首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
ObjectiveThe objective was to examine the effects of inhibiting cytochrome P450 (CYP) on the pharmacokinetics of oral methadone in dogs.Study designProspective non-randomized experimental trial.AnimalsSix healthy Greyhounds (three male and three female).MethodsThe study was divided into two phases. Oral methadone (mean = 2.1 mg kg?1 PO) was administered as whole tablets in Phase 1. In Phase 2 oral methadone (2.1 mg kg?1 PO) was administered concurrently with ketoconazole (13.0 mg kg?1 PO q 24 hours), chloramphenicol (48.7 mg kg?1 PO q 12 hours), fluoxetine (1.3 mg kg?1 PO q 24 hours), and trimethoprim (6.5 mg kg?1 PO q 24 hours). Blood was obtained for analysis of methadone plasma concentrations by liquid chromatography with mass spectrometry. The maximum plasma concentration (Cmax), time to Cmax (Tmax), and the area under the curve from time 0 to the last measurable time point above the limit of quantification of the analytical assay (AUC0–LAST) were compared statistically.ResultsThe Cmax of methadone was significantly different (p = 0.016) for Phase 1 (5.5 ng mL?1) and Phase 2 (171.9 ng mL?1). The AUC0–LAST was also significantly different (p = 0.004) for Phase 1 (13.1 hour ng mL?1) and Phase 2 (3075.2 hour ng mL?1).Conclusion and clinical relevanceConcurrent administration of CYP inhibitors with methadone significantly increased the area under the curve and plasma concentrations of methadone after oral administration to dogs. Further studies are needed assessing more clinically relevant combinations of methadone and CYP inhibitors.  相似文献   

3.
ObjectiveTo describe the pharmacokinetics of pregabalin in normal dogs after a single oral dose.Study designProspective experiment.AnimalsSix adult Labrador/Greyhound dogs (four females and two males) aged 2.6 (2.6–5.6) years old (median and range) weighing 33.4 (26.8–42.1) kg.MethodsAfter jugular vein catheterization, the dogs received a single oral dose of pregabalin (~4 mg kg?1). Blood samples were collected at: 0 (before drug administration), 15 and 30 minutes and at 1, 1.5, 2, 3, 4, 6, 8, 12, 24 and 36 hours after drug administration. Plasma pregabalin concentration was measured by HPLC. Noncompartmental analysis was used to estimate pharmacokinetic variables.ResultsNo adverse effects were observed. The median (range) pharmacokinetic parameters were: Area under the curve from time 0 to 36 hours = 81.8 (56.5–92.1) μg hour mL?1; absorption half-life = 0.38 (0.25–1.11) hours; elimination half-life = 6.90 (6.21–7.40) hours; time over 2.8 μg mL?1 (the presumed minimal effective concentration) = 11.11 (6.97–14.47) hours; maximal plasma concentration (Cmax) = 7.15 (4.6–7.9) μg mL?1; time for Cmax to occur = 1.5 (1.0–4.0) hours. Assuming an 8-hour dosing interval, predicted minimal, average, and maximal steady state plasma concentrations were 6.5 (4.8–8.1), 8.8 (7.3–10.9), and 13.0 (8.8–15.2) μg mL?1. The corresponding values assuming a 12-hour interval were 3.8 (2.4–4.8), 6.8 (4.9–7.9), and 10.1 (6.6–11.6) μg mL?1.Conclusions and clinical relevancePregabalin 4 mg kg?1 PO produces plasma concentrations within the extrapolated therapeutic range from humans for sufficient time to suggest that a twice daily dosing regime would be adequate. Further study of the drug's safety and efficacy for the treatment of neuropathic pain and seizures in dogs is warranted.  相似文献   

4.
ObjectiveTo compare the recovery after anaesthesia with isoflurane, sevoflurane and desflurane in dogs undergoing magnetic resonance imaging (MRI) of the brain.Study designProspective, randomized clinical trial.AnimalsThirty‐eight dogs weighing 23.7 ± 12.6 kg.MethodsFollowing pre‐medication with meperidine, 3 mg kg?1 administered intramuscularly, anaesthesia was induced intravenously with propofol (mean dose 4.26 ± 1.3 mg kg?1), the trachea was intubated, and an inhalational anaesthetic agent was administered in oxygen. The dogs were randomly allocated to one of three groups: group I (n = 13) received isoflurane, group S (n = 12) received sevoflurane and group D (n = 13) received desflurane. Parameters recorded included cardiopulmonary data, body temperature, end‐tidal anaesthetic concentration, duration of anaesthesia, and recovery times and quality. Qualitative data were compared using chi‐squared and Fisher's exact tests and quantitative data with anova and Kruskal–Wallis test. Post‐hoc comparisons for quantitative data were undertaken with the Mann–Whitney U‐test.ResultsThe duration of anaesthesia [mean and standard deviation (SD)] in group I was: 105.3 (27.48) minutes, group S: 120.67 (19.4) minutes, and group D: 113.69 (26.68) minutes (p = 0.32). Times to extubation [group I: 8 minutes, (interquartile range 6–9.5), group S: 7 minutes (IQR 5–7), group D: 5 minutes (IQR 3.5–7), p = 0.017] and to sternal recumbency [group I: 11 minutes (IQR 9.5–13.5), group S: 9.5 minutes (IQR 7.25–11.75), group D: 7 minutes (range 3.5–11.5), p = 0.048] were significantly different, as were times to standing. One dog, following sevoflurane, had an unacceptable quality of recovery, but most other recoveries were calm, with no significant difference between groups.Conclusions and clinical relevanceAll three agents appeared suitable for use. Dogs’ tracheas were extubated and the dogs recovered to sternal recumbency most rapidly after desflurane. This may be advantageous for animals with some neurological diseases and for day case procedures.  相似文献   

5.
Dogs have a similar incidence of spontaneous cancers as people, and a noninvasive test to monitor disease status in dogs would be of great value. Humans with cancer often have increased levels of cell‐free circulating DNA in their plasma, which has shown promise for diagnosis, prognosis and detection of residual disease. We hypothesized that dogs with cancer have increased circulating DNA compared with healthy dogs or dogs with non‐neoplastic diseases. Plasma DNA was measured in 40 healthy dogs, 20 dogs with non‐neoplastic diseases and 80 dogs with cancer. The reference interval for plasma DNA in healthy dogs was 1–15 ng mL?1. Dogs with lymphoma and lymphoid leukaemia had significantly higher concentrations (range: 0–91 ng mL?1, P < 0.0001). Antigen receptor rearrangement assays suggest that plasma DNA had the same clonality as the primary lymphoid tumours. Dogs with lymphoid neoplasia and plasma DNA >25 ng mL?1 had shorter remission times than those with < 25 ng mL?1 (P= 0.0116). In contrast to humans, where increased plasma DNA is seen in many diseases, dogs with nonlymphoid malignancies and non‐neoplastic diseases had plasma DNA concentrations similar to healthy dogs. This study shows that a portion of dogs with lymphoid neoplasia have increased tumour‐derived plasma DNA, which serves as a negative prognostic indicator.  相似文献   

6.
ObjectiveTo investigate a combination of azaperone, detomidine, butorphanol and ketamine (DBK) in pigs and to compare it with the combination of azaperone, tiletamine and zolazepam (TZ).Study designProspective, randomized, blinded, cross–over study.AnimalsTwelve clinically healthy crossbred pigs aged about 2 months and weighing 16–25 kg.MethodsPigs were pre–medicated with azaperone (4 mg kg?1). Ten minutes later anaesthesia was induced with intramuscular DBK (detomidine 0.08 mg kg?1, butorphanol 0.2 mg kg?1, ketamine 10 mg kg?1) or TZ (tiletamine and zolazepam 5 mg kg?1). The pigs were positioned in dorsal recumbency. Heart and respiratory rates, posture, anaesthesia score, PaO2, PaCO2, pH and bicarbonate concentration were measured. t–test was used to compare the areas under time–anaesthesia index curve (AUCanindex) between treatments. Data concerning heart and respiratory rates, PaO2, PaCO2 and anaesthesia score were analysed with anova for repeated measurements. Wilcoxon signed rank test was used for the data concerning the duration of sedation and anaesthesia.ResultsThe sedation, analgesia and anaesthesia lasted longer after DBK than TZ. The AUCanscore were 863 ± 423 and 452 ± 274 for DBK and TZ, respectively (p = 0.002). The duration of surgical anaesthesia lasted a median of 35 minutes (0–105 minutes) after DBK and a median of 15 minutes (0–35 minutes) after TZ (p = 0.05). Four pigs after DBK and six after TZ did not achieve the plane of surgical anaesthesia. The heart rate was lower after DBK than after TZ. Both treatments had similar effects on the other parameters measured.ConclusionsAt the doses used DBK was more effective than TZ for anaesthesia in pigs under field conditions.Clinical relevanceThe combinations can be used for sedation and minor field surgery in pigs. The doses and drugs chosen were insufficient to produce a reliable surgical plane of anaesthesia in these young pigs.  相似文献   

7.
ObjectiveTo test the compensatory role of endothelin-1 when acute blood loss is superimposed on anaesthesia, by characterizing the effect of systemic endothelin receptor subtype A (ETA) blockade on the haemodynamic and hormonal responses to haemorrhage in dogs anaesthetized with xenon/remifentanil (X/R) or isoflurane/remifentanil (I/R).Study designProspective experimental randomized controlled study.AnimalsSix female Beagle dogs, 13.4 ± 1.3 kg.MethodsAnimals were anaesthetized with remifentanil 0.5 μg kg?1 minute?1 plus either 0.8% isoflurane (I/R) or 63% xenon (X/R), with and without (Control) the systemic intravenous endothelin receptor subtype A antagonist atrasentan (four groups, n = 6 each). After 60 minutes of baseline anaesthesia, the dogs were bled (20 mL kg?1) over 5 minutes and hypovolemia was maintained for 1 hour. Continuous haemodynamic monitoring was performed via femoral and pulmonary artery catheters; vasoactive hormones were measured before and after haemorrhage.ResultsIn Controls, systemic vascular resistance (SVR), vasopressin and catecholamine plasma concentrations were higher with X/R than with I/R anaesthesia at pre-haemorrhage baseline. The peak increase after haemorrhage was higher during X/R than during I/R anaesthesia (SVR 7420 ± 867 versus 5423 ± 547 dyne seconds cm?5; vasopressin 104 ± 23 versus 44 ± 6 pg mL?1; epinephrine 2956 ± 310 versus 177 ± 99 pg mL?1; norepinephrine 862 ± 117 versus 195 ± 33 pg mL?1, p < 0.05). Haemorrhage reduced central venous pressure from 3 ± 1 to 1 ± 1 cmH2O (I/R, ns) and from 8 ± 1 to 5 ± 1 cmH2O (X/R, p < 0.05), but did not reduce mean arterial pressure, nor cardiac output. Atrasentan did not alter the haemodynamic and hormonal response to haemorrhage during either anaesthetic protocol.Conclusions and clinical relevanceSelective ETA receptor blockade with atrasentan did not impair the haemodynamic and hormonal compensation of acute haemorrhage during X/R or I/R anaesthesia in dogs.  相似文献   

8.
ObjectiveTo quantify induction time, reliability, physiological effects, recovery quality and dart volume of a novel formulation of alfaxalone (40 mg mL?1) used in combination with medetomidine and azaperone for the capture and handling of wild bighorn sheep.Study designProspective clinical study.AnimalsA total of 23 wild bighorn sheep (Ovis canadensis) in Sheep River Provincial Park, AB, Canada.MethodsFree-ranging bighorn sheep were immobilized using medetomidine, azaperone and alfaxalone delivered with a remote delivery system. Arterial blood was collected for measurement of blood gases, physiologic variables (temperature, heart and respiratory rates) were recorded and induction and recovery length and quality were scored.ResultsData from 20 animals were included. Administered dose rates were alfaxalone (0.99 ± 0.20 mg kg?1; 40 mg mL?1), azaperone (0.2 ± 0.04 mg kg?1; 10 mg mL?1) and medetomidine (0.16 ± 0.03 mg kg?1; 30 mg mL?1). The mean drug volume injected was 1.51 mL. The median (range) induction time was 7.7 (5.8–9.7) minutes, and recovery was qualitatively smooth.Conclusions and clinical relevanceAn increased concentration formulation of alfaxalone was administered in combination with medetomidine and azaperone, and resulted in appropriate anesthesia for the capture and handling of bighorn sheep. The dart volume was small, with potential for reducing capture-related morbidity.  相似文献   

9.
ObjectiveTo assess as premedicants, the sedative, cardiorespiratory and propofol-sparing effects in dogs of dexmedetomidine and buprenorphine compared to acepromazine and buprenorphine.Study designProspective, randomised, blinded clinical studyAnimalsSixty healthy dogs (ASA grades I/II). Mean (SD) body mass 28.0 ± 9.1 kg, and mean age 3.4 ± 2.3 years.MethodsDogs were allocated randomly to receive 15 μg kg?1 buprenorphine combined with either 30 μg kg?1 acepromazine (group 1), 62.5 μg m?2 dexmedetomidine (group 2), or 125 μg m?2 dexmedetomidine (group 3) intramuscularly. After 30 minutes, anaesthesia was induced using a propofol target controlled infusion. Heart rate, respiratory rate, and oscillometric arterial blood pressure were recorded prior to induction, at endotracheal intubation and at 3 and 5 minutes post-intubation. Induction quality and pre-induction sedation were scored on 4 point scales. Propofol target required for endotracheal intubation was recorded. Data were analysed using Chi-squared tests, Kruskal-Wallis, one way and general linear model anova (p < 0.05).ResultsAge was significantly lower in group 1 (1.0 (1.0–3.8) years) than group 2 (5.0 (2.0–7.0) years), (median, (IQR)). There were no significant differences in sedation or quality of induction between groups. After premedication, heart rate was significantly lower and arterial blood pressures higher in groups 2 and 3 than group 1, but there was no significant difference between groups 2 and 3. Propofol targets were significantly lower in group 3 (1.5 (1.0–2.5) μg mL?1) than group 1 (2.5 (2.0–3.0) μg mL?1); no significant differences existed between group 2 (2.0 (1.5–2.5) μg mL?1) and the other groups (median, (interquartile range)).Conclusions and Clinical relevanceWhen administered with buprenorphine, at these doses, dexmedetomidine had no advantages in terms of sedation and induction quality over acepromazine. Both doses of dexmedetomidine produced characteristic cardiovascular and respiratory effects of a similar magnitude.  相似文献   

10.
ObjectiveTo evaluate the post‐tetanic count (PTC) for predicting the return of reversible neuromuscular blockade at the n. facialis–m. nasolabialis (nF–mNL) and n. ulnaris–mm. carpi flexorii (nU–mCF) nerve‐muscle units (NMUs) during profound vecuronium neuromuscular blockade in halothane‐anaesthetized dogs.Study designRandomized, prospective, experimental study.AnimalsTwenty‐five dogs (seven male 18 female) undergoing surgery; mean age: 4.8 years; mean body weight 22 kg.MethodsThirty minutes after acepromazine (0.05 mg kg?1) and morphine (0.5 mg kg?1) pre‐medication, anaesthesia was induced with intravenous (IV) thiopental and maintained with halothane, N2O and O2. The lungs were mechanically ventilated and end‐tidal halothane concentration (Fe′HAL) maintained at 1.04%. Neuromuscular transmission was monitored using the train‐of‐four count (TOFC) at one nF–mNL and both nU–mCF units. Vecuronium (50 µg kg?1 IV) was injected after 15 minutes constant Fe′HAL. When the first twitch (T1) at both nU–mCF units had disappeared (t = 0) one (randomly allocated) ulnar nerve was stimulated every 5 minutes using PTC; TOF stimulation continued at the other sites. The PTC was plotted against the interval between recording time and T1's reappearance at the other NMUs.ResultsAt t = 0, the mean PTC in the contralateral nU–mCF unit was 18 (range 0–20). Mean PTC was a minimum at t = 5, rising to the maximum (20) at 25 minutes. Six dogs were vecuronium‐resistant as monitored by PTC. Excluding data from these revealed a strong negative relationship between ulnar PTC and the time taken for T1's return at the facial (r = ?0.7018; p < 0.00001) and contralateral ulnar (r = ?0.8409; p < 0.00001) NMUs.Conclusion and clinical relevancePost‐tetanic count monitoring beginning >5 minutes after the TOFC at nU–mCF = 0 provided a reliable estimate of T1's return at ulnar and facial NMUs.  相似文献   

11.
HistoryEleven female dogs of different breeds undergoing unilateral radical (n = 7) or regional abdominal mastectomy (n = 4) received an ultrasound guided transverse abdominis plane block (TAP-block).Physical examinationSubjects showed single or multiple mammary tumours. Serum biochemistry, CBC and electrocardiogram were unremarkable. Eight animals were classified as ASA physical status II and 3 as ASA III.ManagementDogs were premedicated with methadone [0.1 or 0.2 mg kg?1 intravenously (IV) or intramuscularly respectively] or fentanyl (2.5 μgkg?1 IV). Anaesthesia was induced with propofol and maintained with isoflurane or sevoflurane. Unilateral ultrasound guided TAP blocks were performed in the caudal and cranial abdomen with bupivacaine 0.25% (0.3 to 0.35 mL kg?1). Intercostal nerve blocks (T4 to T11) with bupivacaine 0.25% (0.013 to 0.04 mL kg?1) completed the blocked area in dogs undergoing radical mastectomy.Follow upThe median (range) of end-expired isoflurane and sevoflurane necessary to maintain anaesthesia was 1.15 (1.07–1.22) and 2.07 (2.05–2.2) vol% respectively. A single administration of fentanyl (2.5 μg kg?1, IV) was administered to control nociception (defined as an increased heart rate or mean arterial blood pressure above 20% of the pre-incisional value) in four of 11 dogs. All dogs received carprofen (2 mg kg?1 subcutaneously) at the end of surgery. Post-operative pain, assessed for 120 minutes using the short form of Glasgow Composite Pain Scale (0–24), was always lower than 3. No rescue analgesia (allowed by the protocol) was required in this time.ConclusionTransverse abdominis plane block combined with intercostal nerve blocks may be useful to produce intraoperative anti-nociception and short term post-operative analgesia in dogs undergoing unilateral mastectomy.  相似文献   

12.
ObjectiveTo describe alfaxalone total intravenous anaesthesia (TIVA) following premedication with buprenorphine and either acepromazine (ACP) or dexmedetomidine (DEX) in bitches undergoing ovariohysterectomy.Study designProspective, randomised, clinical study.AnimalsThirty-eight healthy female dogs.MethodsFollowing intramuscular buprenorphine (20 μg kg?1) and acepromazine (0.05 mg kg?1) or dexmedetomidine (approximately 10 μg kg?1, adjusted for body surface area), anaesthesia was induced and maintained with intravenous alfaxalone. Oxygen was administered via a suitable anaesthetic circuit. Alfaxalone infusion rate (initially 0.07 mg kg?1 minute?1) was adjusted to maintain adequate anaesthetic depth based on clinical assessment. Alfaxalone boluses were given if required. Ventilation was assisted if necessary. Alfaxalone dose and physiologic parameters were recorded every 5 minutes. Depth of sedation after premedication, induction quality and recovery duration and quality were scored. A Student's t-test, Mann–Whitney U and Chi-squared tests determined the significance of differences between groups. Data are presented as mean ± SD or median (range). Significance was defined as p < 0.05.ResultsThere were no differences between groups in demographics; induction quality; induction (1.5 ± 0.57 mg kg?1) and total bolus doses [1.2 (0 – 6.3) mg kg?1] of alfaxalone; anaesthesia duration (131 ± 18 minutes); or time to extubation [16.6 (3–50) minutes]. DEX dogs were more sedated than ACP dogs. Alfaxalone infusion rate was significantly lower in DEX [0.08 (0.06–0.19) mg kg?1 minute?1] than ACP dogs [0.11 (0.07–0.33) mg kg?1 minute?1]. Cardiovascular variables increased significantly during ovarian and cervical ligation and wound closure compared to baseline values in both groups. Apnoea and hypoventilation were common and not significantly different between groups. Arterial haemoglobin oxygen saturation remained above 95% in all animals. Recovery quality scores were significantly poorer for DEX than for ACP dogs.Conclusions and clinical relevanceAlfaxalone TIVA is an effective anaesthetic for surgical procedures but, in the protocol of this study, causes respiratory depression at infusion rates required for surgery.  相似文献   

13.
ObjectiveTo evaluate the effect of medetomidine–butorphanol sedation on serum cardiac troponin I (cTnI) concentration, a marker of myocardial ischemia and injury, in healthy dogs undergoing pre–surgical radiographs for orthopedic procedures.Study designProspective clinical study.AnimalsTwenty client–owned dogs with no history of cardiac disease.MethodsDogs were evaluated for pre–existing cardiac disease with electrocardiogram (ECG), noninvasive blood pressure and echocardiogram. Sedation was achieved using a combination of medetomidine (10 μg kg?1) and butorphanol (0.2 mg kg?1) intravenously. Blood pressure, heart rate and ECG were serially recorded throughout the duration of sedation. Serum cTnI concentration was measured at baseline and 6, 18, and 24–hours post–sedation.ResultsFollowing administration of medetomidine and butorphanol, all dogs were adequately sedated for radiographs and had a decreased heart rate and increased diastolic blood pressure. Arrhythmias associated with increased parasympathetic tone occurred, including a sinus arrhythmia further characterized as a sinus bigeminy in 17 of the dogs. Serum cTnI was undetectable at all time points in all but three dogs. Two of the three dogs had a detectable concentration of cTnI at all time points measured, including prior to sedation. Only one of the two dogs had a cTnI concentration above the normal reference interval. The dogs that exhibited detectable cTnI had no significant difference in signalment, heart rate, blood pressure, or lactate concentration as compared to those with undetectable cTnI.Conclusions and clinical relevanceSedation with medetomidine and butorphanol had predictable cardiovascular effects including bradycardia, an increase in arterial blood pressure, and arrhythmias in apparently healthy dogs requiring radiographs for orthopedic injuries, but did not induce significant increases in serum cTnI concentration following the drug doses used in this study.  相似文献   

14.
ObjectiveTo compare the dose, cardiopulmonary effects and quality of anaesthetic induction in dogs using propofol (10 mg mL–1) and diluted propofol (5 mg mL–1).Study designRandomized, blinded, clinical study.AnimalsA total of 28 client-owned dogs (12 males/16 females).MethodsFollowing intramuscular acepromazine (0.02 mg kg–1) and methadone (0.2 mg kg–1), propofol (UP, 10 mg mL–1) or diluted propofol (DP, 5 mg mL–1) was administered intravenously (0.2 mL kg–1 minute–1) by an anaesthetist unaware of the allocated group to achieve tracheal intubation. Sedation, intubation and induction quality were scored from 0 to 3. Pre- and post-induction pulse rate (PR), respiratory rate (fR) and systolic (SAP), mean (MAP) and diastolic (DAP) arterial blood pressure were compared. Time to first breath and induction dose were recorded. Data were analysed for normality and Mann–Whitney U or Student t tests were performed where appropriate. Significance was set at p < 0.05. Data are presented as mean ± standard deviation or median (range).ResultsThe propofol dose administered to achieve induction was lower in the DP group (2.62 ± 0.48 mg kg–1) than in the UP group (3.48 ± 1.17 mg kg–1) (p = 0.021). No difference was observed in pre- and post-induction PR, SAP, MAP, DAP and fR between groups. The differences between post-induction and pre-induction values of these variables were also similar between groups. Time to first breath did not differ between groups. Sedation scores were similar between groups. Quality of tracheal intubation was marginally better with UP 0 (0–1) than with DP 1 (0–2) (p = 0.036), but overall quality of induction was similar between groups [UP 0 (0–1) and DP 0 (0–1), p = 0.549].Conclusion and clinical relevanceDiluting propofol reduced the dose to induce anaesthesia without significantly altering the cardiopulmonary variables.  相似文献   

15.
ObjectiveTo determine the effect of fentanyl on the minimum alveolar concentration of isoflurane (MACISO) and cardiovascular variables in dogs, and how the treatment of bradycardia affects them.Study designProspective, randomized crossover-controlled trial.AnimalsA total of six male Beagle dogs weighing 9.9 ± 0.7 kg (mean ± standard deviation) and aged 13 months.MethodsTo each dog, two treatments were assigned on different days: fentanyl (FENTA) or fentanyl plus glycopyrrolate (FENTAglyco) to maintain heart rate (HR) between 100 and 132 beats minute?1. Determinations of MACISO were performed with 10 plasma fentanyl target concentrations ([Fenta]Target (0, 0.16, 0.32, 0.64, 1.25, 2.5, 5.0, 10.0, 20.0 and 40.0 ng mL?1) for FENTA and 5 [Fenta]Target (0, 1.25, 2.5, 5.0, 10.0 ng mL?1)) for FENTAglyco. During each MACISO determination, cardiovascular variables [mean arterial pressure (MAP), HR and cardiac index (CI)] were measured, and systemic vascular resistance index (SVRI) calculated. Pharmacodynamic models were used to describe the plasma fentanyl concentration [Fenta]–response relationship for the effect on MACISO and cardiovascular variables. A mixed-model analysis of variance followed by Dunnett’s or Tukey’s test, and the Bonferroni adjustment were used for comparisons within and between each treatment, respectively. Significance was set as p < 0.05.ResultsFentanyl decreased MACISO by a maximum of 84%. The [Fenta] producing 50% decrease in MAC, HR and CI were 2.64, 3.65 and 4.30 ng mL?1 (typical values of population model), respectively. The prevention of fentanyl-mediated bradycardia caused no significant effect on MACISO, but increased HR, MAP and CI, and decreased SVRI when compared with isoflurane alone.Conclusions and clinical relevanceFentanyl caused a plasma concentration-dependent decrease in MACISO, HR and CI and an increase in SVRI. Cardiovascular improvements associated with fentanyl in isoflurane-anesthetized dogs only occurred when the fentanyl-mediated bradycardia was prevented.  相似文献   

16.
ObjectiveTo compare acid–base balance and incidence of hyperchloraemic metabolic acidosis following administration of three crystalloid solutions to dogs undergoing anaesthesia for orthopaedic surgery.Study designProspective, randomised, clinical study.AnimalsSixty dogs.MethodsDuring a non–standardised anaesthetic, 0.9% saline (S), Hartmann's solution (H) or a polyionic glucose–free maintenance solution (M) was administered IV at 10 mL kg?1 hour?1. Venous blood pH, PCO2, PCV, total protein, urea, sodium, potassium and chloride concentrations were measured at induction of anaesthesia (T0) and after 2 hours of fluid therapy (T2). Base excess (BE), bicarbonate, corrected chloride concentration (corrCl), osmolality, change in plasma volume (PV) and strong ion gap (SIG) were calculated. Changes in variables within groups (1–sample Student's t–test/Wilcoxon signed rank test) and between groups (1–way anova/Kruskal–Wallis) were assessed. Data are presented as median (interquartile range). Significance was set at p < 0.05.ResultsNo significant differences existed between groups for pH, PCO2, PCV, total protein, urea, potassium, corrCl, PV and SIG. Potassium significantly increased in all groups. Significant differences existed between groups S and M for BE, sodium, chloride, bicarbonate and osmolality, and between groups H and M for sodium and osmolality. Chloride concentration significantly changed from 116 (114–117) to 117 (116–119) mmol L?1 in group S, 116 (115–118) to 115 (113–117) mmol L?1 in group H and 116 (115–118) to 114 (113–118) mmol L?1 in group M. In groups H and M, sodium and osmolality decreased, and BE and bicarbonate concentration increased significantly. Plasma volume increased by 28 (14–44)%, 25 (5–40)% and 24 (13–33)% in groups S, H and M, respectively.Conclusion and clinical relevanceHyperchloraemic metabolic acidosis did not develop after intraoperative 0.9% saline, Hartmann's solution or maintenance solution at 10 mL kg?1 hour?1 for 2 hours in dogs undergoing elective orthopaedic surgery. Bicarbonate and BE increased after Hartmann's and maintenance solutions. Increases in potassium concentration were unexplained.  相似文献   

17.
ObjectiveTo evaluate the intraoperative efficacy of intrathecal anaesthesia with hyperbaric bupivacaine 0.5% and morphine 1% solution (HIA) in dogs undergoing hind limb orthopaedic surgery, using the cardiovascular response to surgical stimulation and to report the perioperative side effects.Study designRetrospective clinical study.AnimalsForty-three dogs that underwent general anaesthesia for hind limb orthopaedic surgery between 2010 and 2011.MethodsThe anaesthesia records of dogs that received HIA were reviewed. The bupivacaine and morphine doses were calculated based on body mass (BM) and spinal cord length (SCL). Cardiovascular response (CR) to surgical stimulation, the incidence of hypotension, bradycardia, urinary retention, pruritus and offset of motor block were all reported. The intraoperative time-to-event probability of CR was analyzed using Kaplan–Meier survival analysis.ResultsThe median (range) bupivacaine dose related to BM was 0.57 (0.40–0.78) mg kg?1, while that related to SCL was 0.13 (0.08–0.19) mg cm?1. A CR was observed in 3/39 (8%) dogs within the first hour after intrathecal injection (Ii) and in 9/39 (23%) dogs over the entire duration of surgery. At 70 minutes from Ii the event-free probability of CR fell below 80%. Hypotension was observed in 12/39 (31%), bradycardia in 6/39 (15%), pruritus in 3/39 (8%), and urinary retention in 3/39 (8%) dogs respectively. Five hours after Ii, 35/39 (89%) dogs were able to walk with only residual ataxia.Conclusions and clinical relevanceIntrathecal anaesthesia with hyperbaric bupivacaine 0.5% and morphine 1% solution provided effective intraoperative antinociception up to 70 minutes in dogs undergoing hind limb surgery. The technique of HIA can provide effective analgesia during short hind limb surgeries in dogs.  相似文献   

18.
ObjectiveTo determine the effective dosage of the combination tiletamine–zolazepam–ketamine–xylazine (TKX), with or without methadone, in dogs.Study designProspective, randomized, experimental study.AnimalsA total of 29 dogs.MethodsDogs were randomly administered TKX (group TKX, n = 13) or combined with 0.3 mg kg–1 of methadone (group TKXM, n = 16) intramuscularly. The TKX solution contained tiletamine (50 mg mL–1), zolazepam (50 mg mL–1), ketamine (80 mg mL–1) and xylazine (20 mg mL–1). The effective dosages for immobility in 50% and 95% of the population (ED50 and ED95) were estimated using the up-and-down method. Approximately 20 minutes after drug administration, a skin incision was performed and the response was judged as positive or negative if the dogs moved or did not move, respectively. The TKX volume for the subsequent dog in the same group was increased or decreased by 0.005 mL kg–1 if the response of the previous dog was positive or negative, respectively. Heart and respiratory rates, and sedation/anesthesia scores (range 0–21) were recorded before and 15 minutes after drug administration.ResultsEstimated ED50 and ED95 (95% confidence intervals) were: TKX, 0.025 (0.020–0.029) and 0.026 (0.010–0.042) mL kg–1; TKXM, 0.022 (0.018–0.025) and 0.033 (0.017–0.049) mL kg–1. Median (interquartile range) scores for sedation/anesthesia were 17 (16–18) and 17 (15–20), and times until lateral recumbency were 5 (4–6) and 6 (4–10) minutes in TKX and TKXM, respectively (p > 0.05). In both groups heart and respiratory rates decreased, but values remained acceptable for anesthetized dogs.Conclusions and clinical relevanceThe results provide a guide for volumes of TKX and TKXM in dogs requiring restraint for minimally invasive procedures. Inclusion of methadone in the TKX combination did not influence ED50.  相似文献   

19.
This study was designed to investigate the effect of racing on the serum concentrations of cardiac troponin I (cTnI) and creatine kinase myocardial (CK-MB) in healthy racing camels (Camelus dromedarius). Twenty-three racing camels scheduled for a 5 km race were investigated in this study. From each camel, 3 blood samples were collected: 24 h before racing (T0), within 2 h after the race (T1) and 24 h post-race (T2). Following the 5 km race, 91.3 % of the racing camels had increases in serum cTnI concentrations, while concentrations remained unchanged in 8.7 %. The cTnI concentration (median 0.06 ng/mL; range, 0.03–0.15 ng/mL) was significantly higher (P?<?0.001) than the pre-race values (median 0.04 ng/mL; range, 0.01–0.07 ng/mL). Twenty-four hours post-race, the cTnI concentrations had returned very nearly to their pre-race values (median 0.04 ng/mL; range, 0.00–0.09 ng/mL) and were not significantly different (P?=?0.35) from the pre-race values. Following the 5 km race, increases in CK-MB mass were seen in 17.4 % of the camels, with no changes in 4.3 % and decreases in 78.3 %. The CK-MB mass (median 0.41 ng/mL; range, 0.19–0.60 ng/mL) did not differ significantly (P?=?0.84) when compared to the pre-race values (median 0.42 ng/mL; range, 0.32–0.55 ng/mL). Twenty-four hours post-race, the CK-MB mass concentrations (median 0.41 ng/mL; range, 0.15–0.55 ng/mL) did not differ significantly (P?>?0.05) compared to pre-race or immediate post-race values. Resting cTnI concentrations in the racing camels were initially low, but increased above the baseline level in most of the camels immediately after racing, and returned to pre-race values within the 24-h post-race period. CK-MB is a less sensitive biomarker for myocardial activity as compared with cTnI. These findings could be of importance when evaluating racing camels with suspected cardiac disease after recent hard exercise.  相似文献   

20.
Objectives – To (1) determine a reference interval for cardiac troponin I (cTnI) using a point‐of‐care device in normal dogs and compare the results with those published by the manufacturer and (2) determine if cTnI differs among dogs with cardiogenic and noncardiogenic respiratory distress. Design – Prospective observational study. Setting – Emergency and referral veterinary hospital. Animals – Twenty‐six clinically normal dogs and 67 dogs in respiratory distress. Interventions – All dogs underwent whole blood sampling for cTnI concentrations. Measurements and Results – Normal dogs had a median cTnI concentration of 0.03 ng/mL (range 0–0.11 ng/mL). Thirty‐six dogs were diagnosed with noncardiogenic respiratory distress with a median cTnI concentration of 0.14 ng/mL (range 0.01–4.31 ng/mL). Thirty‐one dogs were diagnosed with cardiogenic respiratory distress with a median cTnI concentration of 1.74 ng/mL (range 0.05–17.1 ng/mL). A significant difference between cTnI concentrations in normal dogs and dogs with noncardiogenic respiratory distress was not detected. Significant differences in cTnI concentrations were found between normals versus cardiogenic and cardiogenic versus noncardiogenic respiratory distress groups. Significant differences in cTnI concentrations were identified in >10 when compared with the <5 and the 5–10 years of age groups. Receiver operating curve analysis identified cTnI concentrations >1.5 ng/mL as the optimal “cut‐off point” having a sensitivity of 78% and specificity of 51.5%. The area under the receiver operating curve was 0.72. Overall test accuracy was 65%. Conclusions – cTnI concentrations were significantly increased in dogs with cardiogenic respiratory distress versus dogs with noncardiogenic respiratory distress and normal dogs. A significant difference between normal dogs and dogs with noncardiogenic causes of respiratory distress was detected. Although highly sensitive when cTnI concentrations exceed 1.5 ng/mL, the test has low specificity. Assessment of cTnI by the methodology used cannot be recommended as the sole diagnostic modality for evaluating the cause of respiratory distress in dogs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号