首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The aim of this study was to determine leukotrienes (LTs) functions in the bovine corpus luteum (BCL) during the oestrous cycle. In steroidogenic CL cells we examined the effect of luteotropic [LH, prostaglandin E2 (PGE2)] and luteolytic (PGF, cytokines) factors on: the levels of LTB4 and C4, the expression of 5‐lipoxygenase (LO), LT receptors type I (LTR‐I) and LTR‐II, and the effects of LTB4 and C4 stimulations on the levels of progesterone (P4), PGE2, F and nitric oxide (NO) metabolites. Both luteolytic and luteotropic factors stimulated 5‐LO expression on days 2–4 and 17–19 of the cycle. Leukotriene receptors type I expression increased after PGE2 and tumour necrosis factor α with interferon γ (TNF/IFN) stimulation on days 2–4 of the cycle. Leukotriene receptor type II expression increased after PGE and TNF/IFN stimulation on days 2–4 and 17–19 of the cycle, and LTR‐II expression on days 8–10 of the cycle was unchanged after cell stimulation with any factor. Leukotriene B4 level increased after BSC incubation with luteotropic factors during all examined days of the cycle and after cytokine stimulation at early‐ and mid‐luteal stages, whereas luteolytic factors stimulated LTC4 secretion over the entire cycle. Leukotriene B4 stimulated P4 secretion at the mid‐luteal stage and stimulated NO secretion during all examined phases. Leukotriene B4 stimulated PGE2 secretion at the early‐ and mid‐luteal stage. Leukotriene C4 inhibited P4 secretion at the mid‐ and regressing‐luteal stage, stimulated NO (entire cycle) and PGF at mid‐ and regressing‐luteal phases. Leukotrienes modulate steroidogenic cells functions, depending on the stage of the cycle. Leukotriene B4 plays a luteotropic role stimulating P4 and PGE2 secretions; LTC4 stimulates the secretion of luteolytic factors and enhances the luteolytic cascade within BCL.  相似文献   

2.
Uterine inflammatory response is mediated by inflammatory mediators including eicosanoids and cytokines produced by immune and endometrial cells. Interactions between lipopolysaccharide (LPS) and cytokines, and leukotrienes (LTs) in endothelium, important for the host defence during the inflammation, are unknown. We studied the effect of LPS, tumour necrosis factor (TNF)‐α, interleukin (IL)‐1β, IL‐4 and IL‐10 on 5‐lipooxygenase (5‐LO), LTA4 hydrolase (LTAH) and LTC4 synthase (LTCS) mRNA and protein expression, LTB4 and LTC4 release from porcine endometrial endothelial cells, and cell viability. For 24 hr, cells were exposed to LPS (10 or 100 ng/ml of medium) and cytokines (each 1 or 10 ng/ml). 5‐LO mRNA/protein expression augmented after incubation with larger doses of LPS, TNF‐α, IL‐4 and IL‐10 and smaller dose of IL‐1β. Larger dose of TNF‐α, smaller doses of LPS and IL‐1β and both doses of IL‐10 increased LTAH mRNA/protein expression. LTAH protein content was up‐regulated by larger dose of LPS, but it was reduced in response to both doses of IL‐4. LTCS mRNA expression was elevated by larger doses of LPS, IL‐4 and IL‐10 or both doses of TNF‐α and IL‐1β. LTCS protein level increased after treatment with both doses of IL‐1β, IL‐4 and IL‐10, smaller dose of LPS and larger dose of TNF‐α. Both doses of LPS and larger doses of TNF‐α and IL‐10 increased LTB4 release. LPS, IL‐1β and IL‐10 at smaller doses, or TNF‐α and IL‐4 at larger doses stimulated LTC4 release. Smaller doses of TNF‐α and IL‐1β or both doses of IL‐4 enhanced the cell viability. This work provides new insight on the participation of LPS, TNF‐α, IL‐1β, IL‐4 and IL‐10 in LTB4 and LTC4 production/release from porcine endometrial endothelial cells, and the effect of above factors on these cells viability. The used cellular model gives the possibility to further establish the interactions between inflammatory mediators.  相似文献   

3.
4.
Prostaglandin F2α (PGF2α) is a main luteolytic factor in vivo; however, its direct luteolytic influence on steroidogenic cells of bovine corpus luteum (CL) is controversial and not fully understood. The aim of the study was to clarify PGF2α action on bovine CL in different in vivo and in vitro conditions and to examine whether the contact among all main types of CL cells is necessary for luteolytic PGF2α action. In experiment 1, the bovine CL (day 15 of the oestrous cycle) was perfused using in vivo microdialysis system with dinoprost (an analogue of PGF2α) for 0.5 h. Dinoprost caused a short‐time increase in progesterone (P4), whose concentration decreased thereafter (at 6‐, 10‐, 12‐ and 24‐h after treatment). In experiment 2, the direct effect of PGF2α on P4 accumulation in CL steroidogenic cells cultured in monolayer (day 15 of the cycle) was determined. PGF2α after 24 h of incubation increased P4 accumulation in steroidogenic CL cells. In experiment 3 steroidogenic, endothelial CL and immune cells (day 15 of the cycle) were incubated with PGF2α in cocultures for 24 h in glass tubes and the levels of P4, stable metabolites of nitric oxide (NO) and leukotriene (LT) C4 were determined. Although PGF2α treatment increased P4 secretion in homogeneous steroidogenic CL cell culture, the decrease in P4 secretion in cocultures of all types of CL cells was observed. The secretion of NO and LTC4 increased after the treatment of PGF2α both in pure cultures of CL cells and in cocultures. The interactions between endothelial and immune cells with steroidogenic CL cells are needed for luteolytic PGF2α action within the bovine CL. Our results indicate that the cell coculture model, including the main types of CL cells, is the most approximate to study PGF2α role in vitro.  相似文献   

5.
Calcium ionophore A23187 induced time and concentration dependent pro-duction of immunoreactive leukotriene (LT) B4 by equine heparinized whole blood in vitro. Time dependent production of immunoreactive LTB4 by equine neutrophils and immunoreactive LTC4 by equine eosinophils in vitro was also demonstrated. The 5-lipoxygenase activating protein (FLAP) inhibitors, BAY X 1005 and BAY Y 1015, produced concentration dependent inhibition of ionophore-induced LTB4 synthesis by equine whole blood (mean ± SEM IC50sn= 5; 6.14 ± 0.28 μm vs. 12.30 ± 0.75 μm for BAY Y 1015 and BAY X 1005, respectively) and neutrophils (mean ± SEM IC50sn= 5; 0.003 ± 0.001 μm vs. 0.045 ± 0.021 μm for BAY Y 1015 and BAY X 1005, respectively) and LTC4 synthesis by equine eosinophils (mean ± SEM IC50sn= 5; 0.0036 ± 0.0002 μm and 0.108 ± 0.023 μm for BAY Y 1015 and BAY X 1005, respectively) in vitro. In all three assays, BAY Y 1015 was more potent than BAY X 1005, and for both compounds much higher concentrations were required to inhibit LT synthesis by whole blood compared to isolated neutrophils and eosinophils. Plasma concentration–time relationships and pharmacokinetic parameters for BAY Y 1015 administered intravenously and orally to six horses at a dosage of 10 mg/kg in a two period cross-over study were established. The study also evaluated the anti-inflammatory properties of BAY Y 1015 and its ability to inhibit ex vivo whole blood LTB4 synthesis and in vivo LTB4 synthesis in a tissue cage model of acute inflammation. At this dosage, BAY Y 1015 failed to significantly inhibit immunoreactive LTB4 synthesis or the oedema produced by intradermal injection of the mild irritant, carrageenan.  相似文献   

6.
Prostaglandin F (PGF) induces luteolysis in the mid but not in the early luteal phase; despite this, both the early and the mid corpus luteum (CL) have PGF receptor (FPr). We previously indicated that the luteal blood flow surrounding the CL drastically increases prior to a decrease of progesterone (P) in the cows, suggesting that an acute increase of luteal blood flow may be an early sign of luteolysis in response to PGF and that this may be induced by a vasorelaxant nitric oxide (NO). The aim of this study was to investigate the luteal stage‐dependent and the site‐restricted effect of PGF and NO on the mRNA expressions and P secretion. To mimic the local luteal region both of peripheral and central areas of the CL, we utilized co‐cultures using bovine aorta endothelial cells (EC), smooth muscle cells (SMC) and luteinizing granulosa cells (GC) or fully‐luteinized GC. PGF stimulated the expression of endothelial NO synthase (eNOS) mRNA at 0.5 h in mix‐cultures of EC and SMC with fully‐luteinized GC but not with luteinizing GC. The expression of eNOS mRNA in EC was increased by PGF at 1 h only when EC was cultured together with fully‐luteinized GC but not with luteinizing GC. In all co‐cultures, PGF did not affect the mRNA expression of FPr. Treatment of NO donor inhibited P secretion at 0.5 h. In conclusion, the present study suggests that the coexistence of the mature luteal cells (fully‐luteinized GC) with EC/SMC may be crucial for acquiring functional NO synthesis induced by PGF.  相似文献   

7.
Adiponectin is an adipocyte‐derived hormone regulating energy metabolism, insulin sensitivity and recently found to regulate reproduction. The current study was carried out to investigate gene and protein expression, immunolocalization of adiponectin and its receptors AdipoR1 and AdipoR2 in ovarian follicles of different developmental stages in water buffalo (Bubalus bubalis) and to investigate the effect of adiponectin on steroid production in cultured bubaline granulosa cells. qPCR, western blotting and immunohistochemistry were applied to demonstrate mRNA expression, protein expression and immunolocalization, respectively. The results indicate that adiponectin, AdipoR1 and AdipoR2 were present in granulosa cells (GC) and theca interna (TI) of ovarian follicles and the expression of adiponectin, AdipoR1, AdipoR2 in GC and AdipoR1 and AdipoR2 in TI increased with increase in follicle size (p < .05). Expression of adiponectin was high in small and medium size follicles in TI. The adiponectin and its receptors were immunolocalized in the cytoplasm of GC and TI cells. Further, in the in‐vitro study, GCs were cultured and treated with recombinant adiponectin each at 0, 1 and 10 µg/ml alone or with follicle stimulating hormone (FSH) at 30 ng/ml) or Insulin‐like growth factor I (IGF‐I) at 10 ng/ml for 48 hr after obtaining 75%–80%s confluency. Adiponectin at 10 µg/ml increased IGF‐I‐induced estradiol (E2) and progesterone (P4) secretion and FSH‐induced E2 secretion from GC and also increased the abundance of factors involved in E2 and P4 production (cytochrome P45019A1 [CYP19A1] and 3‐beta‐hydroxysteroid dehydrogenase [3β‐HSD]). In conclusion, this study provides novel evidence for the presence of adiponectin and its receptors in ovarian follicles and modulatory role of adiponectin on steroid production in buffalo.  相似文献   

8.
The aim of the present study was to determine the mechanism of cytosolic calcium ion concentration [Ca2+]i elevation in chicken and rat phagocytes stimulated with phorbol myristate acetate (PMA), leukotriene B4 (LTB4), formyl‐methionyl‐leucyl‐phenylananine (fMLP) and Saccaromyces cerevisiae culture supernatant (SCS). Pretreatment with EGTA completely suppressed the PMA‐induced [Ca2+]i elevation in rat and chicken phagocytes, suggesting that all the [Ca2+]i elevation induced in the PMA‐stimulated rat and chicken phagocytes was attributable to the influx of extracellular Ca2+. On the other hand, the elevation of LTB4‐, FMLP‐ and SCS‐induced [Ca2+]i was only partially suppressed by ethyleneglycol‐bis (β‐aminoethyl)‐N,N,N′,N′‐tetraacetic acid ethylene (EGTA) pretreatment of phagocytes. The results indicated that two pathways of [Ca2+]i elevation, recruitment from the intracellular Ca2+ store and influx of extracellular Ca2+, are involved in the [Ca2+]i elevation of LTB4‐, fMLP‐ and SCS‐stimulated phagocytes. In fMLP‐stimulated rat neutrophils, [Ca2+]i elevation showed a two‐phase pattern in which the time lag between the first and second phase was approximately 1 min. The EGTA treatment of the fMLP‐stimulated cells induced a reduction of the first phase level and a disappearance of the second phase. The reason for the special influence of EGTA observed in fMLP‐stimulated cells is unknown, but the disappearance of the second phase of the [Ca2+]i may be elicited by the EGTA‐induced decrease of the first phase [Ca2+]i elevation that depends on IP3 and diacylglycerol induced by fMLP.  相似文献   

9.
The aims of the present study were to clarify the effect of kisspeptin10 (Kp10) on the secretion of growth hormone (GH) from bovine anterior pituitary (AP) cells, and evaluate the ability of sex steroid hormones to enhance the sensitivity of somatotrophic cells to Kp10. AP cells prepared from 8–11‐month‐old castrated calves were incubated for 12 h with estradiol (E2, 10?8 mol/L),progesterone (P4, 10?8 mol/L), testosterone (T, 10?8 mol/L), or vehicle only (control), and then for 2 h with Kp10. The amount of GH released in the medium was measured by a time‐resolved fluoroimmunoassay. Kp10 (10?6 or 10?5 mol/L) significantly stimulated the secretion of GH from the AP cells regardless of steroid treatments (P < 0.05), and E2, P4, and T had no effect on this response. The GH‐releasing response to growth hormone‐releasing hormone (GHRH, 10?8 mol/L) was significantly greater than that to Kp10 (P < 0.05). The present results suggest that Kp10 directly stimulates the release of GH from somatotrophic cells and sex steroid hormones do not enhance the sensitivity of these cells to Kp10. Furthermore, they suggest that the GH‐releasing effect of Kp10 is less potent than that of GHRH.  相似文献   

10.
Although prostaglandin (PG) F is considered as the principal luteolytic factor, its action on the bovine corpus luteum (CL) is mediated by other intraovarian factors. Among them, nitric oxide (NO) seems to play a mandatory role in luteolysis. In this article we review the background and current status of work on possible roles of NO in the CL function, based on available information and our own experimental data. NO is produced in all three main types of bovine CL cells: steroidogenic, endothelial and immune cells. PGF and some luteolytic cytokines (tumor necrosis factor, interferon) increase NO production and stimulate NO synthase expression in the bovine CL. NO inhibits progesterone production, stimulates the secretion of PGF and leukotriene C4, reduces the number of viable luteal cells and, finally, participates in functional luteolysis. NO induces the apoptotic death of CL cells by the modulation of bcl‐2 family gene expression and the stimulation of caspase‐3 gene expression and activity. However, this simple molecule shows both luteolytic and luteotropic actions during the estrous cycle in ruminants. The aim of this overview is to present and discuss the recent findings crucial for understanding NO role in the process of CL regression in cattle.  相似文献   

11.
Using a novel in vivo model considering a low developmental competence embryo (demi‐embryo) and a subnormal fertility recipient (lactating high‐yielding dairy cow), this experiment evaluated the effect of human chorionic gonadotrophin (hCG) treatment at embryo transfer (ET) on embryonic size at implantation, embryonic survival and recipient plasma progesterone (P4) and bovine pregnancy‐specific protein B (PSPB) concentrations until day 63 of pregnancy. Embryos were bisected and each pair of demi‐embryos was bilaterally transferred to recipients (n = 61) on day 7 of the oestrous cycle. At ET recipients were randomly assigned to treatment with 1500 IU hCG or to untreated controls. Higher (p < 0.01) pregnancy rates on days 25, 42 and 63, and embryo survival rate on day 63 were observed in hCG‐treated cows with secondary CL than in hCG‐treated cows without secondary CL and in untreated cows. Pregnancy rates and embryo survival rate were similar in hCG‐treated cows without secondary CL and untreated cows. Embryonic size on day 42 was not affected by treatment with hCG, presence of secondary CL and type of pregnancy (single vs twin). Presence of secondary CL increased (p < 0.05) plasma P4 concentrations of pregnant cows on days 14, 19 and 25 but not thereafter and of non‐pregnant cows on days 14–21. Treatment with hCG and presence of secondary CL had no effect on plasma PSPB concentrations, which were higher (p < 0.05) in twin than in single pregnancies. In conclusion, secondary CL induced by hCG treatment at ET significantly increased plasma P4 concentrations, the survival rate of demi‐embryos and the pregnancy rate of high‐yielding lactating dairy cows. Embryos were rescued beyond maternal recognition of pregnancy, but later embryonic survival, growth until implantation and placental PSPB secretion until day 63 of pregnancy were not affected by treatment or presence of secondary CL.  相似文献   

12.
When animals do not become pregnant, regression of the corpus luteum (CL) is essential for normal cyclicity because it allows the development of a new ovulatory follicle. Luteal regression is caused by a pulsatile release of prostaglandin (PG) F from the uterus in the late luteal phase in most mammals including cattle. Although it has been proposed in ruminants that pulsatile PGF secretion is generated by a positive feedback loop between luteal and/or hypophyseal oxytocin and uterine PGF, the bovine endometrium may possess other mechanisms for initiation of luteolytic PGF secretion. There is increasing evidence that several cytokines mainly produced by immune cells modulate CL and uterine function in many species. Tumor necrosis factor‐α (TNF‐α) stimulates PGF output from bovine endometrium not only at the follicular phase but also at the late luteal phase. Administration of TNF‐α at a high concentration prolongs luteal lifespan, whereas administration of a low concentration of TNF‐α accelerates luteal regression in cows. The data obtained from the authors’ previous in vitro and in vivo studies strongly suggest that TNF‐α is a crucial factor in regulating luteolysis in cows. The authors’ recent study has shown that interleukin‐1α mediates PG secretion from bovine endometrium as a local regulator. Furthermore, interferon‐τ (IFN‐τ) suppresses the action of TNF‐α on PGF synthesis by the bovine endometrium in vitro, suggesting that IFN‐τ plays a luteoprotective role by inhibiting TNF‐α‐induced PGF production in early pregnancy. The purpose of the present review is to summarize current understanding of the endocrine mechanisms that regulate uterine function by cytokines during the estrous cycle and early pregnancy in cows.  相似文献   

13.
A feeding trial of 70‐days was carried out to study the haemato‐immunological and stress responses of Labeo rohita fingerlings reared at two water temperatures [ambient (Amb) – 27 °C and 32 °C] fed with graded levels of gelatinized corn carbohydrate (GC). Two hundred and sixteen fingerlings were randomly distributed into six treatment groups in triplicate. Three semi‐purified diets were prepared containing 30% crude protein with graded levels of GC 40%, 50% and 58%. The six treatment groups were T1 (40% GC × Amb), T2 (40% GC × 32 °C), T3 (50% GC × Amb), T4 (50% GC × 32 °C), T5 (58% GC × Amb) and T6 (58% GC × 32 °C). The blood glucose level was significantly (p < 0.05) lowered in groups fed with 58% GC level. Neither dietary GC levels nor temperature had a significant (p > 0.05) effect on serum cortisol and superoxide dismutase activity. Lysozyme activity was significantly higher (p < 0.05) in T1 during pre‐ and post‐challenge period while temperature alone had a significant (p < 0.05) effect on post‐challenge Nitroblue Tetrazolium and found higher at 32 °C. A significant effect of GC levels and rearing temperature was recorded on WBC in the pre‐ and post‐challenge period. Highest pre‐challenge WBC was observed in T4 group and in the post‐challenge period T1 group recorded maximum. Water temperature had significant effect on pre‐challenge haemoglobin content, highest being at 32 °C (T2). A significant (p < 0.05) effect of rearing temperature and dietary GC level on total serum protein and albumin was also observed. Highest total serum protein and albumin was recorded in T1 and globulin in T2. Percentage survival after challenging with Aeromonas hydrophila was highest in T1 followed by T3 group and lowest in T6. The results obtained in the present study suggest that L. rohita fingerlings may utilize higher levels of dietary GC at higher temperature (32 °C) but may affect its immunity status.  相似文献   

14.
The objective of this study was to document the expression and localization of angiopoietin (ANGPT) family members comprising of angiopoietin (ANGPT1 and ANGPT2), and their receptors (Tie1 and Tie2) in buffalo corpus luteum (CL) obtained from different stages of the oestrous cycle, and the modulatory role of ANGPT1 and ANGPT2 alone or in combinations on progesterone (P4) secretion and mRNA expression of phosphotidylinositide‐3kinase‐protein kinase B (PI3K‐AKT), phosphoinositide‐dependent kinase (PDK), protein kinase B (AKT), Bcl2 associated death promoter (BAD), caspase 3 and von willebrand factor (vWF) in luteal cells obtained from midluteal phase (MLP) of oestrous cycle in buffalo. Real‐time RT‐PCR (qPCR), Western blot and immunohistochemistry were applied to investigate mRNA expression, protein expression and localization of examined factors whereas, the P4 secretion was assessed by RIA. The mRNA and protein expression of ANGPT1 and Tie2 was maximum (p < .05) in mid luteal phase (MLP) of oestrous cycle. The ANGPT2 mRNA and protein expression was maximum (p < .05) in early luteal phase, decreased in MLP and again increased in late luteal phase of oestrous cycle. ANGPT family members were localized in luteal cells and endothelial cells with a stage specific immunoreactivity. P4 secretion was highest (p < .05) with 100 ng/ml at 72 hr when luteal cells were treated with either protein alone. The mRNA expression of PDK, AKT and vWF was highest (p < .05) and BAD along with caspase 3 were lowest (p < .05) at 100 ng/ml at 72 hr of incubation period, when cultured luteal cells were treated with either protein alone or in combination. To conclude, our study explores the steroidogenic potential of angiopoietins to promote P4 secretion, luteal cell survival and angiogenesis through an autocrine and paracrine actions in buffalo CL.  相似文献   

15.
Bovine endometrium undergoes various physiological and histological changes that are necessary for blastocyst implantation during oestrous cycle. From pro‐oestrus to late‐oestrus, endometrium thickens gradually for implantation preparation and exhibits remarkable capacity for self‐repair after uterine lining shedding while implantation does not occur. The prostaglandin E2 (PGE 2) secretion pattern is synchronized with endometrial growth during oestrous cycles in bovine endometrium; however, limited information is available regarding the association between PGE 2 secretion and endometrial growth. In this study, the concentration (10?9 to 10?5 M) and time effect (2–36 hr) of PGE 2 treatment on a series of growth factors are essential for endometrial growth including connective tissue growth factor (CTGF ), fibroblast growth factor‐2 (FGF ‐2), interleukin‐8 (IL ‐8), transforming growth factor‐β1 (TGF ‐β1), matrix metalloproteinase‐2 (MMP ‐2), and vascular endothelial growth factor A (VEGFA ) mRNA and protein expression, and proliferation of epithelial and fibroblast cells was investigated in bovine endometrial explants in vitro. The results indicated that PGE 2 at concentration about 10?7 to 10?5 M could up‐regulate CTGF , FGF ‐2, IL ‐8, MMP ‐2, TGF ‐β1, VEGFA mRNA and protein expression, and could induce the proliferation of epithelial and fibroblast cells and reduce the proapoptotic factor (caspase‐3) expression in bovine endometrial explants in vitro. These results collectively improved the possibility of PGE 2 functions in endometrial growth during oestrous cycles.  相似文献   

16.
Sex steroids in synergy with prostaglandins (PG) are involved in the regulation of cyclic ovarian function. In this study, we investigated the mRNA expression of three genes involved in arachidonic acid (AA) metabolism and hence PG production in domestic cats: PG‐endoperoxide synthase (PTGS2), PGF synthase (PGFS) and PGE2 synthase (PGES). Feline endometria (n = 16) were collected at oestrus and mid and late phases of pseudopregnancy. In addition, the effects of E2 and/or P4 on PG secretion and gene expression on endometrial explants were studied in an in vitro culture system. Expression levels of all examined genes were up‐regulated at the mid phase of pseudopregnancy. The effects of E2 and/or P4 treatment on both PG secretion and expression of the genes were observed after 12 h of culture. Expression of PGES was significantly up‐regulated by E2 plus P4 at oestrus and the mid phase of pseudopregnancy and was also up‐regulated by a single treatment with P4 at late pseudopregnancy (p < 0.05). Simultaneous incubation with E2 and P4 up‐regulated PTGS2 gene expression at oestrus and mid‐luteal phase (p < 0.05). Progesterone plus E2 significantly increased PGE2 secretion at oestrus and the mid phase of pseudopregnancy. However, treatment with E2 and/or P4 affected neither PGF secretion nor PGFS expression at any phase after 12 h of culture. The overall findings indicate that genes involved in PG synthesis are up‐regulated at the mid phase of pseudopregnancy. An increase in PGE2 secretion and up‐regulation of PGES and PTGS2 are the main responses of the endometrium to treatment with E2 and P4 at oestrus and the mid phase of pseudopregnancy in the cat. These data support the hypothesis that ovarian sex steroids via endometrial PGE2 are involved in endocrine homoeostasis, especially at oestrus and the mid, but not the late, phase of pseudopregnancy in cats.  相似文献   

17.
Donalisio, C., Barbero, R., Cuniberti, B., Vercelli, C., Casalone, M., Re, G. Effects of flunixin meglumine and ketoprofen on mediator production in ex vivo and in vitro models of inflammation in healthy dairy cows. J. vet. Pharmacol. Therap.  36 , 130–139. In this study, ex vivo assays were carried out in dairy cows to evaluate the anti‐inflammatory effects of two nonsteroidal anti‐inflammatory drugs: ketoprofen (KETO) and flunixin meglumine (FM). Twelve healthy Holstein dairy cattle were randomly allocated to two groups (n=6): group 1 received FM and group 2 received KETO at recommended therapeutic dosages. The anti‐inflammatory effects of both drugs were determined by measuring the production of coagulation‐induced thromboxane B2 (TXB2), lipopolysaccharides (LPS) (10 μg/mL)‐induced prostaglandin E2 (PGE2), and calcium ionophore (60 μm )‐induced leukotrien B4 (LTB4). Cytokine production was assessed by measuring tumor necrosis factor‐α (TNF‐α), interferon‐γ (IFN‐γ) and interleukin‐8 (CXCL8) concentrations after incubation in the presence of 10 μg/mL LPS. The IC50 of FM and KETO was determined in vitro by determining the concentration of TXB2 and PGE2 in the presence of scalar drug concentrations (10?9–10?3 m ). Both FM and KETO inhibited the two COX isoforms in vitro, but showed a preference for COX‐1. FM and KETO showed similar anti‐inflammatory effects in the cow.  相似文献   

18.
Assisted reproduction procedures, such as embryo transfer (ET) and artificial insemination (AI), in cattle could induce the secretion of prostaglandin F2‐alpha (PGF2α) from uterine horns which may in turn interrupt embryo development and implantation. This study investigated the effect of flunixin meglumine (FM), prostaglandin F2 alpha (PGF2α) and FM combined with PGF2α supplementation in culture medium (IVC‐II) on the development and quality of in vitro produced bovine embryos. The development rate of embryos was significantly higher in the FM group (33.3%) than in control (24.3%), PGF2α (23.9%) and FM + PGF2α groups (24.5%). The percentage of hatched blastocysts was also higher (p < 0.05) in the FM group (41.2%) than in the control (27.8%) and PGF2α groups (19.8%). While, there was no significant difference in total cell number in all experimental groups, the number of apoptotic cells was significantly higher in the PGF2α group (8.2 ± 6.6) than in the control (4.7 ± 3.2), FM (4.7 ± 2.5) and FM + PGF2α (4.9 ± 3.4) groups. Detected by real‐time PCR, secreted vesicle seminal protein 1 (SSLP1) and prostaglandin G/H synthase 2 (PTGS2) gene expression decreased (p < 0.05) in the PGF2α group. However, SSLP1 and PTGS2 gene expression in the FM + PGF2α group returned to their baseline levels, similar to the control and FM groups. Caspase 3 (CAPS3) gene expression increased in the PGF2α group compared with other groups (p < 0.05). In conclusion, addition of FM in vitro culture significantly improved embryo development as well as alleviated the negative impact of PGF2α.  相似文献   

19.
Interferon‐τ (IFN‐τ) has been recognized as the primary embryonic signal responsible for maternal recognition of pregnancy. Uterine endometrium produces both prostaglandin F2α (PGF2α) and prostaglandin E2 (PGE2). PGF2α is responsible for the luteolysis; however, PGE2 favours establishment of pregnancy by its luteoprotective action. In this study, the dose‐response effect of recombinant bovine IFN‐τ (rbIFN‐τ) on prostaglandin (PG) production by buffalo endometrial stromal cells cultured in vitro was studied. Buffalo endometrial stromal cells were isolated by double enzymatic digestion, initially with trypsin III followed by a cocktail of trypsin III, collagenase type II and DNase I and subsequently cultured till confluence. Further, cells were treated with different doses of rbIFN‐τ (0.001, 0.01, 0.1, 1.0 and 10 μg/ml) and keeping a separate set of control. Culture supernatant was collected after 6, 12 and 24 h of treatment. PG levels in the culture supernatant were measured by enzyme immune assay (EIA) and total cellular protein estimated by Bradford method. Results indicated that buffalo endometrial stromal cells following rbIFN‐τ treatment enhanced the secretion of both PGE2 and PGF2α, and also its ratio in a strict dose‐dependent manner with a significant increase (p < 0.01) in PGE2 production at 1 μg/ml dose of rbIFN‐τ and maximal stimulation for both PG was observed at 10 μg/ml. Further, both PG production and its ratio were increased significantly (p < 0.01) in a time‐dependent fashion in all the groups at 6, 12 and 24 h post‐treatment with highest level achieved at 24 h as compared with control. Absolute levels of PGE2 remained higher than PGF2α indicating PGE2 as the major PG produced by endometrial stromal cells. The dose‐dependent response of rbIFN‐τ signifies the importance of optimum concentration of IFN‐τ for the embryonic development especially during the critical period to establish successful pregnancy.  相似文献   

20.
Bovine colostrogenesis is distinguished by the specific transfer of IgG1 from the blood to mammary secretions. The process has been shown to be initiated by hormones and occurs during the last weeks of pregnancy when steroid concentrations of estradiol (E2) and progesterone (P4) are highly elevated. Rodent intestinal uptake of immunoglobulin G is mediated by a receptor termed Fc fragment of IgG, Receptor, Transporter, alpha (FcGRT) and supported by light chain Beta‐2‐Microglobulin (β2M). We hypothesized that steroid hormone treatments (E2 and P4) of bovine mammary epithelial cells in vitro would induce up‐regulation of IgG1 transcytosis candidate gene mRNA expression suggesting involvement in IgG1 transcytosis. Two different primary bovine mammary epithelial cell cultures were cultured on plastic and rat tail collagen and treated with hormonal combinations (steroids/lactogenic hormones). Evaluated mRNA components were bLactoferrin (bLf: a control), bFcGRT, β2M, and various small GTPases; the latter components are reported to direct endosomal movements in eukaryotic cells. All tested transcytosis components showed strong expression of mRNA in the cells. Expression of bFcGRT, bRab25 and bRhoB were significantly up‐regulated (p < 0.05) by steroid hormones. bRab25 and bRhoB showed increased expression by steroid treatments, but also with lactogenic hormones. Analysis for the oestrogen receptor (ER) mRNA was mostly negative, but 25% of the cultures tested exhibited weak expression, while the progesterone receptor (PR) mRNA was always detected. bRab25 and bRhoB and likely bFcGRT are potential candidate genes for IgG1 transcytosis in bovine mammary cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号