首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Properties of 3-deoxyanthocyanins from sorghum   总被引:1,自引:0,他引:1  
There is increasing interest in natural food colorants with functional properties. Anthocyanins from black, brown (containing tannins), and red sorghums were characterized by spectrophotometric and HPLC techniques. The antioxidant activity and pH stability of the anthocyanins were also determined. Sorghum brans had 3-4 times higher anthocyanin contents than the whole grains. Black sorghum had the highest anthocyanin content (average = 10.1 mg/g in bran). The brown and red sorghum brans had anthocyanin contents of 2.8-4.3 mg/g. Only 3-deoxyanthocyanidins were detected in sorghum. These compounds are more stable to pH-induced color change than the common anthocyanidins and their glycosides. Additionally, crude sorghum anthocyanin extracts were more stable than the pure 3-deoxyanthocyanidins. The antioxidant properties of the 3-deoxyanthocyanidins were similar to those of the anthocyanins. Pigmented sorghum bran has high levels of unique 3-deoxyanthocyanidins, which are stable to change in pH and have a good potential as natural food pigments.  相似文献   

2.
Specialty sorghums, their brans, and baked and extruded products were analyzed for antioxidant activity using three methods: oxygen radical absorbance capacity (ORAC), 2,2'-azinobis (3-ethyl-benzothiazoline-6-sulfonic acid) (ABTS), and 2,2-diphenyl-1-picrylhydrazyl (DPPH). All sorghum samples were also analyzed for phenolic contents. Both ABTS and DPPH correlated highly with ORAC (R(2) = 0.99 and 0.97, respectively, n = 18). Phenol contents of the sorghums correlated highly with their antioxidant activity measured by the three methods (R(2) >or= 0.96). The ABTS and DPPH methods, which are more cost effective and simpler, were demonstrated to have similar predictive power as ORAC on sorghum antioxidant activity. There is a need to standardize these methods to allow for data comparisons across laboratories.  相似文献   

3.
Several oat brans (crunchy oat bran, oat bran alone, and oat breakfast cereal) and wheat brans (wheat bran alone, wheat bran powder, wheat bran with malt flavor, bran breakfast cereal, tablet of bran, and tablet of bran with cellulose) used as dietary fiber supplements by consumers were evaluated as alternative antioxidant sources (i) in the normal human consumer, preventing disease and promoting health, and (ii) in food processing, preserving oxidative alterations. Products containing wheat bran exhibited higher peroxyl radical scavenging effectiveness than those with oat bran. Wheat bran powder was the best hydroxyl radical (OH*) scavenger. In terms of hydrogen peroxide (H2O2) scavenging, wheat bran alone was the most effective, while crunchy oat bran, oat bran alone, and oat breakfast cereal did not scavenge H2O2. The shelf life of fats (obtained by the Rancimat method for butter) increased most in the presence of crunchy oat bran. When the antioxidant activity during 28 days of storage was measured by the linoleic acid assay, all of the oat and wheat bran samples analyzed showed very good antioxidant activities. The Trolox equivalent antioxidant capacity (TEAC) assay was used to provide a ranking order of antioxidant activity. The wheat bran results for TEAC (6 min), in decreasing order, were wheat bran powder > wheat bran with malt flavor > or = wheat bran alone > or = bran breakfast cereal > tablet of bran > tablet of bran with cellulose. The products made with oat bran showed lower TEAC values. In general, avenanthramide showed a higher antioxidant level than each of the following typical cereal components: ferulic acid, gentisic acid, p-hydroxybenzoic acid, protocatechuic acid, syringic acid, vanillic acid, vanillin, and phytic acid.  相似文献   

4.
The in vitro bile acid binding by rice, oat, wheat, and corn brans was determined using a mixture of bile acids normally secreted in human bile at a physiological pH of 6.3. The objective of the study was to relate bile acid binding of cereal brans to health promoting properties. Three experiments were conducted testing substrates on an equal weight (dry matter) basis, an equal total dietary fiber (TDF) basis, and an equal TDF and equal fat basis. Each experiment was repeated to validate the results (for a total of six experiments). The relative in vitro bile acid binding of the cereal brans on an equal TDF basis considering cholestyramine as 100% bound was rice bran 51%, wheat bran 31%, oat bran 26%, and corn bran 5%. The data suggest that cholesterol lowering by rice bran appears to be related to bile acid binding. The primary mechanism of cholesterol lowering by oat bran may not be due to bile acid binding by soluble fiber. Bile acid binding did not appear to be proportional to the soluble fiber content of the cereal brans tested. Bile acid binding by wheat bran may contribute to cancer prevention and other healthful properties.  相似文献   

5.
The effects of plant color, pericarp thickness, pigmented testa, and spreader genes on phenols and antioxidant activity levels of 13 sorghum genotypes were evaluated. Total phenols, condensed tannins, flavan-4-ols, and anthocyanins were measured. Antioxidant activity levels using the 2,2'-azinobis(3-ethyl-benzothiazoline-6-sulfonic acid) and 2,2-diphenyl-1-picrylhydrazyl assays were evaluated. Sorghums with a pigmented testa and spreader genes (B(1)()B(2)()S) had the highest levels of phenols and antioxidant activity. In addition, sorghums with purple/red plants (PQ) and thick pericarp (z) genes had increased levels of phenols and antioxidant activity. Sorghums with a black pericarp had higher levels of flavan-4-ols and anthocyanins than the other varieties. This suggests that genes for plant color, pericarp thickness, presence of a pigmented testa, and spreader genes increase phenols and antioxidant activity levels. This information can be useful in the production of sorghums with increased phenols and antioxidant activity levels.  相似文献   

6.
Brans of specialty sorghum varieties (high tannin, black, and black with tannin) were used to investigate the effects of sorghum phenolic compounds on starch digestibility of soft and hard sorghum endosperm porridges. Endosperms of varieties with the highest and lowest grain hardness index were mixed with brans of specialty sorghum varieties in the ratio of 85:15 and cooked into porridges with distilled water using a Rapid Visco Analyzer. Brans of condensed tannin containing sorghum varieties (high‐tannin and black with tannin sorghums) significantly (P < 0.05) decreased starch digestibility and estimated glycemic index (EGI) and increased resistant starch (RS) content of endosperm porridges. However, the addition of phenolic‐rich tannin‐free (mostly anthocyanins) black sorghum bran significantly (P < 0.05) increased starch digestibility and EGI but did not affect RS content of endosperm porridges. The disparate effects with black bran may, in part, result from its larger particle size and different bran structure compared with other sorghum varieties evaluated. Thus, our study showed that not only presence of phenolic compounds in the brans but also structural differences of specialty sorghum brans can have significant effects on starch digestibility.  相似文献   

7.
The present study was performed to investigate calcium-binding characteristics of different brans under simulated gastrointestinal pH conditions and to explore the significance of dietary fiber, oxalate, and phytate for calcium binding. Different brans (rice, rye, soy, fine wheat, coarse wheat, and oat) and CaCl(2) solution containing (45)Ca were incubated at 37 degrees C at gastric pH (2.2) followed by buffering steps of 1 degree from pH 3.0 to pH 8.0. Total calcium binding and calcium-binding capacity of the pH 2.2 soluble bran fraction were determined. Additionally, oxalate and phytate contents of brans and solubility profiles of phytic acid were investigated. Calcium-binding capacities of brans showed a clear pH dependence. At gastric pH calcium binding was low in all brans, ranging from 0.022 to 0.040 mmol of calcium/g of bran. Soy bran, nearly phytate-free, showed higher binding values up to pH 4.0 and lower values between pH 5.0 and 8.0. In all other brans, binding values increased strongly with increasing pH in the quantitative order rice bran > coarse wheat bran > fine wheat bran > rye bran > oat bran. The solubility profiles indicate that in the cases of rye, wheat, and rice bran phytate accounts for 70-82% of their total calcium-binding capacities. The results suggest that dietary fiber makes no important contribution to calcium binding, except for soy and oat brans. Oxalate plays only a minor role in calcium binding by brans.  相似文献   

8.
Brans from rice, oats, corn, and wheat were cooked in a twin-screw extruder at either high or low energy input, and their cholesterol-lowering effects were compared with those of unprocessed brans when fed to four-week-old male golden Syrian hamsters (n = 10 per treatment) for three weeks. Peanut oil was added to oat, corn, and wheat bran during the extrusion process to match the oil content of rice bran. Diets contained 10% total dietary fiber, 10.3% fat, 3% nitrogen, and 0.3% cholesterol. Plasma and liver cholesterol and total liver lipids were significantly lower with low-energy extruded wheat bran compared with unprocessed wheat bran. Extrusion did not alter the hypocholesterolemic effects of rice, oat, or corn brans. Plasma and liver cholesterol levels with corn bran were similar to those with oat bran. Relative cholesterol-lowering effects of the brans, determined with pooled (extruded and unextruded) bran data, were rice bran > oat bran > corn bran > wheat bran. Rice bran diets resulted in significantly lower levels of total plasma cholesterol and very low density lipoprotein cholesterol compared with all other brans. Total liver cholesterol and liver cholesterol concentrations (mg/g) were significantly lower with high-energy extruded rice bran compared with the cellulose control group. Plasma cholesterol and total liver cholesterol values with low-energy extruded wheat bran were similar to those with rice bran (unextruded or extruded) diets. Lowered cholesterol with rice bran diets may result in part from greater lipid and sterol excretion with these diets. Results with low-energy extruded wheat bran suggest that this type of processing may improve the potential for lowering cholesterol with wheat bran products.  相似文献   

9.
This study investigated the antioxidant content and activity of phenolic acids, anthocyanins, α-tocopherol and γ-oryzanol in pigmented rice (black and red rice) brans. After methanolic extraction, the DPPH free radical scavenging activity and antioxidant activity were measured. The pigmented rice bran extract had a greater reducing power than a normal rice bran extract from a long grain white rice. All bran extracts were highly effective in inhibiting linoleic acid peroxidation (60-85%). High-performance liquid chromatography (HPLC) analysis of antioxidants in rice bran found that γ-oryzanol (39-63%) and phenolic acids (33-43%) were the major antioxidants in all bran samples, and black rice bran also contained anthocyanins 18-26%. HPLC analysis of anthocyanins showed that pigmented bran was rich in cyanidin-3-glucoside (58-95%). Ferulic acid was the dominant phenolic acid in the rice bran samples. Black rice bran contained gallic, hydroxybenzoic, and protocatechuic acids in higher contents than red rice bran and normal rice bran. Furthermore, the addition of 5% black rice bran to wheat flour used for making bread produced a marked increase in the free radical scavenging and antioxidant activity compared to a control bread.  相似文献   

10.
Cookies were produced from different sorghum flours to determine their potential as vectors of antioxidants. Different sorghum cultivars and their flour extraction rates were evaluated for their effects on phenolic content and antioxidant activity of the cookies. Consumer acceptance of the sorghum cookies was compared with that of wheat flour cookies. For each sorghum cultivar, cookies of 100% extraction rate flours had two to three times more total phenolics compared with those of 70% extraction rate flours, while antioxidant activity was 22–90% higher. Cookies of the condensed tannin sorghum had two to five times more phenolics compared with those of condensed tannin‐free sorghum. Antioxidant activity was 145–227 μMol Trolox equivalents (TE)/g in cookies of condensed tannin sorghum compared with 10–102 μMol TE/g in those of condensed tannin‐free sorghum. The sorghum flours had slightly higher phenolic content and antioxidant activity values than their corresponding cookies. Cookies of the red tannin‐free sorghum flours (PAN 8564/8446) were equally liked as wheat flour cookies, except for texture. However, cookies of condensed tannin sorghum were least accepted compared with wheat flour cookies despite their high antioxidant activity.  相似文献   

11.
The bran fraction of wheat grain is known to contain significant quantities of bioactive components. This study evaluated the potential of solid-state yeast fermentation to improve the health beneficial properties of wheat bran, including extractable antioxidant properties, protein contents, and soluble and insoluble fiber compositions. Three commercial food grade yeast preparations were evaluated in the study along with the effects of yeast dose, treatment time, and their interaction with the beneficial components. Solid-state yeast treatments were able to significantly increase releasable antioxidant properties ranging from 28 to 65, from 0 to 20, from 13 to 19, from 0 to 25, from 50 to 100, and from 3 to 333% for scavenging capacities against peroxyl (ORAC), ABTS cation, DPPH and hydroxyl radicals, total phenolic contents (TPC), and phenolic acids, respectively. Yeast treatment increased protein content 11-12% but did not significantly alter the fiber composition of wheat bran. Effects of solid-state yeast treatment on both ORAC and TPC of wheat bran were altered by yeast dose, treatment time, and their interaction. Results suggest that solid-state yeast treatment may be a commercially viable postharvest procedure for improving the health beneficial properties of wheat bran and other wheat-based food ingredients.  相似文献   

12.
Rye bran and aleurone, wheat bran and aleurone, and oat bran and cell wall concentrate were compared in their in vitro gut fermentation patterns of individual phenolic acids and short-chain fatty acids, preceded by enzymatic in vitro digestion mimicking small intestinal events. The formation of phenolic metabolites was the most pronounced from the wheat aleurone fraction. Phenylpropionic acids, presumably derived from ferulic acid (FA), were the major phenyl metabolites formed from all bran preparations. The processed rye, wheat, and oat bran fractions contained more water-extractable dietary fiber (DF) and had smaller particle sizes and were thus more easily fermentable than the corresponding brans. Rye aleurone and bran had the highest fermentation rate and extent probably due to high fructan and water-extractable arabinoxylan content. Oat samples also had a high content of water-extractable DF, β-glucan, but their fermentation rate was lower. Enzymatic digestion prior to in vitro colon fermentation changed the structure of oat cell walls as visualized by microscopy and increased the particle size, which is suggested to have retarded the fermentability of oat samples. Wheat bran was the most slowly fermentable among the studied samples, presumably due to the high proportion of water-unextractable DF. The in vitro digestion reduced the fructan content of wheat samples, thus also decreasing their fermentability. Among the studied short-chain fatty acids, acetate dominated the profiles. The highest and lowest production of propionate was from the oat and wheat samples, respectively. Interestingly, wheat aleurone generated similar amounts of butyrate as the rye fractions even without rapid gas production.  相似文献   

13.
《Cereal Chemistry》2017,94(3):588-593
Wheat bran contains most of the dietary fiber, vitamins, minerals, and antioxidants of the grain. Unfortunately, it readily deteriorates upon storage because it has high lipid contents and lipase activity levels, which can cause rancidity and, hence, when used in food systems, inferior product quality. We here examined the lipid composition and the lipase activities of wheat bran and the impact of pearling prior to milling thereupon. The lipid content of the outer bran layers (2.31% on a dry matter [dm] basis) is lower than that of regular bran (3.81% dm). Nevertheless, these layers have the highest concentration of free fatty acids (FFA, 0.56% dm), which is ascribed to lipid hydrolysis. Indeed, the lipase activity levels in the peripheral layers were three times higher than in the bran itself. Abrading these tissues by pearling prior to milling yielded a bran fraction with about 30% lower FFA content and 30% lower lipase activity level. Pearling offers opportunities to lower the FFA content and lipase activity levels in wheat bran and, hence, to contribute to an improved storage stability of bran.  相似文献   

14.
We studied the effect of sorghum decortication and protease treatment on starch hydrolysis before liquefaction with thermoresistant α-amylase and the generation of free amino nitrogen (FAN) in preparation for subsequent steps of ethanol production. A bifactorial experiment with a level of confidence of P < 0.05 was designed to study differences among maize, whole sorghum, and decorticated sorghum and the effectiveness of the protease treatment before starch liquefaction. Sorghum was decorticated 9.7% to remove most of the pericarp and part of the germ and increase starch concentration. Starch concentration increased in decorticated kernels, whereas total phenols, fiber, and fat decreased. The decorticated sorghum had significantly higher starch and protein hydrolysis compared with the whole kernel. Protease treatment before liquefaction improved the rate of starch hydrolysis, especially in mashes from whole and decorticated sorghums. Whole and decorticated sorghum hydrolyzates treated with protease contained ≈50% more reducing sugars than the untreated counterparts. Maize yielded hydrolyzates with the the highest amount of FAN, followed by decorticated and whole sorghums. The maize and both sorghum hydrolyzates treated with protease contained ≈60 and 30% more FAN compared with the untreated counterparts. Both sorghum decortication and protease treatments before hydrolysis with α-amylase are recommended to increase ethanol yields, save processing time (and therefore energy), and to produce mashes with higher FAN content, which is considered as an important yeast substrate.  相似文献   

15.
The screening of 50 sorghum varieties showed that, on average, germination did not affect the content in total phenolic compounds but decreased the content of proanthocyanidins, 3-deoxyanthocyanidins, and flavan-4-ols. Independent of germination, there are intervarietal differences in antioxidant activities among sorghum varieties. Phenolic compounds and antioxidant activities were more positively correlated in ungerminated varieties than in germinated ones. Sorghum grains with pigmented testa layer, chestnut color glumes, and red plants had higher contents, larger diversity of phenolic compounds, and higher antioxidant activities than other sorghums. Some red sorghum varieties had higher antioxidant activities (30-80 mumol of Trolox equiv/g) than several sources of natural antioxidants from plant foods. Among varieties used for "to", "dolo", couscous, and porridge preparation, the "dolo"(local beer) varieties had the highest average content and diversity in phenolic compounds as well as the highest antioxidant activities. The biochemical markers determined are useful indicators for the selection of sorghum varieties for food and agronomic properties.  相似文献   

16.
Whole grains contain all parts of the grain: the endosperm, germ, and bran. Whole grains are rich in fermentable carbohydrates that reach the gut: dietary fiber, resistant starch, and oligosaccharides. Most research that supports the importance of grains to gut health was conducted with isolated fiber fractions, rather than whole grains. Whole grains are an important source of dietary fiber and grain fibers such as wheat, oats, barley, and rye increase stool weight, speed intestinal transit, get fermented to short chain fatty acids, and modify the gut microflora. Wheat bran is particularly effective in increasing stool weight; wheat bran increases stool weight by a ratio of 5:1. In contrast, many novel fibers that are easily incorporated into beverages and foods increase stool weight only on a ratio of 1:1. In vitro fermentation studies with whole grains have been published. Carbohydrates of oat bran (rich in β‐glucan) were consumed by bacteria faster than those of rye and wheat brans (rich in arabinoxylan). Grain fibers were fermented more slowly than inulin, causing less gas production. Wheat is particularly high in fructo‐oligosaccharides, while wheat germ is high in raffinose oligosaccharides. Some in vivo studies show the prebiotic potential of whole grains. Whole grain breakfast cereal was more effective than wheat bran breakfast cereal as a prebiotic, increasing fecal bifidobacteria and lactobacilli in human subjects. Wheat bran consumption increased stool frequency. Thus, the gut enhancing effects of cereal fibers are well known. Limited data exist that whole grains alter gut health.  相似文献   

17.
Variations in physical and compositional bran characteristics among different sources and classes of wheat and their association with bread‐baking quality of whole grain wheat flour (WWF) were investigated with bran obtained from Quadrumat milling of 12 U.S. wheat varieties and Bühler milling of six Korean wheat varieties. Bran was characterized for composition including protein, fat, ash, dietary fiber, phenolics, and phytate. U.S. soft and club wheat brans were lower in insoluble dietary fiber (IDF) and phytate content (40.7–44.7% and 10.3–17.1 mg of phytate/g of bran, respectively) compared with U.S. hard wheat bran (46.0–51.3% and 16.5–22.2 mg of phytate/g of bran, respectively). Bran of various wheat varieties was blended with a hard red spring wheat flour at a ratio of 1:4 to prepare WWFs for determination of dough properties and bread‐baking quality. WWFs with U.S. hard wheat bran generally exhibited higher dough water absorption and longer dough mixing time, and they produced smaller loaf volume of bread than WWFs of U.S. soft and club wheat bran. WWFs of two U.S. hard wheat varieties (ID3735 and Scarlet) produced much smaller loaves of bread (<573 mL) than those of other U.S. hard wheat varieties (>625 mL). IDF content, phytate content, and water retention capacity of bran exhibited significant relationships with loaf volume of WWF bread, whereas no relationship was observed between protein content of bran and loaf volume of bread. It appears that U.S. soft and club wheat bran, probably owing to relatively low IDF and phytate contents, has smaller negative effects on mixing properties of WWF dough and loaf volume of bread than U.S. hard wheat bran.  相似文献   

18.
Sorghum bran, a coproduct of sorghum dry milling, could be a source of protein for industrial applications. Condensed tannin‐free red and white sorghum samples were decorticated by abrasion until ≈10 or 25% grain by weight was removed. Kafirin was then extracted from the milling fractions using an aqueous ethanol based solvent system. The brans were darker and considerably higher in protein and fat compared with the whole grain flours and decorticated grain flours, with the 25% bran having higher protein than the 10% bran. This is due to increased contamination of the bran with protein‐dense, corneous endosperm. The protein extracted from all the milling fractions, including the brans, was pure kafirin. However, the yield of kafirin from the brans (15.9–26.7% of total protein present) was somewhat lower than that from whole grain and decorticated grain flours (45.0–57.9% of total protein present), due to the fact that kafirin is located solely in the endosperm. Also, the kafirin from bran was more contaminated with fat, polyphenols, and other substances, and more highly colored, particularly the kafirin from red sorghum. Thus, sorghum bran could be used as a source of kafirin but further purification steps may be necessary.  相似文献   

19.
The in vitro bile acid binding by rice bran, oat bran, dehulled barley, and β‐glucan enriched barley was determined using a mixture of bile acids at a duodenal physiological pH of 6.3. Six treatments and two blank incubations were conducted testing substrates on an equal protein basis. The relative in vitro bile acid binding of the cereal brans on an equal total dietary fiber (TDF) and insoluble dietary fiber (IDF) basis considering cholestyramine as 100% bound was rice bran 45 and 49%; oat bran 23 and 30%; dehulled barley 33 and 57%; and β‐glucan enriched barley 20 and 40%, respectively. Bile acid bindings on equal protein basis for the respective cereals were 68, 26, 41, and 49%. Bile acid binding by rice bran may account to a great extent for its cholesterol‐lowering properties, while bile acid binding by oat bran suggests that the primary mechanism of cholesterol lowering by oat bran is not due to the bile acid binding by its soluble fiber. Bile acid binding was not proportional to the soluble fiber content of the cereal brans tested. Except for dehulled barley, bile acid binding for rice bran, oat bran, and β‐glucan enriched barley appear to be related to their IDF content. Highest relative bile acid binding values for rice bran and β‐glucan enriched barley were observed on an equal protein basis, whereas highest values for dehulled barley were based on IDF. Data suggest that of all four cereals tested, bile acid binding may be related to IDF or protein anionic, cationic, physical and chemical structure, composition, metabolites, or their interaction with active binding sites.  相似文献   

20.
Compositional information for lignins in food is rare and concentrated on cereal grains and brans. As lignins are suspected to have important health roles in the dietary fiber complex, the confusing current information derived from nonspecific lignin determination methods needs to be augmented by diagnostic structural studies. For this study, lignin fractions were isolated from kiwi, pear, rhubarb, and, for comparison, wheat bran insoluble dietary fiber. Clean pear and kiwi lignin isolates allowed for substantive structural profiling, but it is suggested that the significance of lignin in wheat has been overestimated by reliance on nonspecific analytical methods. Volume integration of NMR contours in two-dimensional (13)C-(1)H correlation spectra shows that pear and wheat lignins have comparable guaiacyl and syringyl contributions and that kiwi lignins are particularly guaiacyl-rich (approximately 94% guaiacyl) and suggest that rhubarb lignins, which could not be isolated from contaminating materials, are as syringyl-rich (approximately 96% syringyl) as lignins from any known natural or transgenic fiber source. Typical lignin structures, including those newly NMR-validated (glycerols, spirodienones, and dibenzodioxocins), and resinols implicated as possible mammalian lignan precursors in the gut are demonstrated via their NMR correlation spectra in the fruit and vegetable samples. A novel putative benzodioxane structure appears to be associated with the kiwi lignin. It is concluded that the fruits and vegetables examined contain authentic lignins and that the detailed structural analysis exposes limitations of currently accepted analytical methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号