首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
A long-term experiment set up in 1980 compared the effects of applying manures and chemical fertilizers on a paddy soil in the Taihu Lake region,China.Of the fourteen randomly distributed treatments consisting of different combinations of organic manure,inorganic nitrogen (N),phosphorus (P),and potassium (K),and rice straw,eight were selected for the present study in 2007.Application of organic manure plus straw significantly increased soil organic carbon (SOC) content of the topsoil (0-10 cm) compared to that of chemical fertilizers alone.The content of SOC was relatively stable in the 10-30 cm layer in the chemical fertilizer treatments and in the 20-40 cm layer in the manure treatments.The stable carbon isotope ratio (δ 13 C) ranged from 24‰ to 28‰ and increased gradually with depth.The content of SOC was significantly (P < 0.05) negatively correlated with δ 13 C.In the 0-20 cm layer,the δ 13 C value significantly decreased in the treatments of manure alone (M),manure and chemical N and P fertilizers (MNP),manure and chemical N,P,and K fertilizers (MNPK),manure,rice straw,and chemical N fertilizer (MRN),and chemical N fertilizer and rice straw (CNR),as compared with the no-fertilizer control.In the 30-50 cm layer,however,the ratio significantly increased in all the treatments except Treatment CNR.Mineralization of organic C peaked in the first 2-4 d of incubation and gradually leveled off thereafter over the first 3 weeks,being faster in the manure treatments than the chemical fertilizer treatments.The average rate of mineralization varied from 55.36 to 75.46 mL CO 2 kg-1 d-1 and that of stable mineralization from 10 to 20 mL CO 2 kg-1 d-1.In eight weeks of incubation,cumulative mineralization was always higher in the manure treatments than the chemical fertilizer treatments,being the highest in Treatment MRN.Combined humus in the soil was mainly (over 50%) composed of tightly combined fraction.The loosely combined humus and its ratio of humic acid (HA) to fulvic acid (FA) significantly increased with long-term application of organic manure and chemical fertilizers.It could be concluded that the cycle of organic C in the paddy soil ecosystem studied was stable over the long-term application of fertilizers and continued cultivation.  相似文献   

2.
长期施肥对华北平原一种潮土有机氮组成的影响   总被引:8,自引:0,他引:8  
In order to illustrate the change of nitrogen (N) supply capacity after long-term application of manure and chemical fertilizer, as well as to properly manage soil fertility through fertilizer application under the soil-climatic conditions of the North China Plain, organic N forms were quantified in the topsoil with different manure and chemical fertilizer treatments in a 15-year fertilizer experiment in a Chinese calcareous alluvial soil. Soil total N (TN) and various organic N forms were significantly influenced by long-term application of chemical fertilizer and manure. TN, total hydrolysable N, acid-lnsoluble N, amino acid N and ammonium N in the soil increased significantly (P 〈 0.05) with increasing manure and fertilizer N rates, but were not influenced by increasing P rates. Also, application of manure or N fertilizer or P fertilizer did not significantly influence either the quantity of amino sugar N or its proportion of TN. Application of manure significantly increased (P 〈 0.05) hydrolysable unknown N, but adding N or P did not. In addition, application of manure or N fertilizer or P fertilizer did not significantly influence the proportions of different soil organic N forms.  相似文献   

3.
Long-term field experiment was established in 1978 on a coastal paddy soil to determine the effect of application of pig manure, rice straw and chemical N fertilizer on the physical property and humus characteristics of soil. Results showed that the porosity, the microstructural coefficient, the reactivities of organic C and N, the OlogK value, the degree of oxidation stability, the contents of o-alkyl C and alkyl C, and the ratio of aliphatic C to aromatic C of humic acid from soils received organic manure increased; whereas, the ratio of<10μm to >10μm of microaggregates, the humification degree of humus, the degree of organo-mineral complexation, the number-average molecular weight, the C/H ratio, the contents of carboxyl and aromatic C of HAs in them decreased. These results indicated that the application of organic manure not only improved the physical property of the paddy soil but also made the HA more aliphatic in structure and younger in origin.  相似文献   

4.
Agronomic practices affect soil phosphorus(P) availability, P uptake by plants, and subsequently the efficiency of P use. A field experiment was carried out to investigate the effects of various agronomic practices(straw incorporation, paddy water management, nitrogen(N) fertilizer dose, manure application,and biochar addition) on soil P availability(e.g., soil total P(STP), soil available P(SAP), soil microbial biomass P(SMBP), and rice P uptake as well as P use efficiency(PUE)) over four cropping seasons in a rice-rice cropping system, in subtropical central China. Compared to the non-straw treatment(control,using full dose of chemical N fertilizer), straw incorporation increased SAP and SMBP by 9.3%–18.5% and 15.5%–35.4%, respectively;substituting half the chemical N fertilizer dose with pig manure and the biochar application increased STP, SAP, and SMBP by 10.5%–48.3%, 30.2%–236.0%, and 19.8%–72.4%,respectively, mainly owing to increased soil P and organic carbon inputs;adding a half dose of N and no N input(reduced N treatments) increased STP and SAP by 2.6%–7.5% and 19.8%–33.7%, respectively, due to decreased soil P outputs. Thus, soil P availability was greatly affected by soil P input and use. The continuous flooding water regime without straw addition significantly decreased SMBP by 11.4% compared to corresponding treatments under a mid-season drainage water regime. Total P uptake by rice grains and straws at the harvest stage increased under straw incorporation and under pig manure application, but decreased under the reduced N treatments and under biochar application at a rate of 48 t ha-1, compared to the control. Rice P uptake was significantly positively correlated with rice biomass, and both were positively correlated with N fertilizer application rates, SAP, SMBP, and STP. Phosphorus use efficiency generally increased under straw incorporation but decreased under the reduced N treatments and under the manure application(with excessive P input), compared to the control. These results showed that straw incorporation can be used to increase soil P availability and PUE while decreasing the use of chemical P fertilizers. When substituting chemical fertilizers with pig manure, excess P inputs should be avoided in order to reduce P accumulation in the soil as well as the environmental risks from non-point source pollution.  相似文献   

5.
A field experiment was conducted from 1999 to 2002 to compare and evaluate the effects of nutrient and water regimes on paddy soil quality by investigating soil chemical and microbiological parameters. Four nutrient regimes, a control, chemical fertilizers only (CF), chemical fertilizers with swine manure (SM), and chemical fertilizers with wheat straw (WS), and two soil moisture regimes, continuous waterlogging (CWL) and alternate wetting and drying (AWD), were investigated. With SM and WS total organic carbon and total nitrogen in the paddy soil were significantly higher (P < 0.05) than those with CF. A similar effect for organic amendments was observed in the soil light fraction organic C (LFOC), water-soluble carbohydrates (WSC), and water-soluble organic C (WSOC). CWL, in particular when swine manure was incorporated into the paddy soil, markedly decreased soil redox potential (Eh) and increased total active reducing substances (ARS). Meanwhile, as compared to CF, SM and WS significantly (P < 0.05) increased soil microbial biomass C (MBC) and mineralizable carbon, with differences in AWD being higher than CWL. In addition, SM and WS treatments significantly (P < 0.05) improved rice above-ground biomass and grain yield, with AWD being greater than CWL. Thus, for ecologically sustainable agricultural management of paddy soils, long-term waterlogging should be avoided when organic manure was incorporated into paddy soil.  相似文献   

6.
中国洞庭湖区稻田土壤氮素淋溶损失的系统研究   总被引:5,自引:0,他引:5  
A two-year lysimeter study was conducted to study the effects of different fertilizers and soils on nitrogen leaching loss in a double rice cropping system by considering three major types of paddy soils from the Dongting Lake area. The results showed that N concentration in the leachate did not differ significantly among the treatments of urea, controlled release N fertilizer and pig manure and that all these fertilizers produced higher total nitrogen (TN) concentrations in the leachate compared to the case where no fertilizer was applied. The TN leaching loss following urea treatment accounted for 2.28%, 0.66%, and 1.50% of the amount of N applied in the alluvial sandy loamy paddy soil (ASL), purple calcareous clayey paddy soil (PCC), and reddish-yellow loamy paddy soil (RYL), respectively. Higher TN loss was found to be correlated with the increased leachate volume in ASL compared with RYL, and the lowest TN loss was observed in the PCC, in which the lowest leachate volume and TN concentration were observed. Organic N and NH4+ -N were the major forms of N depleted through leachate, accounting for 56.8% and 39.7% of TN losses, respectively. Accordingly, soil-specific fertilization regimens are recommended; in particular, the maximum amount of fertilizer should be optimized for sandy soils with a high infiltration rate. To avoid a high N leaching loss from rice fields, organic N fertilizers such as urea or coated urea should primarily be used for surface topdressing or shallow-layer application and not for deep-layer application.  相似文献   

7.
A 12-year field experiment was conducted to investigate the effect of different tillage methods and fertil-ization systems on microbial biomass C,N and P of a gray fluvo-aguic soil in rice-based cropping system .Five fertilization treatments were designed under conventional tillae(CT) or on tillage(NT) system:no fertilizer(CK) ; chemical fertilizer only(CF) ; combining chemical fertilizer with pig manure(PM); combining chemical fertilizer with crop straw (CS) and fallow (F). The results showed that biomass C,N and P were enriched in the surface layer of no-tilled soil,whereas they distributed relatively evenly in the tilled soil,which might result from enrichment of crop resdue,organic manure and mineral fertilzer,and surficial developent of root systems under NT.Under the cultivation system NT had slightly greater biomass C,N and P at 0-5 cm depth ,significantly less biomass C,N and P at 5-15 cm depth ,less microbial biomass C,N and equivalent biomass P at 15-30 cm depth as compared to CT,indicating hat tillage was beneficial for the multiplication of organims in the plowed layer of soil.Under the fallow system,biomass C,N and P in the surface layer were significantly greater for NT than CT while their differences between the two tillage methods were neligible in the deeper layers.In the surface layer,biomass C,N and P in the soils amended with oranic manure combined with mineral fertilizers were significantly greater than those of the treatments only with mineral fertilizers and the control.Soils without fertilzer had the least biomass nutrient contents among the five fertilization treatments.Obviously,the long-term application of organic manure could maintain the higher activity of microorganisms in soils.The amounts of biomass C,N and P in the fallowed soils varied with the tillage methods;they were much greater under NT than under CT,especially in the surface layer,suggesting that the frequent plowing could decrease the content of organic matter in the surface layer of the fallowed soil.  相似文献   

8.
有机肥、化肥及接种微生物对甜玉米生理和生长的影响   总被引:2,自引:0,他引:2  
A pot culture experiment was carried out in a glasshouse to compare the physiology and growth of sweet corn plants(Zea mays L.cv,Honey Bantam) grown under orgainc and chemical fertilizations with or without microbial inoculation(MI).The organic fertilizer used was fermented mainly using rice bran and oil mill sludge,and the MI was a liquid product containing many eneficial microbes such as lactic acid bacteria,yeast,photosynthetic bacteria and actinomycetes.The application amounts of the organic fertilizer and chemical fertilizers were based on the same rate of nitrogen,phosphorus and potassium.Sweet corn plants fertilized with organic materials inoculated with beneficial microbes grew better than those without inoculation.There were no significant differences in physiology and growth of the sweet corn plants between treatments of chemical fertilizers with and without MI.Among the organic fertilization treatments.only the sweet corn plants with organic fertilizer and MI applied 4 weeks before sowing had simlilar photosyntheitic capacity,total dry matter yield and ear yield to those with chemical fertilizers.Sweet corn plants in other organic fertilization treatments were weaker in physiology and grown than those in chemical fertilization treatments.There was no significant variance among chemical fertilization treatments at differenct time.It is concluded form this research that this organic fertilizer would be more effective if it was inoculated with the beneficial microbes.Early application of the organic fertilizer with beneficial microbes before sowing was recommended to make the nutrients available before the rapid growth at the eraly stage and obtain a yield simlar to or higher than that with chemical fertilizations.  相似文献   

9.
长期施肥对华北平原土壤生产力的影响   总被引:3,自引:0,他引:3  
Soil productivity is the ability of a soil, in its normal environment, to support plant growth and can be evaluated with respect to crop production in unfertilized soil within the agricultural ecosystem. Both soil productivity and fertilizer applications affect crop yields. A long-term experiment with a winter wheat-summer maize rotation was established in 1989 in a field of the Fengqiu State Key Agro-Ecological Experimental Station, a region typical of the North China Plain, including seven treatments: 1) a balanced application of NPK chemical fertilizers(NPK); 2) application of organic fertilizer(OM); 3) application of 50% organic fertilizer and50% NPK chemical fertilizers(1/2OMN); 4) application of NP chemical fertilizers(NP); 5) application of PK chemical fertilizer(PK);6) application of NK chemical fertilizers(NK); and 7) unfertilized control(CK). To investigate the effects of fertilization practices on soil productivity, further pot tests were conducted in 2007–2008 using soil samples from the different fertilization treatments of the long-term field experiment. The soil sample of each treatment of the long-term experiment was divided into three pots to grow wheat: with no fertilization(Potunf), with balanced NPK fertilization(PotNPK), and with the same fertilizer(s) of the long-term field experiment(Potori). The fertilized soils of the field experiment used in all the pot tests showed a higher wheat grain yield and higher nutrient uptake levels than the unfertilized soil. Soil productivity of the treatments of the field experiment after 18 years of continuous fertilizer applications were ranked in the order of OM 1/2OMN NPK NP PK NK CK. The contribution of soil productivity of the different treatments of the field experiment to the wheat grain yield of Potoriwas 36.0%–76.7%, with the PK and NK treatments being higher than the OM, 1/2OMN, NPK, and NP treatments since the soil in this area was deficient in N and P and rich in K. Wheat grain yields of PotNPKwere higher than those of Potoriand Potunf. The N, P, and K use efficiencies were higher in PotNPKthan Potoriand significantly positively correlated with wheat grain yield. Soil organic matter could be a better predictor of soil productivity because it correlated more strongly than other nutrients with the wheat grain yield of Potunf. Wheat yields of PotNPKshowed a similar trend to those of Potunf, indicating that soil productivity improvement was essential for a further increase in crop yield. The long-term applications of both organic and chemical fertilizers were capable of increasing soil productivity on the North China Plain, but the former was more effective than the latter. The balanced application of NPK chemical fertilizers not only increased soil productivity, but also largely increased crop yields, especially in soils with lower productivity. Thus, such an approach should be a feasible practice for the sustainable use of agricultural soils on the North China Plain, particularly when taking into account crop yields, labor costs, and the limited availability of organic fertilizers.  相似文献   

10.
A 15-year field experiment was carried out in Henan Province, China, to study the effects of different fertilization practices on yield of a wheat-maize rotation. Fertilizers tested contained N alone (N), N plus P (NP) or plus P and K (NPK), all with or without manure (M). Different long-term fertilization practices affected the yields under the rotation system of wheat and maize differently and the effects on yields was in a general trend of MNPK>MNP>MN>NPK>NP>M>N>the control. The average contribution rate of soil fertility to the highest yield was 37.9%, and the rest 62.1% came from fertilizer applications. The yield effects of the chemical fertilizers were in the order of N>P>K and were increased by application of manure.Balanced fertilization with multielement chemical fertilizers and manure can be effective in maintaining growth in agricultural production. Combined application of chemical fertilizer and organic manure also increased the content of soil organic matter.  相似文献   

11.
利用中国农业科学院红壤实验站红壤稻田长期定位试验,研究了长期有机无机肥配施下双季稻增产潜力和土壤有机碳变化特征。31年的试验结果表明,1)施肥能促进水稻早晚稻稻谷和地上部产量增加,其中,有机肥配施均衡的NPK处理促进作用最大,NPKM处理下稻谷年均产量比NPM、 NKM、 PKM、 M和NPK分别高 5.8%、 10.9%、 16.2%、 15.9%和20.4%。2)施肥能促进水稻土有机碳含量增加,其中,有机肥配施均衡的NPK处理提升效果最为明显, NPKM处理下所测年度土壤有机碳平均含量比NPM、 NKM、 PKM、 M和NPK分别高出2.5%、 3.5%、 2.0%、 0.6%和 32.8%。3)随着试验的进行,单施有机肥对早、 晚稻稻谷和地上部产量的促进效果逐步优于单施化肥氮、 磷、 钾处理(NPK),对土壤有机碳的提升效果也明显优于单施化肥氮、 磷、 钾。红壤性稻田双季稻生产实践中,有机无机肥配施模式值得推荐,但需均衡配施化肥氮、 磷、 钾。  相似文献   

12.
长期施肥红壤性稻田和旱地土壤有机碳积累差异   总被引:1,自引:1,他引:0  
  【目的】  提高土壤有机碳水平对提升农田生产力有重要意义。基于长期定位施肥试验,比较施肥影响下相同成土母质发育的红壤性稻田和旱地土壤的总有机碳 (TOC) 及其组分的积累差异,以深入理解红壤有机碳的固持及稳定机制。  【方法】  稻田和旱地长期施肥试验分别始于1981和1986年,包含CK (不施肥对照)、NPK (施氮磷钾化肥) 和NPKM (有机无机肥配施) 3个处理,在2017年晚稻和晚玉米收获后,采集两个试验上述处理的耕层 (0—20 cm) 土样,通过硫酸水解法分离土壤活性与惰性有机碳,测定并计算土壤中TOC及其组分的含量及储量,并利用Jenny模型拟合试验期间耕层土壤TOC含量的变化动态,估算土壤固碳潜力。  【结果】  与CK相比,长期施肥可提高稻田和旱地土壤各有机碳组分的含量,且NPKM处理的效果优于NPK处理。相比于稻田土壤,施肥对旱地土壤各有机碳组分含量的提升更加明显。NPK和NPKM处理下,旱地土壤活性有机碳组分Ⅰ、活性有机碳组分Ⅱ、惰性有机碳含量的增幅分别是稻田土壤的2.7、2.7、5.8倍和2.0、1.4和2.5倍。不论施肥与否,稻田土壤TOC的固存量和固存潜力均显著高于旱地土壤。施肥促进土壤固碳,在稻田和旱地土壤上,NPKM处理的TOC固存量分别是NPK处理的1.7和25.5倍,TOC固存潜力则分别是NPK处理的1.4和5.8倍。长期不同施肥均显著提高稻田和旱地土壤年均碳投入量,线性拟合方程表明,随碳投入量增加,土壤活性有机碳储量的累积对稻田、旱地土壤TOC储量累积的贡献率分别达64.7%、44.6%。不同处理间稻田与旱地土壤活性有机碳 (包括活性有机碳组分Ⅰ与活性有机碳组分Ⅱ) 含量的差异可解释其TOC含量差异的52.9%~60.0%。  【结论】  与施氮磷钾化肥相比,有机无机肥配施可更好的促进土壤固碳,且在旱地土壤上的促进作用比在稻田土壤上更为明显。与稻田土壤相比,旱地土壤各有机碳组分含量的变化对长期施肥的响应更敏感,且在施氮磷钾化肥条件下表现更为明显。红壤性稻田和旱地土壤TOC积累的主要贡献组分分别为活性有机碳和惰性有机碳。红壤植稻虽有利于有机碳固持,但红壤性稻田土壤的活性碳占比较高,可能易因不当管理而发生损失。  相似文献   

13.
在江西进贤红壤性水稻土上连续种植双季水稻26年,分析了在化肥氮用量相同条件下,不施肥(CK), 单施氮肥(N), 施用氮、 磷化肥(NP), 氮、 钾化肥(NK), 氮、 磷、 钾化肥(NPK)和氮磷钾配施有机肥(NPKM)处理的水稻氮肥回收率的演变特征及其增产效应。结果表明,不同施肥条件下的化肥氮回收率差异显著,26年的平均氮肥回收率 N 处理为 9.4%~11.6%、 NP为13.0%~18.5%、 NPK为19.8%~26.1%, NPKM为14.1%~22.9%。磷、 钾肥混施和与有机肥配施可显著提高水稻氮肥回收率,且对早稻的贡献大于晚稻,NPK和NPKM处理的早稻氮肥回收率比晚稻平均高6.3和8.8个百分点。N和NK处理的早稻和晚稻氮肥回收率均随年度增加而显著降低,平均每年下降约0.6个百分点,而NPK、 NPKM处理的氮肥回收率基本保持稳定。与NPK相比,NPKM处理早稻和晚稻籽粒产量分别增加19.0%和21.7%。因此,NPKM处理在提高化肥氮的回收率和高产稳产方面都是红壤性水稻土上可持续的施肥模式。  相似文献   

14.
通过对华北平原小麦–玉米轮作农田生态系统18年田间施肥试验,研究了长期不同施肥处理对耕层(0—20 cm)土壤腐殖质及活性腐殖质组分碳和氮的影响。试验设化肥NPK不同组合(NPK、NP、NK、PK),全部施用有机肥(OM),一半有机肥+化肥NPK(1/2OMN)及不施肥(CK)共7个处理。结果表明,各施肥处理均能在不同程度上增加土壤腐殖质(胡敏酸、富里酸和胡敏素)及活性腐殖质(活性胡敏酸和活性富里酸)组分碳和氮含量,提高可浸提腐殖质(胡敏酸和富里酸)及活性腐殖质组分碳和氮分配比例;但施肥对土壤活性腐殖质组分碳和氮含量的增加率均分别高于腐殖质组分碳和氮。各处理土壤腐殖质及活性腐殖质组分碳和氮含量均为OM处理最高,且有机肥与化肥NPK配施高于单施化肥各处理;而化肥处理中NPK均衡施用效果最好。说明施用有机肥、有机肥与化肥NPK配施及化肥NPK均衡施用是增加土壤腐殖质及活性腐殖质组分碳和氮的关键;活性腐殖质组分碳和氮较腐殖质组分碳和氮对施肥措施的响应更灵敏。  相似文献   

15.
There is increasing evidence that microorganisms participate in soil C sequestration and stabilization in the form of resistant microbial residues. The type of fertilizers influences microbial activity and community composition; however, little is known about its effect on the microbial residues and their relative contribution to soil C storage. The aim of this study was to investigate the long-term impact (21 years) of different fertilizer treatments (chemical fertilizer, crop straw, and organic manure) on microbial residues in a silty clay loam soil (Udolls, USDA Soil Taxonomy). Amino sugars were used to indicate the presence and origin of microbial residues. The five treatments were: CK, unfertilized control; NPK, chemical fertilizer NPK; NPKS1, NPK plus crop straw; NPKS2, NPK plus double amounts of straw; and NPKM, NPK plus pig manure. Long-term application of inorganic fertilizers and organic amendments increased the total amino sugar concentrations (4.4–8.4 %) as compared with the control; and this effect was more evident in the plots that continuously received pig manure (P?<?0.05). The increase in total amino sugar stock was less pronounced in the straw-treated plots than the NPKM. These results indicate that the accumulation of soil amino sugars is largely influenced by the type of organic fertilizers entering the soil. Individual amino sugar enrichment in soil organic carbon was differentially influenced by the various fertilizer treatments, with a preferential accumulation of bacterial-derived amino sugars compared with fungal-derived glucosamine in manured soil.  相似文献   

16.
化肥有机肥配合施用下双季稻田氮素形态变化   总被引:8,自引:1,他引:7  
为揭示有机无机肥配合施用下稻田氮素的动态及迁移特征,在湘南双季水稻农作区第四纪红土发育的红黄泥稻田上进行了连续6年田间试验。通过比较不施氮肥(PK)、施用有机肥猪粪(M)、化肥(NPK)及有机肥化肥配合(NPKM),研究稻田表层全氮、无机氮动态变化,不同层次(25—30、55—60、85—90 cm)土壤溶液无机氮动态,耕层土壤无机氮动态等。结果表明,NH4+-N是红壤双季稻田无机氮素存在的主要形态,施用化学肥料处理(NPK)施肥后1~3 d表面水NH4+-N浓度占全氮比例可达0.5~0.9,有机肥处理(M)为0.3左右。不同层次土壤溶液及其土壤氮素浓度呈现一致的特征,即施肥后短期内出现浓度峰值随后迅速下降,且随着往下推移,氮素峰值出现时间延长,表层水全氮及无机氮在施肥后1~2 d出现浓度高峰,耕层土壤及25—30 cm土壤溶液无机氮浓度高峰约在施肥后3~5 d。化肥有机肥配施有利于水稻稳产高产,年产量达12.2 t/hm2,比不施氮肥的对照产量(7.3 t/hm2)增加68%;土壤有机质6年提升18.5%,显著高于化肥。施用有机肥(M)及有机无机肥配合(NPKM)显著降低了稻田表层水全氮及不同层次土壤溶液和耕层土壤NH4+-N峰值浓度,提高水稻产量和培肥土壤,有利于减少当前氮肥过量施用带来的环境负荷。  相似文献   

17.
Rice (Oryza sativa L.) is one of the most important crops in the world, and its production is limited by soil phosphorus (P) deficiencies in many parts of the world. Impacts of long-term fertilization regimes on rice productivity and soil P availability is largely unknown. A long-term (26-year) field experiment in a paddy soil of southeastern China was carried out to study the response of rice grain yield and soil P pools to different fertilization regimes including control without fertilization (CK), nitrogen, P, and potassium (NPK) fertilizer (NPK), NPK fertilizer plus cattle manure (NPKM), and NPK fertilizer plus rice straw (NPKS). Application of fertilizers (NPK, NPKM, and NPKS) increased rice grain yield compared with the CK treatment (on average, by 75%, 97%, and 92%, respectively). Soil P was predominately present in the organic form (51–75% of total P) across different treatments. Most soil inorganic P fractions decreased with time due to continuous depletion by rice plants in the nonfertilized treatment (CK), while they generally increased with time in the fertilizer treatments (NPK, NPKM, and NPKS) due to continued supply of P to soil. On the other hand, soil organic P fractions increased continuously with time regardless of treatment, probably due to the retention of stubble and biological immobilization of inorganic P. Positive relationships between the rice grain yield and most inorganic P fractions in the CK treatment indicated the P limitation for rice production due to no P inputs and long-term conversion of inorganic P into organic P.  相似文献   

18.
在福建黄泥田长期定位施肥试验的第26年,研究了不同施肥模式对水稻子粒与土壤微量元素含量的影响。结果表明,与不施肥(CK)相比,化肥+牛粪(NPKM)、 化肥+秸秆还田(NPKS)及单施化肥(NPK)处理的水稻子粒Zn、 B、 Cu含量均有不同程度的提高,并尤以NPKM处理最为明显,三种微量元素含量分别提高14.3%、 25.1%、 465.2%,均达差异显著水平。NPKM与NPKS处理还不同程度地提高了子粒Mn含量,但各施肥处理的子粒Fe含量均显著降低。各施肥处理尤其是NPKM与NPKS均显著提高了子粒微量元素吸收量。NPK处理的土壤有效B、 Fe、 Zn、 Cu含量与CK相比均呈下降趋势,且有效Zn、 Mn含量较试验前土壤分别降低了36.4%与24.6%,而NPKM与NPKS处理缓解了下降趋势,且NPKM处理的土壤有效Zn、 B、 Mn含量分别较CK提高46.6%、 52.0%、 43.0%,均达差异显著水平。土壤有机质与子粒B、 Cu、 Zn含量呈显著正相关,子粒必需氨基酸、 粗蛋白与子粒Zn含量呈显著正相关。以上结果说明,长期化肥配施牛粪或秸秆还田有利于提高水稻子粒Zn、 B、 Cu等微量元素含量和产量,改善子粒营养品质,一定程度上又可缓解土壤有效微量元素含量的下降,是适合南方黄泥田的施肥模式。  相似文献   

19.
长期施氮、磷、钾化肥对玉米产量及土壤肥力的影响   总被引:53,自引:3,他引:53  
以1990年建立的国家褐潮土土壤肥力与肥料效益长期监测基地(北京昌平站)的长期肥料定位试验为研究平台,研究了不同施肥制度对玉米产量和土壤肥力的影响。结果表明,长期均衡地施NPK肥或NPK与有机肥配施,可以显著提高玉米产量和土壤有机质、全氮、全磷、速效氮、速效磷、速效钾等肥力指标,并能提高土壤微量元素的含量;而不均衡施肥(N、NK、NP、PK)导致相应的营养元素的耗竭。相关分析表明,在褐潮土上增施磷肥和有机肥对提高玉米产量具有重要的作用。  相似文献   

20.
长期有机无机肥配施对水稻产量及土壤有效养分影响   总被引:49,自引:0,他引:49  
利用中国农业科学院红壤实验站开始于1982年的水稻长期定位试验,研究长期有机无机肥配施对水稻产量及土壤速效氮、磷、钾含量的动态变化(1982—2011年)特征。29年研究结果表明:长期有机无机肥配施(NPKM)能提高水稻产量,培肥地力。长期施用化肥(NPK)导致水稻产量降低。稻谷产量随着施肥量的增加而增加。在等氮投入情况下,增施化学磷肥的增产效应要高于化学钾肥,且早稻表现尤为明显;长期单施有机肥和单施化肥对稻谷产量的影响没有显著差异。随着施肥时间的延长,各处理水稻产量差异越显著。各施肥处理土壤碱解氮增加速率表现为慢-快-慢三个阶段,有机肥的施用相较单施化肥,能够显著提高土壤碱解氮含量(p0.05)。土壤有效磷的累积主要与化学磷肥的施用有关,各施肥处理土壤有效磷历年平均含量变化趋势为:NPKM、NPM、PKMNPKM、NKM(p0.01);土壤速效钾以有机肥和化学钾肥配施的处理(NPKM、NKM、PKM)增加最快,单施化学肥料的处理(NPK)增加最慢。随着氮、磷施用量的增加,土壤中氮、磷素出现盈余,但NPKM处理相比其他处理能够有效降低盈余量;各处理土壤中钾素均表现为亏缺状态,红壤性水稻田至少每年应补充投入钾素200 kg hm-2才能基本维持土壤钾素平衡。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号