首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
OBJECTIVE: To compare anesthesia-related events associated with IV administration of 2 novel micellar microemulsion preparations (1% and 5%) and a commercially available formulation (1%) of propofol in horses. Animals-9 healthy horses. PROCEDURES: On 3 occasions, each horse was anesthetized with 1 of the 3 propofol formulations (1% or 5% microemulsion or 1% commercial preparation). All horses received xylazine (1 mg/kg, IV), and anesthesia was induced with propofol (2 mg/kg, IV). Induction and recovery events were quantitatively and qualitatively assessed. Venous blood samples were obtained before and at intervals following anesthesia for quantification of clinicopathologic variables. RESULTS: Compared with the commercial formulation, the quality of anesthesia induction in horses was slightly better with the micellar microemulsion formulas. In contrast, recovery characteristics were qualitatively and quantitatively indistinguishable among treatment groups (eg, time to stand after anesthesia was 34.3 +/- 7.3 minutes, 34.1 +/- 8.8 minutes, and 39.0 +/- 7.6 minutes in horses treated with the commercial formulation, 1% microemulsion, and 5% microemulsion, respectively). During recovery from anesthesia, all horses stood on the first attempt and walked within 5 minutes of standing. No clinically relevant changes in hematologic and serum biochemical analytes were detected during a 3-day period following anesthesia. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that the micellar microemulsion preparation of propofol (1% or 5%) has similar anesthetic effects in horses, compared with the commercially available lipid propofol formulation. Additionally, the micellar microemulsion preparation is anticipated to have comparatively low production costs and can be manufactured in various concentrations.  相似文献   

2.
Propofol is a potentially useful intravenous anesthetic agent for total intravenous anesthesia (TIVA) in horses. The purpose of this study was to compare the anesthetic and cardiorespiratory effects of TIVA following the administration of propofol alone(P–TIVA) and ketamine–medetomidine–propofol (KM–P–TIVA) in adult horses. The carotid artery was translocated to a subcutaneous position during TIVA with P–TIVA (n = 6) or KM–P–TIVA (n = 6). All horses were premedicated with medetomidine [0.005 mg kg–1, intravenously (IV)]. Anesthesia was induced with midazolam (0.04 mg kg–1 IV) and ketamine (2.5 mg kg IV). All horses were orotracheally intubated and breathed 100% oxygen. The KM drug combination (ketamine 40 mg mL–1 and medetomidine 0.05 mg mL–1) was infused at a rate of 0.025 mL kg–1 hour–1. Subsequently, a loading dose of propofol (0.5 mg kg–1, bolus IV) was administered to all horses; surgical anesthesia (determined by horse response to incision and surgical manipulation, positive response being purposeful or spontaneous movement of limbs or head) was maintained by varying the propofol infusion rate as needed. Arterial blood pressure and HR were also monitored. Both methods of producing TIVA provided excellent general anesthesia for the surgical procedure. Anesthesia time was 115 ± 17 (mean ± SD) and 112 ± 11 minutes in horses anesthetized with KM–P–TIVA and P–TIVA, respectively. The infusion rate of propofol required to maintain surgical anesthesia with KM–P–TIVA was significantly less than for P–TIVA (mean infusion rate of propofol during anesthesia; KM–P–TIVA 0.15 0.02 P–TIVA 0.23 ± 0.03 mg kg–1 minute–1, p = 0.004). Apnea occurred in all horses lasting 1–2 minutes and intermittent positive pressure ventilation was started. Cardiovascular function was maintained during both methods of producing TIVA. There were no differences in the time to standing after the cessation of anesthesia (KM–P–TIVA 62 ± 10 minutes versus P–TIVA 87 ± 36 minutes, p = 0.150). The quality of recovery was good in KM–P–TIVA and satisfactory in P–TIVA. KM–P–TIVA and P–TIVA produced clinically useful general anesthesia with minimum cardiovascular depression. Positive pressure ventilation was required to treat respiratory depression. Respiratory depression and apnea must be considered prior to the use of propofol in the horse.  相似文献   

3.
ObjectiveTo investigate an infusion of propofol for anesthesia in comparison to tiletamine-zolazepam anesthesia, evaluating physiological variables and recovery in squirrel monkeys.Study designProspective non-blinded randomized study.AnimalsEight healthy squirrel monkeys (Saimiri sciureus), aged 3 years and weighing 0.340–0.695 kg.MethodsPremedication was intramuscular midazolam (0.5 mg) and meperidine (4 mg). Anesthesia was induced with intravenous (IV) propofol (4 mg kg?1 minute?1) and maintained with propofol starting at 0.4 mg kg?1 minute?1 (PRO, n = 4) or IV tiletamine-zolazepam (5 mg kg?1) and maintained with supplementary doses of TZ (TZ, n = 4). Cardiopulmonary variables were measured continuously. Arterial blood gases and lactate concentration were measured at the end of anesthesia. Quality and times of recovery were determined. Repeatedly measured data for significant differences were tested between groups with t-test and within groups by anova.ResultsMedian time for induction of anesthesia in PRO was 180 seconds. Mean maintenance infusion rate of propofol was 0.43 ± 0.05 mg kg?1 minute?1, varying during the 1 hour period. One monkey died after administration of TZ; others required 1, 4, or 8 supplemental doses. Cardiopulmonary variables were similar between groups, but hypotension was recorded. Recovery times to ventral recumbency in PRO (32 ± 17 minutes) and TZ (84 ± 11 minutes) and normal ambulation in PRO (58 ± 22 minutes) and TZ (358 ± 109minutes) were significantly different (p < 0.05). Recovery quality was superior in PRO, with less ataxia and fewer unsuccessful attempts to stand. Lactate concentration was not different between treatments.Conclusions and clinical relevanceCardiopulmonary variables were similar between protocols, aside from the higher incidence of hypotension in PRO, indicating that further studies with a larger number of animals are required. Compared to tiletamine-zolazepam, propofol anesthesia provided faster and superior anesthetic recovery in these animals.  相似文献   

4.
ObjectivesTo evaluate the cardiorespiratory and biochemical effects of ketamine-propofol (KP) or guaifenesin-ketamine-xylazine (GKX) anesthesia in donkeys.Study designProspective crossover trial.AnimalsEight healthy, standard donkeys, aged 10 ± 5 years and weighing 153 ± 23 kg.MethodsDonkeys were premedicated with 1.0 mg kg?1 of xylazine (IV) in both treatments. Eight donkeys were administered ketamine (1.5 mg kg?1) and propofol (0.5 mg kg?1) for induction, and anesthesia was maintained by constant rate infusion (CRI) of ketamine (0.05 mg kg?1 minute?1) and propofol (0.15 mg kg?1 minute?1) in the KP treatment. After 10 days, diazepam (0.05 mg kg?1) and ketamine (2.2 mg kg?1) were administered for induction, and anesthesia was maintained by a CRI (2.0 mL kg?1 hour?1) of ketamine (2.0 mg mL?1), xylazine (0.5 mg mL?1) and guaifenesin (50 mg mL?1) solution. Quality of anesthesia was assessed along with cardiorespiratory and biochemical measurements.ResultsAnesthetic induction took longer in GKX than in KP. The induction was considered good in 7/8 with KP and in 6/8 in GKX. Anesthetic recovery was classified as good in 7/8 animals in both treatments. Xylazine administration decreased heart rate (HR) in both treatments, but in KP the HR increased and was higher than GKX throughout the anesthetic period. Respiratory rate was higher in GKX than in KP. PaO2 decreased significantly in both groups during the anesthetic period. Glucose concentrations [GLU] increased and rectal temperature and PCV decreased in both treatments. Arterial lactate [LAC] increased at recovery compared with all time points in KP. [GLU] and calcium were higher in GKX than in KP at recovery.Conclusion and clinical relevanceThese protocols induced significant hypoxemia but no other cardiorespiratory or metabolic changes. These protocols could be used to maintain anesthesia in donkeys, however, they were not tested in animals undergoing surgery.  相似文献   

5.
This study evaluated pharmacokinetic and pharmacologic properties of a novel, non‐lipid microemulsion, 1% w/v formulation of propofol to a conventional macroemulsion formulation of propofol (Rapinovet®) in cats. The study utilized a two‐period crossover design with two treatments and 10 female, intact, purpose bred domestic shorthair cats. Cats were fitted with telemetry transmitters for direct measurement of arterial blood pressure, pulse rate, electrocardiogram (ECG, lead II), and body temperature. At least 7 days separated treatments. Orotracheal intubation was the clinical endpoint utilized to evaluate adequate depth of anesthesia. Blood samples were drawn from jugular vascular access ports before propofol treatment; 3, 5, 15, 25, 35, 45, and 60 min and then 2, 3, 6, 8, 12, 18, and 24 h after administration of propofol into a cephalic vein. Whole blood samples were assayed for propofol concentrations using a gas chromatography/mass spectrometry method validated for feline blood at a limit of quantification of 5 ng/mL. Pulse rate, ECG, heart rhythm, respiratory rate, systolic, diastolic and mean arterial blood pressures, SpO2, and body temperature were monitored continuously during each anesthetic episode. Time to lateral recumbency, orotracheal intubation, and extubation, time to sternal recumbency during recovery, times to adverse events, and doses of propofol required for induction to anesthesia were documented. Cats required 6.96 ± 0.90 mg propofol/kg from the novel microemulsion formulation of propofol and 7.07 ± 1.55 mg propofol/kg from Rapinovet® to achieve anesthesia adequate to allow orotracheal intubation (P > 0.05). Areas under the dose‐normalized propofol concentration by time curves (AUC0‐LOQ) and maximum propofol concentrations (Cmax) were equal for the novel microemulsion formulation of propofol and Rapinovet® (P > 0.05). Effects of anesthesia induction doses on cardiorespiratory values were comparable between treatments, and consistent with known effects of propofol anesthesia. Results provide evidence that the novel microemulsion formulation of propofol and Rapinovet® macroemulsion produced comparable pharmacodynamic, physiological, and pharmacokinetic responses in cats. The unique composition of the microemulsion formulation, and the presence of an antimicrobial preservative minimize the potential for bacterial contamination and prolong shelf life.  相似文献   

6.
Anesthesia in Caspian ponies   总被引:1,自引:0,他引:1  
ObjectiveTo evaluate some of the clinical and laboratory parameters following diazepam–acepromazine, thiopental, and halothane anesthesia in Caspian ponies.Study designProspective experimental trial.AnimalsSix healthy Caspian ponies of both sexes, aged 11 ± 3 years and weighing 318 ± 71 kg.MethodsThe ponies were pre-medicated with diazepam (0.2 mg kg−1) and acepromazine (0.05 mg kg−1) IV. Sodium thiopental 5% was administered IV, 10 minutes later and anesthesia was maintained with halothane in oxygen for 1 hour. Heart and respiratory rates, mean arterial blood pressure, cardiac rhythm, and signs of anesthetic depth were monitored during anesthesia. Hematological and serum biochemical parameters were evaluated before anesthesia and at 1, 2, 3, 24, 48, 72, and 96 hours. Urine specific gravity and cytology were evaluated at the same intervals following anesthesia. Parametric data were analyzed using repeated measures anova.ResultsConsiderable sedation/tranquilization without excitement was achieved following pre-medication. Heart rate significantly increased and mild hypotension occurred during anesthesia. Sinus arrhythmia and second degree AV block occurred in five horses. Respiratory rate decreased during anesthesia, with an accompanying respiratory acidosis. Body temperature also decreased. Recovery was scored ‘good’ in four horses and ‘satisfactory’ in the other two. Blood urea nitrogen concentration was significantly increased at 1–3 hours post-anesthesia. Blood glucose was significantly increased at 48, 72, and 96 hours, and creatine kinase and aspartate aminotransferase were significantly increased at 24 and 48 hours post-anesthesia.Conclusion and clinical relevance This simple anesthetic protocol can be used in Caspian ponies and an acceptable anesthetic with a reasonable recovery can be expected.  相似文献   

7.
8.
ObjectiveTo evaluate the effects of a constant rate infusion (CRI) of lidocaine alone or in combination with ketamine on the minimum infusion rate (MIR) of propofol in dogs and to compare the hemodynamic effects produced by propofol, propofol-lidocaine or propofol-lidocaine-ketamine anesthesia.Study designProspective, randomized cross-over experimental design.AnimalsFourteen adult mixed-breed dogs weighing 15.8 ± 3.5 kg.MethodsEight dogs were anesthetized on different occasions to determine the MIR of propofol alone and propofol in combination with lidocaine (loading dose [LD] 1.5 mg kg?1, CRI 0.25 mg kg?1 minute?1) or lidocaine (LD 1.5 mg kg?1, CRI 0.25 mg kg?1 minute?1) and ketamine (LD 1 mg kg?1, CRI 0.1 mg kg?1 minute?1). In six other dogs, the hemodynamic effects and bispectral index (BIS) were investigated. Each animal received each treatment (propofol, propofol-lidocaine or propofol-lidocaine-ketamine) on the basis of the MIR of propofol determined in the first set of experiments.ResultsMean ± SD MIR of propofol was 0.51 ± 0.08 mg kg?1 minute?1. Lidocaine-ketamine significantly decreased the MIR of propofol to 0.31 ± 0.07 mg kg?1 minute?1 (37 ± 18% reduction), although lidocaine alone did not (0.42 ± 0.08 mg kg?1 minute?1, 18 ± 7% reduction). Hemodynamic effects were similar in all treatments. Compared with the conscious state, in all treatments, heart rate, cardiac index, mean arterial blood pressure, stroke index and oxygen delivery index decreased significantly, whereas systemic vascular resistance index increased. Stroke index was lower in dogs treated with propofol-lidocaine-ketamine at 30 minutes compared with propofol alone. The BIS was lower during anesthesia with propofol-lidocaine-ketamine compared to propofol alone.Conclusions and clinical relevanceLidocaine-ketamine, but not lidocaine alone, reduced the MIR of propofol in dogs. Neither lidocaine nor lidocaine in combination with ketamine attenuated cardiovascular depression produced by a continuous rate infusion of propofol.  相似文献   

9.
Objective To compare behavioral characteristics of induction and recovery in horses anesthetized with eight anesthetic drug protocols. Study design Randomized prospective experimental study. Animals Eight horses, 5.5 ± 2.4 years (mean ± SD) of age, and weighing 505 ± 31 kg. Methods After xylazine pre‐medication, each of eight horses was anesthetized on four occasions using one of eight different anesthetic induction protocols which incorporated various combinations of ketamine (KET), propofol (PRO), and thiopental (THIO): THIO 8 mg kg?1; THIO 6 mg kg?1 + PRO 0.5 mg kg?1; THIO 4 mg kg?1 + PRO 1 mg kg?1; THIO 2 mg kg?1 + PRO 1.5 mg kg?1; KET 2 mg kg?1; KET 1.5 mg kg?1 + PRO 0.5 mg kg?1; KET 1 mg kg?1 + PRO 1 mg kg?1; KET 0.5 mg kg?1 + PRO 1.5 mg kg?1. Quality of induction and recovery were scored from 1 (poor) to 5 (excellent), and time taken to achieve lateral recumbency, first movement, sternal recumbency, and standing were evaluated. Results Time taken to achieve lateral recumbency after drug administration differed significantly (p < 0.0001) among the various combinations, being shortest in horses receiving THIO‐8 (mean ± SD, 0.5 ± 0.3 minutes) and longest in horses receiving KET‐2 (1.4 ± 0.2 minutes). The best scores for induction quality were associated with KET‐1.5 + PRO‐0.5, and the worst scores for induction quality were associated with KET‐2, although the difference was not significant. Time to first movement varied significantly among drug protocols (p = 0.0133), being shortest in horses receiving KET‐2 (12.7 ± 3.6 minutes) and longest in horses receiving THIO‐8 (29.9 ± 1.5 minutes). Horses receiving THIO‐8 made the greatest number of attempts to attain sternal posture (6.5 ± 4.7) and to stand (1.6 ± 0.8). Horses in the THIO‐8 treatment also received the poorest recovery scores (3.3 ± 1.0 and 3.0 ± 0.7 for sternal and standing postures, respectively). The best recovery scores were associated with combinations comprised mainly of propofol. Conclusions Combining propofol with either ketamine or thiopental modifies behaviors associated with use of the individual drugs. Clinical relevance Quality of early anesthesia recovery in horses may be improved by some combinations of propofol with either thiopental or ketamine.  相似文献   

10.
ObjectiveTo evaluate the cardiovascular, respiratory, electrolyte and acid–base effects of a continuous infusion of dexmedetomidine during propofol–isoflurane anesthesia following premedication with dexmedetomidine.Study designProspective experimental study.AnimalsFive adult male Walker Hound dogs 1–2 years of age averaging 25.4 ± 3.6 kg.MethodsDogs were sedated with dexmedetomidine 10 μg kg?1 IM, 78 ± 2.3 minutes (mean ± SD) before general anesthesia. Anesthesia was induced with propofol (2.5 ± 0.5 mg kg?1) IV and maintained with 1.5% isoflurane. Thirty minutes later dexmedetomidine 0.5 μg kg?1 IV was administered over 5 minutes followed by an infusion of 0.5 μg kg?1 hour?1. Cardiac output (CO), heart rate (HR), ECG, direct blood pressure, body temperature, respiratory parameters, acid–base and arterial blood gases and electrolytes were measured 30 and 60 minutes after the infusion started. Data were analyzed via multiple linear regression modeling of individual variables over time, compared to anesthetized baseline values. Data are presented as mean ± SD.ResultsNo statistical difference from baseline for any parameter was measured at any time point. Baseline CO, HR and mean arterial blood pressure (MAP) before infusion were 3.11 ± 0.9 L minute?1, 78 ± 18 beats minute?1 and 96 ± 10 mmHg, respectively. During infusion CO, HR and MAP were 3.20 ± 0.83 L minute?1, 78 ± 14 beats minute?1 and 89 ± 16 mmHg, respectively. No differences were found in respiratory rates, PaO2, PaCO2, pH, base excess, bicarbonate, sodium, potassium, chloride, calcium or lactate measurements before or during infusion.Conclusions and clinical relevanceDexmedetomidine infusion using a loading dose of 0.5 μg kg?1 IV followed by a constant rate infusion of 0.5 μg kg?1 hour?1 does not cause any significant changes beyond those associated with an IM premedication dose of 10 μg kg?1, in propofol–isoflurane anesthetized dogs. IM dexmedetomidine given 108 ± 2 minutes before onset of infusion showed typical significant effects on cardiovascular parameters.  相似文献   

11.
ObjectiveTo investigate the cardiorespiratory, nociceptive and endocrine effects of the combination of propofol and remifentanil, in dogs sedated with acepromazine.Study designProspective randomized, blinded, cross-over experimental trial.AnimalsTwelve healthy adult female cross-breed dogs, mean weight 18.4 ± 2.3 kg.MethodsDogs were sedated with intravenous (IV) acepromazine (0.05 mg kg?1) followed by induction of anesthesia with IV propofol (5 mg kg?1). Anesthesia was maintained with IV propofol (0.2 mg kg?1 minute?1) and remifentanil, infused as follows: R1, 0.125 μg kg?1 minute?1; R2, 0.25 μg kg?1 minute?1; and R3, 0.5 μg kg?1 minute?1. The same dogs were administered each dose of remifentanil at 1-week intervals. Heart rate (HR), mean arterial pressure (MAP), respiratory rate (fR), end tidal CO2 (Pe′CO2), arterial hemoglobin O2 saturation, blood gases, and rectal temperature were measured before induction, and 5, 15, 30, 45, 60, 75, 90, and 120 minutes after beginning the infusion. Nociceptive response was investigated by electrical stimulus (50 V, 5 Hz and 10 ms). Blood samples were collected for plasma cortisol measurements. Statistical analysis was performed by anova (p < 0.05).ResultsIn all treatments, HR decreased during anesthesia with increasing doses of remifentanil, and increased significantly immediately after the end of infusion. MAP remained stable during anesthesia (72–98 mmHg). Antinociception was proportional to the remifentanil infusion dose, and was considered satisfactory only with R2 and R3. Plasma cortisol concentration decreased during anesthesia in all treatments. Recovery was smooth and fast in all dogs.Conclusions and clinical relevanceInfusion of 0.25–0.5 μg kg?1 minute?1 remifentanil combined with 0.2 mg kg?1 minute?1 propofol produced little effect on arterial blood pressure and led to a good recovery. The analgesia produced was sufficient to control the nociceptive response applied by electrical stimulation, suggesting that it may be appropriate for performing surgery.  相似文献   

12.
ObjectiveTo explore, in rabbits, the minimum infusion rates (MIR) required and recovery time from long duration (≤8 hours) continuous infusion of fospropofol disodium, a novel water-soluble prodrug of propofol, and compare it with propofol.Study designProspective, randomized, blinded experimental trial.AnimalsNinety-six adult laboratory rabbits, mean ± SD weight 2.20 ± 0.15 kg.MethodsStage 1. 16 rabbits were assigned to receive fospropofol disodium or propofol to measure MIR, using an up-and-down method with response to tail-clamping stimulus (TCS). Stage 2. Eighty rabbits were allocated to group F (fospropofol disodium) or group P (propofol), and further subdivided (n = 10 in each subgroup) according to infusion time (2, 4, 6 or 8 hours), to groups F2h, F4h, F6h, F8h and P2h, P4h, P6h, P8h. Fospropofol or propofol were infused, and tail clamping applied to maintain the same depth of anaesthesia until infusion was completed. Times to recover righting reflex (RR), to respond to TCS, and total recovery to different durations of continuous infusion of two anaesthetic drugs were noted. Respiratory and pulse rates and oxygen saturation were analyzed. The plasma concentrations of fospropofol disodium, the active metabolite propofol (propofolF) and propofol emulsion were measured with respect to loss and recovery of RR and TCS.ResultsMIR of fospropofol disodium was 2.0 mg kg?1 minute?1, and MIR of propofol was 0.9 mg kg?1 minute?1. Times in minutes to total recovery from anaesthesia in groups F and P were as follows, F2h 15 ± 3; F4h 26 ± 4; F6h 52 ± 6; F8h 84 ± 10; and P2h 10 ± 1; P4h 19 ± 7; P6h 36 ± 7; P8h 48 ± 5.Conclusions and clinical relevanceAfter continuous intravenous infusion in rabbits (≤8 hours), fospropofol disodium and propofol both show an extension of recovery time with increasing infusion time, fospropofol disodium showing a significantly greater prolongation compared to propofol emulsion when infusion time increases to 6 and 8 hours.  相似文献   

13.
Objective— To characterize the behavior of horses recovering in the Anderson Sling Suspension System after 4 hours of desflurane anesthesia and postdesflurane intravenous (IV) administration of propofol and xylazine. Study Design— Experimental study. Animals— Healthy horses (n=6), mean±SEM age 12.3±1.8 years; mean weight 556±27 kg. Methods— Each horse was anesthetized with xylazine, diazepam, and ketamine IV and anesthesia was maintained with desflurane in O2. At the end of 4 hours of desflurane, each horse was positioned in the sling suspension system and administered propofol–xylazine IV. Recovery events were quantitatively and qualitatively assessed. Venous blood was obtained before and after anesthesia for biochemical and propofol analyses. Results— Anesthetic induction and maintenance were without incident. Apnea commonly accompanied propofol administration. All horses had consistent recovery behavior characterized by a smooth, careful, atraumatic return to a standing posture. Conclusions— Results of this study support careful, selective clinical use of desflurane, propofol–xylazine, and the Anderson Sling Suspension System to atraumatically transition horses with high anesthetic recovery risk to a wakeful standing posture. Clinical Relevance— Technique choices to facilitate individualized, atraumatic recovery of horses from general anesthesia are desirable. Use of IV propofol and xylazine to transition horses from desflurane anesthesia during sling recovery to standing posture may facilitate improved recovery management of high‐injury risk equine patients requiring general anesthesia.  相似文献   

14.
ObjectiveTo investigate changes in colloid osmotic pressure (COP), total protein (TP) and osmolality (OSM) during anesthesia in horses given intravenous lactated Ringer’s solution (LRS) or LRS and hetastarch (HES).Study designProspective, clinical trial.AnimalsFourteen horses presented for surgery. Mean age 8.3 ± 1.9 years; mean weight 452 ± 25 kg.MethodsHorses were premedicated with xylazine intravenously (IV); anesthesia was induced with ketamine and diazepam IV, and maintained with sevoflurane. Butorphanol was administered IV with pre-medications or immediately after induction. Xylazine was administered IV for recovery if necessary. LRS was administered IV to all horses with a target rate of 5–10 mL kg?1 hour?1. Half of the horses also received 6% HES, 2.5 mL kg?1 over 1 hour in addition to LRS. Horses that received LRS only were considered the LRS group. Horses that received both LRS and HES were considered the LRS/HES group. Blood was drawn pre- and post-anesthesia, immediately following induction, and every 30 minutes throughout anesthesia. COP, TP and OSM were measured.ResultsCOP and TP significantly decreased at similar rates for both treatment groups from pre-anesthetic values. Pre-anesthetic COP was significantly greater in the LRS group when compared to the LRS/HES group pre-, post- and throughout anesthesia. In the LRS group post-anesthetic OSM was significantly different than the pre-anesthesia value and that for the LRS/HES group.Conclusions and clinical relevanceAdministration of IV HES (2.5 mL kg?1, over 1 hour) in combination with LRS does not attenuate the decrease in COP typically seen during anesthesia with crystalloid administration alone. Based on these results, administration of HES at this rate and total volume would not be expected to prevent fluid shifts into the interstitium through its effects on COP.  相似文献   

15.
ObjectiveTo compare the propofol infusion rate and cardiopulmonary effects during total intravenous anesthesia with propofol alone and propofol combined with methadone, fentanyl or nalbuphine in domestic chickens undergoing ulna osteotomy.Study designProspective, randomized, experiment trial.AnimalsA total of 59 healthy Hissex Brown chickens weighing 1.5 ± 0.2 kg.MethodsAnesthesia was induced with propofol (9 mg kg–1) administered intravenously (IV) and maintained with propofol (1.2 mg kg–1 minute–1) for 30 minutes. Birds were intubated and supplemented with 100% oxygen through a nonrebreathing circuit under spontaneous ventilation. Thereafter, each animal was randomly assigned to one of four groups: group P, no treatment; group PM, methadone (6 mg kg–1) intramuscularly (IM); group PN, nalbuphine IM (12.5 mg kg–1); and group PF, fentanyl IV (30 μg kg–1 loading dose, 30 μg kg–1 hour–1 constant rate infusion). During the osteotomy surgery, the propofol infusion rate was adjusted to avoid movement of birds and provide adequate anesthesia. Pulse rate, invasive blood pressure, respiratory frequency, end-tidal carbon dioxide partial pressure (Pe′CO2) and hemoglobin oxygen saturation (SpO2) were recorded.ResultsData were available from 58 chickens. The mean ± standard deviation propofol infusion rate (mg kg–1 minute–1) for the duration of anesthesia was: group P, 0.81 ± 0.15; group PM, 0.66 ± 0.11; group PN, 0.60 ± 0.14; and group PF, 0.80 ± 0.07. Significant differences were P versus PM (p = 0.042), P versus PN (p = 0.002) and PF versus PN (p = 0.004). Pulse rate, blood pressure and SpO2 remained acceptable for anesthetized birds with minor differences among groups. Values of Pe′CO2 >60 mmHg (8 kPa) were observed in all groups.Conclusions and clinical relevanceMethadone and nalbuphine, but not fentanyl, decreased the propofol infusion rate required for anesthesia maintenance, but resulted in no obvious benefit in physiological variables.  相似文献   

16.
ObjectiveTo compare cardiopulmonary function, recovery quality, and total dosages required for induction and 60 minutes of total intravenous anesthesia (TIVA) with propofol (P) or a 1:1 mg mL−1 combination of propofol and ketamine (KP).Study designRandomized crossover study.AnimalsTen female Beagles weighing 9.4 ± 1.8 kg.MethodsDogs were randomized for administration of P or KP in a 1:1 mg mL−1 ratio for induction and maintenance of TIVA. Baseline temperature, pulse, respiratory rate (fR), noninvasive mean blood pressure (MAP), and hemoglobin oxygen saturation (SpO2) were recorded. Dogs were intubated and spontaneously breathed room air. Heart rate (HR), fR, MAP, SpO2, end tidal carbon dioxide tension (Pe’CO2), temperature, and salivation score were recorded every 5 minutes. Arterial blood gas analysis was performed at 10, 30, and 60 minutes, and after recovery. At 60 minutes the infusion was discontinued and total drug administered, time to extubation, and recovery score were recorded. The other treatment was performed 1 week later.ResultsKP required significantly less propofol for induction (4.0 ± 1.0 mg kg−1 KP versus 5.3 ±1.1 mg kg−1 P, p = 0.0285) and maintenance (0.3 ± 0.1 mg kg−1 minute−1 KP versus 0.6 ±0.1 mg kg−1 minute−1 P, p = 0.0018). Significantly higher HR occurred with KP. Both P and KP caused significantly lower MAP compared to baseline. MAP was significantly higher with KP at several time points. P had minimal effects on respiratory variables, while KP resulted in significant respiratory depression. There were no significant differences in salivation scores, time to extubation, or recovery scores.Conclusions and clinical relevanceTotal intravenous anesthesia in healthy dogs with ketamine and propofol in a 1:1 mg mL−1 combination resulted in significant propofol dose reduction, higher HR, improved MAP, no difference in recovery quality, but more significant respiratory depression compared to propofol alone.  相似文献   

17.
HistoryTwo cats were presented for orthopaedic surgery.Physical ExaminationWith the exception of the orthopaedic injuries found, clinical examination showed no abnormality.ManagementAs part of anaesthetic management, one cat received intrathecal morphine, the other epidural morphine. Following recovery, intense grooming was observed. After ensuring adequate analgesia this behaviour was interpreted as pruritus.In the first cat, pruritus was initially managed with medetomidine constant rate infusion (CRI) at 1 and 1.5 μg kg?1 hour?1. The lower dose produced sedation and no relief from pruritus, the higher dose ablated pruritus but induced sedation. Two propofol (lipid emulsion formulation) boli of 0.1 mg kg?1 ablated pruritus without causing sedation. The second cat was successfully treated with four boli of 0.1 mg kg?1 propofol over 20 minutes.Follow–upFollowing treatment with propofol, pruritus did not recur in either cat and both were discharged from the hospital.ConclusionsThis is the first clinical report of morphine–induced pruritus in cats and management with low–dose propofol. These cases suggest an antipruritic mechanism for lipid–formulation propofol.  相似文献   

18.
ObjectiveTo determine the effects of intravenous ethyl pyruvate, an anti-inflammatory with putative benefits in horses with endotoxemia, on cardiopulmonary variables during anesthesia and the quality of anesthetic recovery.Study designRandomized, crossover, blinded experimental design.AnimalsA total of six healthy Standardbred geldings, aged 13 ± 3 years and weighing 507 ± 66 kg (mean ± standard deviation).MethodsHorses were anesthetized for approximately 90 minutes on two occasions with a minimum of 2 weeks apart using xylazine for sedation, ketamine and diazepam for induction, and isoflurane in oxygen for maintenance. Lactated Ringer’s solution (LRS; 10 mL kg–1 hour–1) was administered during anesthesia. Treatments were randomized and administered starting approximately 30 minutes after induction of anesthesia and infused over 60 minutes: LRS (1 L) or ethyl pyruvate (150 mg kg–1 in 1 L LRS). Invasive arterial pressures, heart rate, respiratory rate and end-tidal carbon dioxide tensions were recorded every 5 minutes for the duration of anesthesia. Arterial blood gases, glucose and lactate concentrations were measured every 20 minutes. Anesthetic recovery was video recorded, stored, and subsequently rated by two individuals blinded to treatments. Total recovery time, time to extubation, number of attempts and time to sternal recumbency, number of attempts to stand and time to stand were recorded. Quality of recovery was analyzed. Data between treatments and within a treatment were assessed using two-way repeated-measures anova and a Pearson correlation coefficient, significant at p < 0.05.ResultsAll horses completed the study. No significant differences were detected between the ethyl pyruvate and LRS treatments for either the cardiopulmonary variables or quality of recovery from anesthesia.Conclusions and clinical relevanceThe results suggest that intravenous ethyl pyruvate can be administered to healthy anesthetized horses with minimal impact on the cardiopulmonary variables studied or the quality of recovery from anesthesia.  相似文献   

19.
ObjectiveTo assess whether recovery from general anesthesia, in an illuminated or a darkened stall, has an effect on time to first movement, time to standing, and recovery score.Study designProspective randomized clinical study.AnimalsTwenty-nine healthy, 2- to 5-year-old horses undergoing surgical correction of dorsal displacement of the soft palate.MethodsEach horse was assigned randomly to recover in either an illuminated (n = 15) or a darkened stall (n = 14). For pre-anesthetic medication, all horses received intravenous (IV) xylazine (0.4 mg kg−1) and butorphanol (0.02 mg kg−1). Anesthesia was induced with midazolam (0.1 mg kg−1) and ketamine (2.2 mg kg−1) IV and maintained on isoflurane in oxygen. Vital parameters, end-tidal CO2 and isoflurane were recorded at 5-minute intervals. At the conclusion of anesthesia, horses were placed in either an illuminated or a darkened stall and xylazine (0.2 mg kg−1) IV was administered at extubation. Video cameras were used to record the horses while they were allowed to recover undisturbed. Video recordings were later viewed and recoveries were evaluated on a 100-point scale by three graders.ResultsHorses in illuminated and darkened recovery stalls were evaluated on total anesthesia time, minimum alveolar concentration hours of isoflurane, time to first movement, time to standing, and total recovery score. There were no significant differences between the two groups in any of the measured parameters.ConclusionRecovering horses in a darkened versus an illuminated recovery stall may provide no benefit.Clinical relevanceDarkening the recovery stalls for horses recovering from general anesthesia may be unnecessary.  相似文献   

20.
ObjectiveIdentify, describe, and quantitate effects of an escalating dose of a nano-droplet formulation of 1% w/v propofol in telemetered cats.Study designProspective two-period parallel design with one treatment procedure per period.AnimalsFour female intact, purpose-bred domestic short-hair cats.MethodsEach animal served as its own control in each period. Telemetered cats were anesthetized on two separate occasions. In Phase I, cats received propofol (8 mg kg?1) over 90 seconds. Unless a severe adverse event (SAE) had occurred by this time, repeated doses of 4 mg kg?1 intravenous (IV) propofol were administered every 3 minutes until the onset of an SAE. In Phase 2, the IV dose of propofol required to produce at least one SAE in Phase I was administered unless an SAE occurred before the dose was completed. Propofol infusion ceased after development of the first SAE. Heart rate, heart rhythm, respiratory rate, systolic, diastolic, and mean arterial blood pressure, SpO2 and body temperature were continuously recorded before, during and after propofol administration. The incidence and time to onset of an SAE and dose of propofol required to produce an SAE were recorded. The response criteria included time to lateral recumbency, times to orotracheal intubation and extubation, time to sternal recumbency during recovery, time to and duration of first adverse event(s), and total dose of propofol administered.ResultsThe dose of propofol required to produce an SAE in Phase I was 16.6 and 15.2 mg kg?1 in Phase 2. Hypotension was the first and most frequently observed SAE.ConclusionsLarger doses of a novel, nano-droplet propofol formulation can produce SAEs similar to those reported for lipid emulsion formulations.Clinical relevanceSystemic arterial blood pressure should be monitored in cats administered IV propofol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号