首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Context

Routine movements of large herbivores, often considered as ecosystem engineers, impact key ecological processes. Functional landscape connectivity for such species influences the spatial distribution of associated ecological services and disservices.

Objectives

We studied how spatio-temporal variation in the risk-resource trade-off, generated by fluctuations in human activities and environmental conditions, influences the routine movements of roe deer across a heterogeneous landscape, generating shifts in functional connectivity at daily and seasonal time scales.

Methods

We used GPS locations of 172 adult roe deer and step selection functions to infer landscape connectivity. In particular, we assessed the influence of six habitat features on fine scale movements across four biological seasons and three daily periods, based on variations in the risk-resource trade-off.

Results

The influence of habitat features on roe deer movements was strongly dependent on proximity to refuge habitat, i.e. woodlands. Roe deer confined their movements to safe habitats during daytime and during the hunting season, when human activity is high. However, they exploited exposed open habitats more freely during night-time. Consequently, we observed marked temporal shifts in landscape connectivity, which was highest at night in summer and lowest during daytime in autumn. In particular, the onset of the autumn hunting season induced an abrupt decrease in landscape connectivity.

Conclusions

Human disturbance had a strong impact on roe deer movements, generating pronounced spatio-temporal variation in landscape connectivity. However, high connectivity at night across all seasons implies that Europe’s most abundant and widespread large herbivore potentially plays a key role in transporting ticks, seeds and nutrients among habitats.
  相似文献   

2.
In this study, we sought to understand how landscape structure affects roe deer movements within their home-range in a heterogeneous and fragmented agricultural system of south-western France. We analysed the movements of 20 roe deer fitted with GPS collars which recorded their locations every 2–6 h over several months (mean = 9 months). Based on empirical observations and previous studies of roe deer habitat use, we hypothesised that roe deer should avoid buildings and roads, move preferentially along valley bottoms and through the more wooded areas of the landscape. To test these hypotheses we paired each observed movement step with 10 random ones. Using conditional logistic regression, we modelled a step selection function, which represents the probability of selecting a given step as a function of these landscape variables. The selected model indicated that movements were influenced by all the tested landscape features, but not always in the predicted direction: our results suggested that roe deer tend to avoid buildings, roads, valley bottoms and possibly the more wooded areas (although the latter result should be interpreted with caution, as it may be influenced by a bias in the rate of GPS fix acquisition in woods). The distances to buildings and to roads were the most influential variables in the model, suggesting that the avoidance of potential sources of disturbance may be a key factor in determining ranging behaviour of roe deer in human dominated landscapes.  相似文献   

3.
The Influence of Landscape Structure on Female Roe Deer Home-range Size   总被引:5,自引:0,他引:5  
Animal distribution and abundance are greatly affected by the availability of their food resources, which also depends on landscape structure. Lothar hurricane in 1999 had profoundly modified the structure of the forests in France, affecting the habitat quality of ungulates. We tested whether the variations in home-range size of 23 female roe deer were influenced by the fragmentation of the landscape caused by Lothar in the Chizé forest, namely by the increase in heterogeneity associated with the localized massive tree felling. Home-range size was studied in the summers of 2001 and 2002 and we found that variation in home-range size was mainly explained by only one landscape variable: edge density. Home-range size decreased as edge density increased, which is consistent with the fact that edges are good browsing habitats for roe deer. The result of this study suggests that, after 2 years, the hurricane had improved the quality of the home ranges by creating more forest heterogeneity and increasing the contacts between the different vegetation patches within the home range. These results highlight the fact that spatial heterogeneity is likely to be a key factor influencing the distribution and local population density.  相似文献   

4.
Globally, modification of landscapes for agriculture has had a strong influence on the distribution and abundance of biota. In particular, woodland-dependent birds are under threat across agricultural landscapes in Britain, North America and Australia, with their decline and extirpation attributed to the loss and fragmentation of habitat. Other native species have become over-abundant in response to anthropogenic landscape change and have strong interactive effects on avian assemblage structure. In eastern Australia, the hyper-aggressive noisy miner (Manorina melanocephala) often dominates woodlands in agricultural landscapes through interspecific competition, resulting in declines of species richness of woodland-dependent birds. We aimed to determine the relative influence and importance of interspecific competition, in situ habitat structure and landscape structure for woodland-dependent bird species at the landscape level. We recorded species-specific landscape incidence of woodland-dependent birds in 24 agricultural-woodland mosaics (25 km2) in southern Queensland, Australia. We selected extensively cleared landscapes (10–23 % woodland cover) where fragmentation effects are expected to be greatest. We applied generalised linear models and hierarchical partitioning to quantify the relative importance of the landscape-level incidence of the noisy miner, mistletoe abundance, shrub cover, woodland extent, woodland subdivision and land-use intensity for the incidence of 46 species of woodland birds at the landscape-scale. The landscape-level incidence of the noisy miner was the most important explanatory variable across the assemblage. Both in situ habitat structure and landscape structure were of secondary importance to interspecific aggression, although previous research suggests that the increasing incidence of the noisy miner in fragmented agricultural landscapes is itself a consequence of anthropogenic changes to landscape structure. Species’ responses to fragmentation varied from positive to negative, but complex habitat structure had a consistently positive effect, suggesting in situ restoration of degraded habitats could be a conservation priority. Landscape wide conservation of woodland-dependent bird populations in agricultural landscapes may be more effective if direct management of noisy miner populations is employed, given the strong negative influence of this species on the incidence of woodland-dependent birds among landscapes.  相似文献   

5.
Variation in the size of home range of white-tailed deer (Odocoileus virginianus) has broad implications for managing populations, agricultural damage, and disease spread and transmission. Size of home range of deer also varies seasonally because plant phenology dictates the vegetation types that are used as foraging or resting sites. Knowledge of the landscape configuration and connectivity that contributes to variation in size of home range of deer for the region is needed to fully understand differences and similarities of deer ecology throughout the Midwest. We developed a research team from four Midwestern states to investigate how size of home range of deer in agro-forested landscapes is influenced by variations in landscape characteristics that provide essential habitat components. We found that for resident female deer, annual size of home range in Illinois (mean = 0.99 km2), Michigan (mean = 1.34 km2), Nebraska (mean = 1.20 km2), and Wisconsin (mean = 1.47 km2) did not differ across the region (F 3,175 = 0.42, P = 0.737), but differences between agricultural growing and nongrowing periods were apparent. Variables influencing size of home range included: distance to forests, roads, and urban development from the centroid of deer home range, and percent of crop as well as four landscape pattern indices (contrast-weighted edge density, mean nearest neighbor, area-weighted mean shape index, and patch size coefficient of variation). We also identified differences in model selection for four landscapes created hierarchically to reflect levels of landscape connectivity determined from perceived ability of deer to traverse the landscape. Connectivity of selected forested regions within agro-forested ecosystems across the Midwest plays a greater role in understanding the size of home ranges than traditional definitions of deer habitat conditions and landscape configuration.  相似文献   

6.
Efforts in isolating the relative effects of resources and disturbances on animal-distribution patterns remain hindered by the difficulty of accounting for multiple scales of resource selection by animals with seasonally dynamic drivers. We developed multi-scale, seasonal models to explore how local resource selection by the threatened forest-dwelling woodland caribou (Rangifer tarandus caribou) was influenced by both broad-scale landscape context and local resource heterogeneity in the intensively managed region of Charlevoix, Québec, Canada, located on the southern border of the North American caribou range. We estimated resource selection functions using 23 GPS-collared caribou monitored from 2004 to 2006 and landscape data on vegetation classes, terrain conditions, and roads. We found evidence of thresholds in road “proximity” effects (up to 1.25 km), which underscores the importance of including landscape context variables in addition to locally measured variables, and of fitting seasonal-specific models given temporal variation in the magnitude of selection and optimal scale of measurement. Open lichen woodlands were an important cover type for caribou during winter and spring, whereas deciduous forests, wetlands, and even young disturbed stands became important during calving and summer. Caribou consistently avoided roads and rugged terrain conditions at both local and landscape levels. Landscape context fundamentally constrains the choices available to animals, and we showed that failing to consider landscape context, or arbitrarily choosing an inappropriate scale for measuring covariates, may provide biased inferences with respect to habitat selection patterns. Effective habitat management for rare or declining species should carefully consider the hierarchical nature of habitat selection.  相似文献   

7.
Organisms may be constrained by the energetic costs incurred while obtaining resources in fragmented landscapes. We used a spatially neutral model of deer wintering habitat to evaluate the effects of landscape fragmentation on the aggregation of deer habitat. The spatially neutral model used Bayesian probabilities to predict where deer wintering areas occurred. The probabilities were conditional on 12 landscape variables measured at 22,750 contiguous 0.4 ha locations. The model predicted deer habitat at each location independently, thereby enabling a comparison of habitat aggregation in observed, simulated, and random distributions of deer habitat. The predictions of the neutral model exhibited greater fragmentation than observed in nature, suggesting that suitable, yet isolated, locations were not visited by deer. The most suitable sites for deer were clumped in the neutral model, regardless of scale. The inclusion of less suitable sites preserved significant aggregation at fine scales but not at broad scales. Species operate at different scales within a landscape, so ecologists, nature reserve designers and natural resource planners may benefit from models that focus on the proximity of habitat sites as a function of both spatial scale and habitat quality.  相似文献   

8.
Little information is available regarding the landscape ecology of woodland invertebrate species with limited dispersal ability. An investigation was therefore conducted within woodland fragments in an agricultural landscape for the flightless wood cricket (Nemobius sylvestris) on the Isle of Wight, UK. The current pattern of distribution of the species, established during a field survey, was related to measures of habitat availability and habitat isolation/fragmentation. Results revealed that wood cricket populations were patchily distributed and mainly found in relatively large mature woodland fragments situated closely (<50 m) to another occupied site. Although the occurrence of wood cricket was related to fragment area, isolation, habitat availability and woodland age, a logistic regression model revealed that presence of the species was most accurately predicted by fragment isolation and area alone. These results highlight the vulnerability of relatively immobile woodland invertebrate species, such as wood cricket, to the impacts of habitat loss and fragmentation.  相似文献   

9.
Anthropogenic modification of the countryside has resulted in much of the landscape consisting of fragments of once continuous habitat. Increasing habitat connectivity at the landscape-scale has a vital role to play in the conservation of species restricted to such remnant patches, especially as species may attempt to track zones of habitat that satisfy their niche requirements as the climate changes. Conservation policies and management strategies frequently advocate corridor creation as one approach to restore connectivity and to facilitate species movements through the landscape. Here we examine the utility of hedgerows as corridors between woodland habitat patches using rigorous systematic review methodology. Systematic searching yielded 26 studies which satisfied the review inclusion criteria. The empirical evidence currently available is insufficient to evaluate the effectiveness of hedgerow corridors as a conservation tool to promote the population viability of woodland fauna. However, the studies did provide anecdotal evidence of positive local population effects and indicated that some species use hedgerows as movement conduits. More replicated and controlled field investigations or long-term monitoring are required in order to allow practitioners and policy makers to make better informed decisions about hedgerow corridor creation and preservation. The benefits of such corridors in regard to increasing habitat connectivity remain equivocal, and the role of corridors in mitigating the effects of climate change at the landscape-scale is even less well understood.  相似文献   

10.

Context

Spatial scale is an important consideration for understanding how animals select habitat, and multi-scalar designs in resource selection studies have become increasingly common. Despite this, examination of functional responses in habitat selection at multiple scales is rare. The perceptual range of an animal changes as a function of vegetation association, suggesting that use, selection and functional responses may all be habitat- and scale-dependent.

Objectives

Our objective was to determine how varying grain size affects our interpretation of functional response in habitat selection and to elucidate scalar and landscape effects on habitat selection.

Methods

We quantified the functional response of GPS-collared, female white-tailed deer (Odocoileus virginianus, n = 18) in Riding Mountain National Park, Canada, to different habitat types. Functional responses were quantified at multiple spatial scales by regressing proportion of habitat used against proportion of habitat available at different buffer radii (ranging from 75–1000 m radius) surrounding used (telemetry) locations and available points within the individual’s seasonal home range. We examined how functional responses changed as a function of grain by plotting grain size against the slope of the functional response.

Results

We detected functional responses in most habitat types. As expected, functional responses tended to converge towards 1 (use proportional to availability) at large buffer sizes; however, the relationship between scale and functional response was typically non-linear and depended on habitat type.

Conclusions

We conclude that a multi-scalar approach to modelling animal functional responses in habitat selection is important for understanding patterns in animal behaviour and resource use.
  相似文献   

11.
Landscape heterogeneity can play an important role in providing refugia and sustaining biodiversity in disturbed landscapes. Large Macrotermes (Isoptera) termite mounds in miombo woodlands form nutrient rich islands that sustain a different suite of woody plant species relative to the woodland matrix. We investigated the role of termitaria in providing habitat for cavity-using birds in miombo woodlands that had been greatly impacted by elephants and fire, by comparing the availability of habitat favored by cavity-using birds (tall trees, trees with deadwood, and cavities) on and off mounds, and then testing its effect on species richness and abundance of cavity-using birds. We surveyed 48 termitaria paired with 48 woodland matrix sites in the breeding season; and 54 matrix-termitarium pairs in the non-breeding season in Chizarira National Park, Zimbabwe. Generalized linear mixed-effects models showed that termitaria harboured significantly higher densities (ha−1) of habitat components considered important for cavity nesting birds. Density of trees >6 m in height and incidence of trees with deadwood was nearly 10 times greater on mounds than in the matrix, and the density of cavities was nine times higher on mounds compared to the matrix. A model selection procedure showed that termitaria provided refugia for cavity-using birds and contributed to the resilience of bird communities through high on-mound densities of trees with deadwood. Large termitaria thus appear to play an important role in maintaining functionally important components of the avifauna in heavily impacted Miombo woodlands.  相似文献   

12.
In this study, we investigated the environmental factors driving small mammal (rodents and shrews) assemblages in permanent habitat patches in response to a gradient of agricultural intensification. Small mammals were sampled using a trapping standard method in the hedgerow networks of three contrasted landscapes differing by their level of land-use intensity and hedgerow network density (BOC1: slightly intensified; BOC2: moderately intensified and POL: highly intensified). We hypothesized that habitat and landscape characteristics have to be considered to understand the structure of local community. In that way, we carried out a multi-scale study using environmental variables ranging from local habitat (structure and composition of the hedgerows) to hedgerows neighbourhoods in a radius of 300 m (land cover and connectivity around hedges) and to landscape units (three sites). During 1 year, 24 hedgerows were sampled seven times, representing a total of 1,379 captures (86% of rodents and 14% of shrews) and eight species, dominated by the wood mouse (Apodemus sylvaticus) and the bank vole (Clethrionomys glareolus). Inter-site variability was significant and accounted for 18% of total variation in small mammal species abundances. But intra-site variability was also highlighted: species abundance profiles may differ greatly among hedgerows within a site. The more explanatory variables were identified at the different scales of the study: the landscape unit POL was shown to be an important factor in structuring the community, but the predominant factors explaining differences of abundances among hedgerows were about local habitat. In fact, the width of hedges and the tree species richness appeared to be significant and explaining the greatest part of the total variation of the small mammal community composition.  相似文献   

13.

Purpose

Human-mediated landscape changes alter habitat configuration, which strongly structures animal distributions and interspecific interactions. The effects of anthropogenic disturbance on predator–prey relationships are fundamental to ecology, yet less well understood. We determined where predation events occurred for fawn and adult female mule deer from 2008 to 2014 in critical winter range with extensive energy development. We investigated the relationship between predation sites, energy infrastructure, and natural landscape features across contiguous areas experiencing different degrees of energy extraction during periods of high and low intensity development.

Methods

We contrast spatial correlates of 286 mortality locations with random landscape locations and mule deer distribution estimated from 350,000 GPS locations. We estimated predation risk with resource selection functions and latent selection difference functions.

Results

Relative to the distribution of mule deer, predation risk was lower closer to pipelines and well pads, but higher closer to roads. Predation sites occurred more than expected relative to availability and deer distribution in deeper snow and non-forested habitats. Anthropogenic features had a greater influence on predation sites during the period of low activity than high activity, and natural landscape characteristics had weaker effects relative to anthropogenic features throughout the study. Though canids accounted for the majority of predation events, felids exhibited stronger landscape associations, driving the observed spatial patterns in predation risk to mule deer.

Conclusions

The emergence of varied interactions between predation and landscape features across contexts and years highlights the complexity of interspecific interactions in highly modified landscapes.
  相似文献   

14.
To aid effective conservation and management there is a need to understand the effect of landscape on species ecology. The aim of this research was to assess the effect of landscape parameters on breeding success of barn owls throughout the Rother and Arun River catchments, Sussex, UK. We used a Geographic Information System to describe the habitat mosaic and landscape structure within an estimated home range area of 3 km2 around 85 artificial nest box sites. Results showed that land cover was less heterogeneous at successful sites, with home ranges dominated by a few habitat types of regular patch shapes. Unsuccessful nesting sites had significantly more improved grassland, suburban land and wetlands than successful sites. Cluster analysis and Principle Components Analysis was used to assess the similarity of the habitat mosaic within these areas and pellet analysis was undertaken to assess barn owl diet and prey availability. Ten prey species were recovered from pellets, field vole (Microtus agrestis), common shrews (Sorex araneus) and house mice (Mus musculus) making up nearly 90% of recoveries. However box sites varied in relative proportions of small mammal, and hence prey availability. Results indicated that land use and landscape structure can affect breeding success in barn owls. Higher levels of poor quality small mammal habitat were associated with unsuccessful sites. However, at a landscape scale, the habitat mosaic across the study area lacked variation, limiting analysis and clear correlations between habitat type and positive breeding success, suggesting that a finer scale was needed in future studies utilising this approach.  相似文献   

15.
Understanding the determinants of hedgerow plant diversity in agricultural landscapes remains a difficult task, because the potential drivers affect the complete range of biodiversity components (alpha to gamma diversity). We surveyed herbaceous plant communities (of a height <1.5 m) in 84 hedgerows in the Seine river floodplain of France. Two types of potential drivers for species richness, accounting for landscape mosaic and hedgerow network, were recorded at both hedgerow and site scale. The distribution of species richness through the components of alpha hedgerow diversity (i.e. the average diversity within a habitat) and gamma hedgerow diversity (i.e. the total diversity across habitats) were assessed using additive partitioning methods, while the relationship between species diversity and its potential landscape drivers at both scales was modeled using Generalized Additive Models. Our results indicated that gamma hedgerow diversity is explained by the heterogeneity of the landscape structure, which is correlated with the mosaic of agricultural land use. At this scale, intrinsic properties of the configuration of the hedgerow networks have a weak influence on species richness. Alpha hedgerow diversity is also explained by landscape variables, accounting for both the configuration of agricultural mosaics and hedgerow networks, but to a lesser extent. Time lags for species responses are shown at both scales, and for the two types of drivers. Extinction or colonization debt may be indicated at both scales, while the remnant effects of former practices may also be responsible for such patterns at a local scale. We suggest that hedgerow management should take the specific parameters of both scales into account. At a local scale, management actions should aim to decrease the influence of adjacent land use when the impact is negative, through the implementation of extended buffer zones, while at the landscape and farm scales, agri-environmental schemes should be dedicated to the conservation of specific agricultural land uses.  相似文献   

16.
Richness of Ancient Woodland Indicator plant species was analysed in 308 woodland patches that were surveyed during the Countryside Survey of Great Britain carried out in 1998. The Countryside Survey recorded vegetation plots and landscape structure in 569 stratified 1 km sample squares and developed a remotely-sensed land cover map of the UK. Using these datasets, we tested the hypothesis that Ancient Woodland Indicator species richness in woodland fragments was limited by patch area, shape and spatial isolation and that woodland patches located in the lowland region of Great Britain would respond differently than those in the upland region. The variation in Ancient Woodland Indicator species richness in the British lowlands (n = 218) was mainly explained by patch area and two measures of connectivity, the length of hedgerows and lines of trees in the 1 km square and the area of woodland within 500 m of the vegetation plot. By contrast, variation in Ancient Woodland Indicator species richness in the British uplands (n = 90) was related to Ellenberg scores of the vegetation communities sampled – a surrogate for habitat quality – and no significant effect of spatial structure was detected. It therefore appears that the degree of fragmentation of woodland in the British lowlands limits the distribution of Ancient Woodland Indicator species, while in the uplands, failed colonisation is a matter of habitat quality rather than a result of landscape structure.This revised version was published online in May 2005 with corrections to the Cover Date.  相似文献   

17.
The declines of many specialist bird species in the agricultural landscapes of Central Europe have resulted in small and isolated populations. In the case of the black grouse, a ground-nesting bird species with large spatial requirements, empiric evidence about underlying landscape changes is scarce. In this study, we examined land cover and land cover changes in a farmland-forest mosaic in eastern Lower Saxony, Germany and how they affect occurrence and persistence of black grouse. Spatial information came from historic topographic maps from 1958 to 1975. The results show profound conversions of habitat to forest and farmland but also an increase in settlement area. Habitat conversions and suburbanization were negative correlates of black grouse persistence. Habitat models from before and after a decline period differed in some of the predictors and suggest black grouse habitat to be more diverse before the land cover changes. Our study confirms that land use factors at a landscape scale extent contribute to explain black grouse occurrence and thus can complement important small scale factors like the quality and size of individual habitat patches. Results also show that landscape factors affect black grouse distribution predominantly from an area much greater than an individual black grouse home range. Our models may be further evaluated on present-day landscapes and might be used to evaluate large-scale habitat availability for black grouse.  相似文献   

18.
Previous studies that evaluated effects of landscape-scale habitat heterogeneity on migratory waterbird distributions were spatially limited and temporally restricted to one major life-history phase. However, effects of landscape-scale habitat heterogeneity on long-distance migratory waterbirds can be studied across the annual cycle using new technologies, including global positioning system satellite transmitters. We used Bayesian discrete choice models to examine the influence of local habitats and landscape composition on habitat selection by a generalist dabbling duck, the mallard (Anas platyrhynchos), in the midcontinent of North America during the non-breeding period. Using a previously published empirical movement metric, we separated the non-breeding period into three seasons, including autumn migration, winter, and spring migration. We defined spatial scales based on movement patterns such that movements >0.25 and <30.00 km were classified as local scale and movements >30.00 km were classified as relocation scale. Habitat selection at the local scale was generally influenced by local and landscape-level variables across all seasons. Variables in top models at the local scale included proximities to cropland, emergent wetland, open water, and woody wetland. Similarly, variables associated with area of cropland, emergent wetland, open water, and woody wetland were also included at the local scale. At the relocation scale, mallards selected resource units based on more generalized variables, including proximity to wetlands and total wetland area. Our results emphasize the role of landscape composition in waterbird habitat selection and provide further support for local wetland landscapes to be considered functional units of waterbird conservation and management.  相似文献   

19.

Context

Landscape heterogeneity (the composition and configuration of matrix habitats) plays a major role in shaping species communities in wooded-agricultural landscapes. However, few studies consider the influence of different types of semi-natural and linear habitats in the matrix, despite their known ecological value for biodiversity.

Objective

To investigate the importance of the composition and configuration of matrix habitats for woodland carabid communities and identify whether specific landscape features can help to maintain long-term populations in wooded-agricultural environments.

Methods

Carabids were sampled from woodlands in 36 tetrads of 4 km2 across southern Britain. Landscape heterogeneity including an innovative representation of linear habitats was quantified for each tetrad. Carabid community response was analysed using ordination methods combined with variation partitioning and additional response trait analyses.

Results

Woodland carabid community response was trait-specific and better explained by simultaneously considering the composition and configuration of matrix habitats. Semi-natural and linear features provided significant refuge habitat and functional connectivity. Mature hedgerows were essential for slow-dispersing carabids in fragmented landscapes. Species commonly associated with heathland were correlated with inland water and woodland patches despite widespread heathland conversion to agricultural land, suggesting that species may persist for some decades when elements representative of the original habitat are retained following landscape modification.

Conclusions

Semi-natural and linear habitats have high biodiversity value. Landowners should identify features that can provide additional resources or functional connectivity for species relative to other habitat types in the landscape matrix. Agri-environment options should consider landscape heterogeneity to identify the most efficacious changes for biodiversity.
  相似文献   

20.
Only recently has the influence of landscape structure on habitat use been a research focus in wetland systems. During non-breeding periods when food can be locally limited, wetland spatial pattern across a landscape may be of great importance in determining wetland use. We studied the influence of landscape structure on abundances of wintering Dunlin (Calidris alpina) and Killdeer (Charadrius vociferus) observed on wetlands in the agricultural Willamette Valley of Oregon, USA, during two winters (1999–2000, 2000–2001) of differing rainfall. We examined (1) shorebird use within a sample of 100 km2 regions differing in landscape structure (hectares of shorebird habitat [wet, unvegetated]) and (2) use of sites differing in landscape context (area of shorebird habitat within a species-defined radius). For use of sites, we also assessed the influence of two local characteristics: percent of soil exposed and area of wet habitat. We analyzed data using linear regression and information-theoretic modeling. During the dry winter (2000–2001), Dunlin were attracted to regions with more wetland habitat and their abundances at sites increased with greater area of shorebird habitat within both the site and the surrounding landscape. In contrast, Dunlin abundances at sites were related to availability of habitat at only a local scale during the wet winter (1999–2000). Regional habitat availability was of little importance in predicting Killdeer distributions, and Killdeer site use appeared unrelated to habitat distributions at both landscape and local scales. Results suggest prioritizing sites for conservation that are located in areas with high wetland coverage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号