首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
在盐栽和池栽条件下,利用~(14)C研究了苹果幼树碳素同化物周年支转特性,试验结果表明;1.新梢各节位叶片~(14)C同化物输出年变化差異很大,在新梢旺长前期,下部叶输出率最高,其次是中部叶,而上部叶最低;至旺长期,下部叶输出达到高峰,中部叶输出急剧增加;停长期~(14)C同化物由向上运转为主转向几乎完全向下运转;停长后,中、下部叶~(14)C同化物输出逐漸下降,而下部叶下降更为严重。相反,上部叶输出率在全年中逐漸增加,到贮藏后期已接近中部叶,超过下部叶的水平;2.碳素同化物前期以主干贮备为主,后期转向以根系贮备为主;3.早春新梢生长所需贮藏营养主要来自根系和二年生枝。当新梢具15片叶时,贮藏营养的利用率达到高峰(15%),即达到营养转換期,贮藏营养在新梢的利用由下到上逐漸减少,以基部1~4片利用率最高。4.~(14)C同化物在不同根层中的分配春季上层根大于下层根,夏季下层根大于上层根,秋季上层根又大于下层根。  相似文献   

2.
在池栽条件下,对玫瑰红苹果幼树,分两期(新梢旺长期和营养贮备期)对新梢中部叶片进行~(14)CO_2饲喂,研究了~(14)C同化物在短期内(特别是一天)的输出分配变化。结果表明:一天中,~(14)C同化物输出呈双峰变化。第一高峰出现在上午,标记后約半小时就有相当比率输出,且输出随时间逐漸增多。中午输出受阻。下午再度加快,达到第二高峰。夜晚输出仍在进行。一般充分展开的叶片,最大输出率約为85%。营养贮备期与新梢旺长期输出动态基本一致,只是速度较慢。旺长期同化物具两极运输特点,可大致分为三个阶段,第一是向两极(向上、向下)运输阶段;第二是以下运为主,上下比例变化平稳阶段;第三是以根系向上运转为主的再循环阶段。试验还表明,新根生长所需的同化物主要是当时的新同化者。  相似文献   

3.
应用^14C示踪活体动力学和离体测量方法,探讨小麦旗叶碳同化产物在不同土壤水分条件下的运输分配情况和化学调控的影响。结果表明:灌浆期旗叶同化物活跃输出时间为饲喂后1.5d内,^14C同化物输出百分率随饲喂后时间的变化动态,在灌浆前期可拟合为对数方程,而灌浆后期可拟合为直线方程。土壤欠水处理加快了灌浆后期同化物输出,影响同化物在植株各部位的分配比例,其中向根系的分配明显增加。系统化控缓和了欠水的影响,显著缩短了^14C同化物输出半时,促进了同化物输出。  相似文献   

4.
运用~(14)C 示踪方法对田间种植下的夏玉米京黄119,春大麦矮秆齐不同叶位叶片~(14)C—同化物的运转与分配进行了系统的研究。结果发现:玉米叶片随叶位上升~(14)C 同化物的输出逐渐增多,以穗位叶为代表的中部对片最多,以后又有下降;不同叶位叶片均以24h 为其运转周期;从叶鞘的输出主要发生在同化后的10h 或24h;向生长叶片的输入主要在同化后以10h 内,而根系的输入则主要在10h 至24h 期间。淀粉的动用主要发生在10h 以后。不同叶位叶片对根系的作用表现为在植株营养体和生殖体建成时期以基部1~7叶最为重要,而在籽粒生育时期,主要为7~13叶;自6叶起各叶片均参予生殖体的建成;对籽粒产量的贡  相似文献   

5.
晚秋给两年生未结果温州蜜柑盆栽苗饲喂~(14)CO_2,随后测定不同物候期柑桔苗各器宫的~(14)C同化物的放射性总后度、比活度、~(14)C可溶性成分及氨基酸相对含量.结果表明,在次年新器官生长前,~(14)C同化物主要由叶片向根部运转,~(14)C总活度在根系中的分配达50%以上.从标记后半个月到休眠期,所有器官包括秋叶的放射性比活度增加,唯有春叶比活度明显降低,秋叶却能从春叶中获得养价补充.次年5~11月,新梢生长动用约1/5的14C同化物,同时地上部其他器官的~(14)C分配减少约8.57%,根部减少5.45%,表明新梢生长所需养分主要来自地上部.可溶性~(14)C随年周期进程不断减少.可溶性成分中氨基酸相对含量以新器官和生长期间的器官为高.韧皮部的放射性比活度明显高于木质部,氨基酸含量也以前者为高.  相似文献   

6.
以烤烟(Nicotiana tabacum)品种K 326为材料,采用稳定同位素13C标记技术,研究了烤烟圆顶后1周不同部位叶片、同一叶片不同区段的13C同化能力差异及同化物运输分配的特点,探讨了施氮量对烤烟叶片碳同化能力及同化物分配的影响。结果表明,烤烟不同部位叶片13C同化能力表现为中部叶上部叶下部叶;同一叶片不同区段13C同化能力依次为叶中部叶基部叶尖部。随施氮量增加,上部叶和下部叶的13C同化能力有增大的趋势,而中部叶的13C同化能力以中等施氮量处理(N2)最大。各部位叶片的13C同化产物主要分配于相应部位叶片及根和茎中,增加施氮量具有促进上部叶同化物向根部和茎部运输分配的趋势。  相似文献   

7.
采用14 C示踪技术研究了那氏 778诱导剂浸种对冬小麦14 C同化物的生产及运转分配的影响 ,结果表明 ,那氏 778诱导剂浸种可显著提高冬小麦苗期、拔节期和灌浆期各器官及整株的相对光合速率和同化量 ,生育前期主要以提高小麦展开叶片和小麦冠层上部的光合速率和同化量为主 ,生育后期其冠层下部同化量的提高更为明显 ;那氏 778诱导剂浸种提高了冬小麦各营养器官向穗部和根系输入的比例 ,有利于促进小麦的生长发育 ,为小麦的高产奠定了基础  相似文献   

8.
外源糖在青椒上的吸收和运转   总被引:2,自引:0,他引:2  
以鲜食用尖椒(capsicum frutescens L var Longum Baily)为试材,经示踪试验查明:~(14)C葡萄糖以叶片引入后可迅速运转到全株,在果实、叶、茎和根中分别占50.4、31.4、17.6和0.6%;根系因分泌作用外溢量大。在植株上直向运转量向上大于向下;折向运转量则明显减弱。  相似文献   

9.
用^14C示踪法研究了黄花菜碳素同化物周年运转、贮藏、再利用的特性及变化规律,结果表明,春苗期叶的同化能力最强,自留量最大。苔期叶的同化能力有所下降,自留量减少,花苔逐渐成为生长中心和养分输入中心,植株从营养生长过度到生殖生长。蕾期叶的自留量大幅度减少,花蕾竞争势强大,取代了花苔,成为养分输入中心,这是获得产量的关键时期,营养贮存和秋苗期,同化产物输出部分主要向肉质根中分配,休眠期肉质根中碳素营养  相似文献   

10.
应用~(14)C示踪技术测定三个籽粒饱满度不同的小麦品种,结果表明:籽粒饱满度与品种的净光合率、光合持续期和同化物在籽粒中的分配率有关;光合作用后30分钟测定,~(14)C同化物的分配,叶片最高,叶鞘其次,麦穗再次,茎中最低;开花期~(14)C同化物在成熟麦穗中的分配,约占引入量的25—32%,灌浆期~(14)C同化物在成熟麦穗中的分配,对籽粒饱满的两个品种,占引入量的50%以上,而籽粒不饱满的品种,分配率还不到30%。  相似文献   

11.
水稻不同节位叶的光合强度和光合产物的运转与分配   总被引:4,自引:0,他引:4  
本研究以水稻品种蜀丰一号为材料,在抽穗期用红外线CO_2气体分析仪测定主茎各节位叶的净光合速率和用~(14)C研究光合产物的运转与分配。研究表明:主茎各节位叶的净光合速率分别为15.97,12.85,11.07,11.37mg CO_2·小时~(-1)·分米~(-2)。经统计检验,剑叶与倒二叶、倒三叶,倒四叶差异均达显著和极显著水准,倒二叶,倒三叶,倒四叶之间差异不显著。主茎不同节位叶同化的~(14)C都能运转分配至稻株的各器官,其分配的比率不相同,分配到主穗的比率较高,分蘖穗的比率较少。主茎下位叶(倒三、倒四叶)同化的~(14)C分配到分蘖穗、茎叶和根的比率比上位叶(剑叶、倒二叶)高。  相似文献   

12.
小麦灌浆期同化产物的运转分配及高矮秆品种差异的研究   总被引:1,自引:0,他引:1  
本试验利用放射性核素~(14)C及~(32)P研究了小麦不同秆高品种,在生育后期同化物质的运转与分配的差异,对矮秆品种灌浆不良、易青枯早衰的原因进行了探讨。试验结果表明,从灌浆初期至成熟,籽粒中放射性产物分配率迅速增加,11个品种平均,由32.5%增至77.8%,茎鞘各层则大幅度降低。此时的功能器官旗叶与倒二叶,存在着输送方向上的分工,旗叶同化产物70—80%运往穗部,其余运往植株上部茎鞘叶,而倒二叶却有50%同化产物供应植株上部及中部茎鞘叶,其余供应下部茎鞘叶及穗,约各占25%左右。生育后期茎鞘中贮存性干物质,亦呈现着向穗部的再输出,约占籽粒干重增长量的30—50%,不同品种间输出率有较大差异,变幅20—80%。矮秆品种功能器官的作用并不逊于高秆品种,其倒二叶同化物质对穗的贡献较高秆品种为高,但同时向茎鞘的分配率降低了30%,因而不利于维持生育后期植株中下部营养器官的代谢与功能,表现了矮秆品种易青枯早衰、茎鞘干物质向穗部的输出率仅为高秆品种的一半左右。  相似文献   

13.
以烤烟品种K326为材料,设置D1(16 529株/hm2)、D2(18 182株/hm2)、D3(20 202株/hm2)3个种植密度处理,于圆顶期对各处理烟株上、中、下3个部位叶片进行13C同位素标记,研究了烤烟不同部位叶片的碳同化能力差异和同化产物的分配特点,并探讨了种植密度对烤烟叶片碳同化能力差异和同化产物分配的调节效应。结果表明,烤烟不同部位叶片的13C同化能力表现为中部叶上部叶下部叶;同一叶片不同区段13C同化能力大小依次为叶中部叶基部叶尖部。上部叶的13C同化产物平均有19.71%运往根系,42.22%运往茎秆,38.07%留在叶片且大部分留在被标记的上部叶;中部叶的13C同化产物有33.42%运往根系,26.00%运往茎秆,40.58%留在叶片且大部分留在被标记的中部叶;下部叶的13C同化产物有33.67%运往根系,23.72%运往茎秆,42.61%留在叶片且大部分留在被标记的下部叶。上部叶的13C同化产物向茎秆的中部供应较多,中部叶和下部叶的13C同化产物向茎秆基部分配较多。随着种植密度增大,叶片的碳同化能力降低,向根、茎分配的同化产物量减少,尤其是在较高的种植密度(D3)下,各部位叶片的碳同化能力显著降低。综上,烟叶产量和品质形成的物质基础主要来源于烟叶生长期间自身的同化作用,种植密度对烤烟叶片的13C同化能力具有显著影响,在设置试验条件下,18 182株/hm2左右的种植密度有利于提高烤烟叶片碳同化能力和协调同化产物的运输分配。  相似文献   

14.
本文从碳素同化、消耗与积累的角度分析了苏协一号和徐州424两个栽培大豆品种第二复叶一生中同化物潜在供应能力及~(14)C同化物输出速率的变化。在同化物供应高值期,光合产物的潜在供应能力最大,比叶重和呼吸速率相当稳定,~(14)C光合产物输出速率与潜在供应能力间呈极显著线性相关。测定结果还表明,磷酸蔗糖合成酶(SPS)对叶片中光合产物输出有重要调节作用。  相似文献   

15.
引言随着我院科学研究工作的发展,近几年在核技术应用上有很大的推动。特别是应用放射性核素~(14)C 的示踪研究农作物体内同化产物的运转分配的实验,为生产实践提供了有价值的依据。如;“番茄不同叶片与各层果实的源库关系”,从不同部位叶片上的~(14)C运转规律研究,为番茄生长合理整枝打叶提供了理论依据。放射性核素~(14)C 是由靶素~(14)N 在反应堆内吸收慢中子发生(n、p)反应产生的。其半衰期很长,有5568年.利用它所制备的实验样品,任何时候都可以使用,测量时不必考虑衰变的校正,比短半衰期的放射性核素方便得多。放射性核素~(14)C 衰变时单纯的放射β射线,能谱是连续  相似文献   

16.
矮化中间砧苹果树~(14)C同化物质分配和运转的研究   总被引:5,自引:0,他引:5  
研究结果表明,苹果树矮化中间砧对14C同化物质的运转有明显的滞阻作用。喂饲当年报制14C同化物质下运,翌年限制根系内14C同化物质上运。矮化中间砧段内积累较多14C同化物质,矮化中间砧苹果树地上都大部分时间14C同化物质含量显著高于根系,从而影响地上部和根系的生育、花芽分化、产量和果实品质。  相似文献   

17.
与插秧栽培相比,塑盘抛秧栽培群体干物日增量以中期最高,根、茎、叶、穗同时增加,增多部分分配给叶高于茎,但叶片变薄,比叶重下降,增产的主要原因是增加了第二次分蘖穗和齐穗后茎叶累积的同化物向谷粒运转较多;增产潜力源于有效蘖干物库容量,叶片总光合化产物源和同化物运转流量等的增加以及栽培技术效应等。  相似文献   

18.
本实验首次采用活体示踪动态测量和定期取样测定结合的方法,研究了通过叶室14CO2同化法饲喂小麦第一茎生叶(592KB1/株)后6-苄氨基嘌呤(6-BA0.05g·L-1)和乙烯利(ETH0.5g·L-1),处理饲喂叶对14C同化物输出和分配的影响。结果表明:①活体示踪动态测量结果表明叶片中同化物的输出有线性(快速)和非线性(慢速)两个过程。饲喂后4h内为快速期,5~18h输出速率稳定在2%~3%/h,以后输出缓慢,48h后基本上不再输出。6-BA和ETH处理未改变叶片中’‘C同化物输出的大体趋势,但6BA延缓了快速期’‘C同化物的输出,提高了…  相似文献   

19.
超级杂交稻生育后期上部三片叶同化产物的转运分配   总被引:1,自引:0,他引:1  
采用大田试验和同位素示踪技术,以杂交稻组合汕优46为对照,对超级杂交稻组合两优293、准两优527生育后期上部三片叶同化产物转运分配特性进行了初步研究.结果表明,在生育后期不同阶段进行14C标记的两优293和准两优527剑叶、倒2叶、倒3叶的14C-同化物最终分配到穗中的比例(47.28%~95.43%)均显著高于对照(38.61%~82.19%),而滞留在茎叶中14C-同化物的含量显著低于对照,剑叶14C-同化物最终分配到穗中的比例最高(87.64%~95.43%),其次为倒2叶(67.64%~85.70%),倒3叶最低(47.29%~69.01%),说明超级杂交稻生育后期各功能叶(特别是剑叶)具有较强的同化产物输出能力.  相似文献   

20.
秋季以~(14)C喂饲红星苹果幼树,矮化中间砧树地上部~(14)C同化物质相对量高于根系,高于乔砧树。休眼期仍高于根系,高于乔砧树,主要贮存于多年生枝和一年生枝,根内较少。新梢不同部位及叶片内其含量由下往上递减,显著高于乔砧树。一年生枝由上往下递减,养分积累期和休眼期高于乔砧树。矮化中间砧段对~(14)C同化物质的输送有滞阻作用,从而影响地上部和根系的生育、花芽的形成、产量和果实品质。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号