首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
徐有明 《木材工业》1992,6(3):44-48
本文就中条山油松株内幼龄材与成熟材材性差异的比较研究,讨论对幼龄期划分的依据。根据木材解剖特征、物理力学性质的径向变异规律,确定其幼龄期为14年。随着树干高度的增加,油松木材幼龄期逐渐缩短、株内幼龄材范围及所占断面上的比例变小。株内幼龄材与成熟材材性差异显著。幼龄材管胞长度短、直径小,胞壁薄,微纤丝角度大,生长轮较宽,晚材率低,浸提物含量高,基本密度较大。幼龄材的力学强度远远小于成熟材。  相似文献   

2.
MITCHELL  M. D.; DENNE  M. P. 《Forestry》1997,70(1):47-60
The influences of cambial age and ring width on density of Sitkaspruce (Picea sitchensis (Bong.) Carr) were analysed in relationto within-tree trends in tracheid diameter and cell wall thickness.Discs were sampled at breast height from a total of 24 trees,from seven stands at three contrasting sites in Wales, and atbreast height, 30 per cent and 60 per cent total tree heightfrom one of the stands. Across the juvenile wood, ring density decreased with ring numberfrom the pith while radial tracheid diameter increased. Theseoverall trends were considered to be inherent to tree growth,presumably associated with cambial ageing, since they occurredin all trees on all sites. In juvenile wood, density also variedwith site growth rate (as indicated by ring width) at similarcambial age, wider rings being associated with more rapidrateof change in tracheid diameter with ring number and with decreasein tracheid wall thickness. Consequently, on a site having treeswith high growth rate density decreased more rapidly acrossthe juvenile wood, down to a lower minimum value, than on siteswith a slower growth rate. In mature wood, the decrease in densitywith increase in ring width was associated with differencesin both tracheid diameter and wall thickness. Density was slightly(though not significantly) higher at breast height than in comparablerings at 30 per cent total height, associated with significantlythicker tracheid walls at breast height. Changes in radial tracheid diameter (with ring number, or withring width) were associated with greater differences in theearlywood than towards the latewood end of each growth ring,while variations in wall thickness with ring width were associatedwith rate of increase in wall thickness towards the latewoodend. This may account for some previously conflicting reportson influence of silvicultural management on density, for densityis likely to vary with influence of environment on the seasonalcycle of cambial activity. The extent of the juvenile wood as delimited by the inner coreof wide growth rings does not necessarily correspond to theregion of varying tracheid dimensions in Sitka spruce.  相似文献   

3.
幼龄材范围的确定及树木生长速率对幼龄材生长量的影响   总被引:8,自引:1,他引:8  
刘元 《林业科学》1997,33(5):418-426
本文以杉木、日本落叶松的人上林和天然林木材为对象,选择y=a+blnx回归模式。利用其管胞特征因子随年轮数的变化,研究划分幼龄材年轮界限的最适因子,并就生长速率对幼龄材生长量的影响进入了探讨。结果表明:杉木和日本落叶松的人工林及天然林木的管胞特征值在径向水平上的变化均遵循y=a+blnx模式,尤其管胞长度与年轮数回归的相关系数R均达0.98以上;管胞长度与管胞宽度及纤丝用相比,遗传率最大,随年轮数变化的模式最稳定,是划分幼龄材界限的最佳因子,由此得出杉木人工林幼龄材界限年轮为20-22(距髓心距离为12.9-13.2cm)、天然林为16-18(4.1-4.5cm),日本落叶松人工林为19-23(8.7-10.5cm)、天然林为23-24(2.9-3.1cm);幼龄材生长量与树木生长速率成正比。  相似文献   

4.
马尾松人工林管胞长度的株间和株内变异   总被引:1,自引:1,他引:1       下载免费PDF全文
林木株间变异和株内变异是木材的两个主要变异来源,由于木材性状具有较强的遗传性以及育林措施对木材的可塑性,人们可以培育出材质优异的木材,然而因变异的存在,在如何充分利用木材时却遇到了许多困难。林学家的一个主要目的就是在充分掌握木材变异规律的基础上,采用有效方法提高材质的均匀性。  相似文献   

5.
In our investigation we studied fiber lengths and the transition age from juvenile to mature wood in Acer velutinum Boiss. For this purpose, samples from three normal maple trees at a Noshahr site in northern Iran were selected. Disks were cut at breast height. Test samples were taken along a radial direction from the pith to the bark, accounting for every ring during a 48-year period. We used the Franklin method to distinguish between fibers of juvenile and mature wood. The results show that the fiber length increased along the radial direction from the pith to the bark. The transition age between juvenile and mature wood was determined at the 14th annual ring from the pith.  相似文献   

6.
The fractometer is a device that breaks a radial increment core along the fiber for the measurement of crushing strength, which is a direct wood quality indicator for structural lumber. In this study, the crushing strength of Taiwania (Taiwania cryptomerioides Hay) trees using the fractometer was investigated and the data were used to determine the position of demarcation between juvenile and mature wood. Segmented regression and variance component analysis were used to estimate the demarcation position. With increasing cambium age, the core wood improves the crushing strength in the outer wood area. Within-tree variations in wood properties were greater than between-tree variations. In this experiment, the position of demarcation between juvenile and mature wood occurred at an approximate distance of 10.8cm to 13.2cm from the pith at about 18–20 years of cambium age.  相似文献   

7.
火炬松纸浆林材性变异和优质原料培育期的确定*   总被引:6,自引:2,他引:6       下载免费PDF全文
16年生火炬松纸浆材性状研究表明:管胞长度径向呈递增稳定的模式,纵向呈递减变化;其长宽比变异类似于管胞长度的变化;管胞长度变化范围为1.403~4.456mm,长宽比为46.7~70.1,腔径比为0.711~0.786,壁腔比为0.381~0.496。基本密度径向由0.324g/cm3递增到0.428g/cm3;纵向递减,其均值变动于0.314~0.401g/cm2;株间木材密度均值与管胞长度两性状不相关。纤维素含量由髓心附近37.04%递增到树皮附近43.91%,木素、多缩戊糖含量分别由28.78%、14.59%递减到25.74%、12.05%,其苯醇抽出物含量变化在2.12%~8.38%之间。火炬松木材幼龄期约为10~13a。基于火炬松木材各树龄材性的变化,结合生长量指标,确定其短周期纸浆林适宜采伐树龄约为12~13a。  相似文献   

8.
A comprehensive analysis on the variation pattern of early- and latewood tracheid morphological parameters along tree (Cunninghamia lanceolata Hook.) height, including length and width, wall thickness, tissue proportion, cell wall percentage, width of growth rings, and on the relationship among them are conducted. The results indicate an initially rapid and then gentle increase of tracheid length and width, thickness of the radial wall and tangential wall of tracheid, area percentage of tracheid from pith to outward, while S2 microfibril angle (Mfa) of tracheid, and rays percentage gradually decrease and then tend to be stable. The variation of all anatomical parameters but earlywood cell wall thickness shows no significance along tree height. The radial variation pattern of width of growth rings is characterized with initially slight decrease followed immediately by a rapid and then much more gentle increase from pith to outward. The delimitation age between juvenile and mature wood is 14-16 years. Com  相似文献   

9.
Variation in the growth ring width, basic density, longitudinal shrinkage and tracheid length was investigated in the juvenile wood of Norway spruce samples taken from different heights in the stem. Annual height increments were cut from the ten youngest shoots from trees of three different heights. By this method the properties of an individual growth ring could be analysed without taking samples from each ring. Sixteen tree tops of an average stem height of 8, 15 and 25 m were analysed. Basic density was low in the first shoot, highest in the second or third one and decreased gradually thereafter. Longitudinal shrinkage was highest close to the pith and decreased to about 0.2% in the outer rings. Tracheids were only ca. 1 mm long close to the pith and their length increased sharply towards the tenth shoot. The properties of juvenile wood varied with the height in the stem. Longitudinal shrinkage around the pith seemed to increase with increasing height and basic density was highest at 25 m stem height. The applicability of the method for the calculation of basic density and tracheid length in individual growth rings close to the pith is discussed.  相似文献   

10.
In this paper, the variation pattern of wood properties was studied for naturalCunninghamia lanceolata. The mathematical models of property parameters were obtained on tracheid length, microfibril angle, late wood percentage, growth ring width and growth ring density in the radial direction. The interrelation were analyzed between tracheid length and microfibril angle. The result can provide scientific theory basis for wood utilization and early prediction of wood properties.  相似文献   

11.
The annual ring width, density and shrinkage variation from pith to bark in Chinese fir (Cunninghamia lanceolata) and Boka sugi (Cryptomeria japonicd) were studied and compared. The results show that the ring width decreased sharply from pith to bark for Chinese fir. However, the ring width variation pattern for Boka sugi followed a different way, i.e., the ring width decreased to the fifth ring, increased to the tenth ring, decreased again to the fifteenth, and then increased to the twentieth, where it became constant. The large variations of Boka sugi appeared to show the maintenance of fast growth for many years. The annual ring mean density of Chinese fir increased gradually from pith to bark. However, the density changes for Boka sugi indicated the opposite trend, i.e., the mean density decreased gradually from pith to bark. The former showed a pattern as the same as a pine and a larch, and the latter was often found in a cedar and a cypress. The longitudinal shrinkage in juvenile wood was much hig  相似文献   

12.
油松管胞形态特征的变异   总被引:13,自引:0,他引:13  
徐有明 《林业科学》1990,26(4):337-343
本文研究分析了山西中条山产地油松管胞形态特征的变异。管胞长度自髓心向外,首先迅速增加,13年后管胞长度增加缓慢,20年后保持相对稳定。管胞长度沿树干主轴自基部向上逐渐增加,5.3m高处最长,然后向上变短,树冠区域管胞长度最短。形成层原始细胞长度随着原始细胞年增大,开始递增,达到最大值后又递减。管胞直径、胞壁厚度自髓心向外增加。管胞直径轴向变化由树干基部开始向上增大,然后又减小。管胞长宽比、壁腔比的径向变异与管胞长度的径向变异模式相似。生长轮内管胞长度从早材到晚材,开始减小,然后增加,最小值位于早晚材过渡处。  相似文献   

13.
广西融水特色红心杉木优树材质性状变异规律研究   总被引:2,自引:0,他引:2       下载免费PDF全文
[目的]通过测定和分析广西融水种源红心杉木优树材质性状指标,以了解该地区红心杉木材性状变异规律。[方法]以广西融水种源60株20年生的红心杉木优树为研究材料,测定单株材积、红心率、基本密度、组织比量、管胞性状、微纤丝角等10个材质性状指标,分析各材性性状指标分布和变异规律及性状间的相关关系。[结果]表明:红心率、基本密度、木射线比量、管胞比量、管胞长、管胞宽、管胞长宽比等性状数据分布服从正态分布。融水两个地区红心杉优树轴向薄壁细胞比量的变异系数分别为35.08%和44.97%,变异较大。管胞比量变异系数分别为3.28%和3.56%,变异较小。红心率、木射线比量、管胞长、管胞宽、微纤丝角等性状差异极显著(P0.01),轴向薄壁细胞比量差异显著(P0.05)。10个材质性状间存在12对表型显著相关。[结论]测定的10个性状均是连续性数量性状。早、晚材的管胞长度、管胞宽度和管胞长宽比等性状数据呈从心材至边材逐渐增加的规律。作为重要经济性状的红心率与木射线比量呈极显著正相关(P0.01),单株材积与轴向薄壁细胞比量呈显著正相关(P0.05),而单株材积与基本密度的相关性不显著,这使红心杉木生长量与材性相结合的遗传改良成为可能。  相似文献   

14.
研究了 4种不同营养元素的施肥处理对马尾松近熟林木材基本性质的影响。结果表明 ,在不同施肥处理后的同一年中 ,N、P、K、NPK施肥处理对木材管胞长、宽及基本密度的影响不同 ,同一施肥处理在不同年度中 ,对上述性质的影响亦异 ,总之 ,无明显变化规律。方差分析表明 4个施肥处理与无施肥处理的管胞长、宽及基本密度差异均不显著 ,生长轮宽度与管胞形态和基本密度都不显著相关。  相似文献   

15.
张燕  佟达  宋魁彦 《森林工程》2011,27(6):30-32,35
以人工林班克松的木材解剖性质为研究对象,分析研究其株内木材材质径向变异模式,对其幼龄材和成熟材进行初步界定。结果表明:早材管胞径弦向直径和晚材胞壁率的变化符合PashinⅠ模型,早材胞壁率的变化符合PanshinⅢ模型;回归分析中早材拟合度较晚材好;幼龄材和成熟材的初步界定年限为9-11a。  相似文献   

16.
Summary Radial pattern of variation in the first-formed earlywood tracheid length in blue pine shows that it increases outwards from the pith at first rapidly up to the 10th ring, then more slowly up to about the 40th ring and thereafter it remains more or less constant. It is correlated significantly and positively with both age and distance from the pith up to 40 years. In the mature wood zone i.e. after 40 years, tracheid length is not affected by either age or distance from the pith. The mean tracheid length of mature wood is significantly and positively correlated with the mean tracheid length of juvenile wood and also with the tracheid length of each of the juvenile wood rings. Based on the results of this study some guidelines for sampling are proposed. Trees with greater than 51 cm d.b.h. or above 40 years of age can be compared by sampling only four outermost consecutive mature wood annual rings; and those with less than 51 cm d.b.h. or below 40 years of age can be compared by sampling any of the juvenile wood rings.A part of Ph. D. thesis submitted to Himachal Pradesh University, Simla-171 005 (India), under the supervision of Dr. K. K. Jain, Associate Professor. The author is thankful to Dr. Jain for constant encouragement and to the University Grants Commission (India) for financial assistance  相似文献   

17.
以微密度分析对属三个变种的七个加勒比松种源的木材密度径向变异模式进行了研究。主要结果是;各种源各株木材密度的径向变异曲线概貌大体一致,但不同种源间和种源内不同株间变异模式都有一定的变异,存在一定程度的不确定性;年轮平均密度的种源间差异在成熟材的大部分年龄上达0.05或0.01水平显著,而在幼龄材的半数年龄上差异不显著;表征变异模式的数字特征的种源间差异不显著。种源间和种源内株间年轮平均密度变异曲线间存在一定程度的交叉,种源间的年-年相关较显著,株间则大部分情况下相关不显著,但差异较大的株间相关显著。密度特征值间和密度特征值与年轮宽特征值间的关系,在年龄影响下和种源影响下两个变异过程中的分析结果,一部分比较一致,一部分则有差别。RD与RW的负相关主要表现在年龄影响下的变异过程中,而在种源影响下的变异过程并不显著。  相似文献   

18.
日本落叶松无性系木材性质的遗传变异   总被引:6,自引:3,他引:3       下载免费PDF全文
对10个10年生日本落叶松无性系的木材基本密度、管胞参数进行了测定.结果表明:木材基本密度,早、晚材管胞宽度和早材长宽比无性系间差异显著;木材基本密度,早、晚材管胞长度,早晚材管胞宽度和早晚材长宽比径向变异模式相似,即从髓心向外以曲线形式不断增加,有时亦有起伏;早材从髓心向外以近似直线的形式缓慢增加,晚材从髓心向外以曲线形式增加,初期增加幅度较大,到一定年龄后趋于水平变化并略有波动;材质性状与树木年轮间的关系以对数方程、幂函数方程、指数方程拟合效果较好;除了晚材壁腔比和早材壁厚外,其它木材性质的重复力均在0.5以上,受中度或中度以上的遗传制约,按照20%的选择率,长宽比和晚材管胞长能获得较高的遗传增益.  相似文献   

19.
The radial pattern of both maximum ring density and ring area of 36 black spruce trees were used to determine the transition age from juvenile wood to mature wood. The data were obtained by X-ray densitometry and both segmented linear and polynomial regressions were used to point out the age of the juvenile wood boundary. Three stand densities (1,790, 2,700 and 3,400 stems/ha) and three sampling heights (2.4, 5.1 and 7.8 m) were studied. Although maximum ring density and ring area presented similar radial patterns, they gave two significantly different results of transition ages. The maximum ring density over-estimated the transition age (17.6 years) in contrast to ring area (14 years). The results show that the transition from juvenile wood to mature wood occurred after 12 years at 7.8 m (versus 13.1 years at a height of 5.1 m, and 17.6 years at 2.4 m). Although transition age occurred later in the high stand density group (21 years), the difference was not significant between the three stand density groups. Nevertheless, transition age remains difficult to determine since no standard definition exists. The transition occurs over years, and most probably a transition wood exists between juvenile wood and mature wood. Estimation of the juvenile wood proportion in volume shows that it remains constant along the stem and it increases with stand density.  相似文献   

20.

Wood density and tracheid length are two traits that significantly affect wood products. Genetic correlations were estimated to evaluate the effect on these traits from a selection for traits included in the Swedish Pinus sylvestris L. breeding programme. Measurements from a non-contiguous single-tree plot progeny trial with controlled matings between 30 parent trees was used. Heritabilities were high for the wood traits, intermediate for the growth capacity traits and low for the stem traits, with the exception of branch angle. Wood density showed no or non-significant negative genetic correlations with the growth capacity traits and a positive correlation with relative branch diameter. Tracheid length showed positive genetic correlations with height and a positive correlation with relative branch diameter. A selection that increased height growth at the age of 13 yrs by 10% was expected to decrease mean wood density at 33 yrs by 1%. The expected correlated response to tracheid length from the same selection was a 3% increase in the juvenile and mature wood.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号