼吸的Q10影响最大。为提高模型预测森林类型转换影响土壤碳排放的精度,应综合考虑土壤有机碳库、易变性有机碳库及底物质量的变化。  相似文献   

8.
采用5个处理3次重复的完全随机区组设计对闽楠、裂斗锥与马尾松混交林生长效应进行研究。结果表明:混交对林木生长有促进作用,混交林中闽楠的胸径、树高、林分生物量明显高于闽楠纯林,混交林中裂斗锥的胸径和林分生物量也显著高于裂斗锥纯林,两种混交林林分生物量均高于各自纯林;不同林分林下植被生物量大小排序为混交林大于纯林,混交林均不同程度的提高了林下植被生物量和凋落物量。  相似文献   

9.
Forest ecosystems play a major role in atmospheric carbon sequestration and emission. Comparable organic carbon stock estimates at temporal and spatial scales for all forest pools are needed for scientific investigations and political purposes. Therefore, we developed a new carbon stock (CS) estimation procedure that combines forest inventory and soil and litter geodatabases at a regional scale (southern Belgium). This procedure can be implemented in other regions and countries on condition that available external carbon soil and litter data can be linked to forest inventory plots. The presented procedure includes a specific CS estimation method for each of the following forest pools and subpools (in brackets): living biomass (aboveground and belowground), deadwood (dead trees and snags, coarse woody debris and stumps), litter, and soil. The total CS of the forest was estimated at 86 Tg (185 Mg ha?1). Soil up to 0.2 m depth, living biomass, litter, and deadwood CSs account, respectively, for 48, 47, 4, and 1 % of the total CS. The analysis of the CS variation within the pools across ecoregions and forest types revealed in particular that: (1) the living biomass CS of broadleaved forests exceeds that of coniferous forests, (2) the soil and litter CSs of coniferous forest exceed those of broadleaved forests, and (3) beech stands come at the top in carbon stocking capacity. Because our estimates differ sometimes significantly from the previous studies, we compared different methods and their impacts on the estimates. We demonstrated that estimates may vary highly, from ?16 to +12 %, depending on the selected methods. Methodological choices are thus essential especially for estimating CO2 fluxes by the stock change approach. The sources of error and the accuracy of the estimates were discussed extensively.  相似文献   

10.
基于森林清查资料的中国森林植被碳储量   总被引:19,自引:0,他引:19  
利用第七次全国森林资源连续清查数据,以回归模型估计法作为乔木林生物量的主要计算方法,以树种含碳率作为生物量转换为碳储量的系数,从单木归并到样地,从样地加权平均至省级区域,估算乔木林碳储量;以加权平均转换系数估算疏林地、散生木和四旁树的碳储量,以模型法估算竹林、灌木林的碳储量。结果表明:中国森林植被碳储量主要集中在西南和东北两大区;乔木林是中国森林植被碳储量的主体;人工林碳储量在中国乔木林碳储量中比例超过15%;阔叶树的碳储量和碳密度均大于针叶树。  相似文献   

11.
为了探究固氮树种对我国南方亚热带地区第二代桉树人工林土壤微生物生物量和结构影响及其机制,采用磷脂脂肪酸分析方法分别在干季和湿季研究了第二代桉树纯林和第二代桉树/固氮树种混交林的土壤微生物群落生物量和结构。结果表明:与纯林相比,混交林土壤(0 10 cm)的有机碳含量、铵态氮、硝态氮、总氮、凋落物生物量分别提高了17.77%、41.62%、85.59%、25.38%、19.12%,除土壤有机碳外,其它在统计学上均达到了显著性差异(p0.05);混交林的细菌生物量显著增加,但其真菌生物量显著减少;同时,混交林的总细菌、革兰氏阳性细菌相对百分含量在干季显著提高,真菌的相对百分含量却显著降低;但在湿季,除总细菌外,其它微生物群落结构没有显著差异。主成分分析(PCA)表明:第二主成分轴能明显把第二代桉树混交林和纯林的土壤微生物群落区分开来(p0.05),这种差异主要体现在混交林具有较高的细菌相对百分含量和相对较低的真菌相对百分含量。冗余度分析(RDA)表明:凋落物生物量、凋落物C/N、铵态氮、有机碳含量是驱动我国南方第二代桉树人工林土壤微生物群落结构发生变化的主要因子。此外,壕沟切根试验表明根系及其分泌物可能是第二代桉树人工林土壤微生物的重要碳源。  相似文献   

12.
This work studied the effects of tree species composition on soil carbon storage in five mixed stands dominated by oriental beech and grown in the western Caspian region in Guilan province, called Astara, Asalem, Fuman, Chere and Shenrud. The thickness of the litter layer, soil characteristics, tree composition and percentage of canopy coverage were measured in each stand. Total soil organic carbon differed significantly by stand. Total (organic) carbon stores at Fuman, which had the lowest tree species richness with 2 species and least canopy coverage (75%), were significantly (p〈0.05) higher than at other locations. Carbon stor-age in topsoil (0-10 cm) was significantly lower in Shenrud, which had the highest tree species richness with 5 species and highest canopy cov-erage (95%). The high percentage of canopy coverage in Shenrud proba-bly limited the conversion of litter to humus. However, in the second soil layer (10-25 cm), Asalem, with high tree species richness and canopy coverage, had the highest carbon storage. This can be explained by the different rooting patterns of different tree species. In the Hyrcanian forest. According to the results, it can be concluded that not only tree composi-tion but also canopy coverage percentage should be taken under consid-eration to manage soil carbon retention and release.  相似文献   

13.
笔者通过对比桉纯林与桉、大叶相思混交育林对地力、林木生长量、生物存量的影响,进行了桉与固氮树混交的试验对比研究,结果表明:桉与大叶相思混交造林,对林分土壤表层的养分具有一定的补给作用,也加速了速效钾的生成,但对林分土壤中速效磷的影响不明显.在有机物含量上,如果林分凋落物能够保留,则土壤中的有机物会保持一定量的增长,保证...  相似文献   

14.
【目的】研究土壤养分和地被层凋落物养分含量的差异,为马尾松人工林营林措施及地力维持提供科学依据。【方法】以鼎湖山两种典型林型(马尾松纯林和马尾松-黧蒴混交林)为研究对象,对比分析0~60 cm土层的土壤养分含量及地被层凋落物养分含量的差异,探索凋落物质量如何影响土壤养分。【结果】1)林型对土壤有机质、全氮和硫酸根含量有显著影响(P<0.05),对土壤全磷、交换性K+、Ca2+和Mg2+有极显著影响(P<0.01),混交林土壤养分含量(除硝态氮含量和交换性H+含量以外)均高于纯林。2)相同林型不同土层间土壤养分含量差异极显著(P<0.01),其中,土壤有机质和全氮含量随土层的加深而递减,且主要聚集在0~10 cm土层,表聚效应十分明显。3)纯林凋落物有机碳、全氮、C/N和全磷等含量高于混交林;相同林型不同分解层凋落物有机碳、全钙和全镁含量有显著差异(P<0.05),均表现为未分解层>半分解层>腐殖质层。4)土壤养分与地被层凋落物质量的RDA分析表明,0~10 cm土层土壤养分与腐殖质层有机碳呈极显著负相关(P<0.01),与腐殖质层C/N呈显著负相关(P<0.05);在10~20 cm土层,土壤养分与腐殖质层有机碳呈极显著负相关(P<0.05)。【结论】纯林的土壤养分低于混交林的主要原因是纯林凋落物具有较高的C/N和有机碳含量。  相似文献   

15.
Changes in carbon stocks during deforestation, reforestation and afforestation play an important role in the global carbon cycle. Cultivation of forest lands leads to substantial losses in both biomass and soil carbon, whereas forest regrowth is considered to be a significant carbon sink. We examined below- and aboveground carbon stocks along a chronosequence of Norway spruce (Picea abies (L.) Karst.) stands (0-62 years old) regenerating on abandoned meadows in the Southern Alps. A 130-year-old mixed coniferous Norway spruce-white fir (Abies alba Mill.) forest, managed by selection cutting, was used as an undisturbed control. Deforestation about 260 years ago led to carbon losses of 53 Mg C ha(-1) from the organic layer and 12 Mg C ha(-1) from the upper mineral horizons (Ah, E). During the next 200 years of grassland use, the new Ah horizon sequestered 29 Mg C ha(-1). After the abandonment of these meadows, carbon stocks in tree stems increased exponentially during natural forest succession, levelling off at about 190 Mg C ha(-1) in the 62-year-old Norway spruce and the 130-year-old Norway spruce-white fir stands. In contrast, carbon stocks in the organic soil layer increased linearly with stand age. During the first 62 years, carbon accumulated at a rate of 0.36 Mg C ha(-1) year(-1) in the organic soil layer. No clear trend with stand age was observed for the carbon stocks in the Ah horizon. Soil respiration rates were similar for all forest stands independently of organic layer thickness or carbon stocks, but the highest rates were observed in the cultivated meadow. Thus, increasing litter inputs by forest vegetation compared with the meadow, and constantly low decomposition rates of coniferous litter were probably responsible for continuous soil carbon sequestration during forest succession. Carbon accumulation in woody biomass seemed to slow down after 60 to 80 years, but continued in the organic soil layer. We conclude that, under present climatic conditions, forest soils act as more persistent carbon sinks than vegetation that will be harvested, releasing the carbon sequestered during tree growth.  相似文献   

16.
随着当前气候变化问题日渐凸显,森林碳汇功能逐渐被发掘和重视。本文采用蓄积量法和市场价值法对昆嵛山林场的森林碳汇量及其经济价值问题估算。研究结果表明,针阔混交林的单位面积蓄积量最大,约43.62m^3/hm^2;针叶林的碳汇量最多约45.94万t,其次是针阔混交林约11.67万t,阔叶林的碳汇量约为1.26万t。昆嵛山林场目前在全国7个碳交易市场的经济价值由大到小依次是:北京、深圳、上海、湖北、广东、重庆、天津。目前,针叶林对昆嵛山林场碳汇量的贡献最为巨大,北京市场是碳交易的最优选择。  相似文献   

17.
以辽东山区原始红松混交林为研究对象,对比分析了不同树种组成下原始红松混交林土壤有机碳含量的差异,研究了土壤有机碳与土壤属性因子和植被覆盖因子的相关关系,并研究了土壤碳密度的分布规律。结果显示,3种原始红松混交林土壤有机碳含量均随着剖面深度的增加而降低;0~10 cm土层深度土壤有机碳含量为红松阔叶林阔叶红松林针阔混交林,表层土壤有机碳主要来源于枯落物层的分解,表层土壤有机碳的特征表明原始红松混交林树种构成不同,潜在地影响着生态系统内的碳循环。对土壤属性因子而言,碳氮比与有机碳含量呈极显著的正相关关系,而容重、pH值呈显著的负相关关系;对植被覆盖因子而言,枯落物有机碳、全氮、碳氮比与土壤有机碳含量则无相关关系;0~100 cm深度内红松阔叶林的土壤碳密度最大,为181.4 t/hm2,针阔混交林次之,为180.56 t/hm2,阔叶红松林最小,为150.78 t/hm2,且接近70%的土壤碳储存集中在40 cm以上的土层内。旨在为揭示原始红松混交林对土壤有机碳的影响因素和探索我国原始红松混交林土壤碳分布格局提供科学依据。  相似文献   

18.
Several studies have been conducted in the past on carbon stock measurements in the tropical forests of Indonesia.This study is the first related research conducted in the New Guinea Island.In a degraded logged-over secondary forest in Manokwari Regency (West Papua,Indonesia),carbon stocks were measured for seven parts,i.e.,above-ground biomass (AGB),below-ground biomass (BGB),under-storey biomass (B u),necromass of dead leaves (N l),necromass of dead trees (N t),litter (L) and soil (S) using appropriate equations and laboratory analysis.Total carbon stocks were measured at 642.8 tC·ha-1 in the low disturbance area,536.9 tC·ha-1 in the moderate disturbance area and 490.4 tC·ha-1 in the high disturbance area.B u,N l and N t were not significant in the carbon stock and were collectively categorized as a total biomass complex.The carbon stock of litter was nearly equal to that of the total biomass complex,while the total carbon stock in the soil was eight times larger than the total biomass complex or the carbon stock of the litter.We confirmed that the average ratio of AGB and BGB to the total biomass (TB) was about 84.7% and 15.3%,respectively.Improvements were made to the equations in the low disturbance logged-over secondary forest area,applying corrections to the amounts of biomass of sample trees,based on representative commercial trees of category one.TB stocks before and after correction were estimated to be 84.4 and 106.7 tC·ha-1,indicating that these corrections added significant amounts of tree biomass (26.4%) during the sampling procedure.In conclusion,the equations for tree biomass developed in this study,will be useful for evaluating total carbon stocks,especially TB stocks in logged-over secondary forests throughout the Papua region.  相似文献   

19.
基于广州市森林生物资源清查,采用森林生物量法及森林器官化学试验监测方法,对广州市周边5个行政区的森林生物年均增长量及吸储C、N、S、Pb、Cd进行了计量估算,结果表明:广州市周边5区的森林年均固碳量达到12.534万t,年均吸储N、S量分别为651t、264t,年均吸储污染重金属元素Pb、Cd分别为931.9kg和13.3kg、且均以白云区为最高,由此揭示出广州市区域森林资源吸储功能特点、森林群落质量的差异,为城市森林可持续经营提供依据。    相似文献   

20.
Land-use changes and land cover strongly influence carbon stock and distribution within ecosystems. Changing the land-use from natural forest to other land-uses has been more rapid in the past few decades than at any time in Iran’s history. In this study, we investigated the effects of changing the land-use from natural forest to other land-uses on carbon stocks in northern Iran. We selected five sites for this study: (I) a natural forest, (II) an agricultural field and (III) plantations of three different species (Alnus subcordata. L, Acer velutinum.Boiss and Cupressus sempervirens). We examined the effects of land-use changes on: (I) soil carbon stock (0–50 cm depth), (II) biomass and carbon content of grassy vegetation and litter and (III) above- and below-ground biomass C in trees. Soil C stock was higher under A. velutinum and C. sempervirens whereas it was lower under A. subcordata and agricultural sites. Biomass and C content of grassy vegetation were significantly higher at A. velutinum and C. sempervirens plantations. However, litter biomass and C content were significantly higher at the natural forest site. Natural forest had the highest amount of C content in above- and below-ground biomass. Total ecosystem C stocks declined following land-use changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号