首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Factors influencing red expression in autumn foliage of sugar maple trees   总被引:1,自引:0,他引:1  
We evaluated factors influencing the development of autumn red coloration in leaves of sugar maple (Acer saccharum Marsh.) by measuring mineral nutrient and carbohydrate concentrations, water content, and phenology of color development of leaves from 16 mature open-grown trees on 12 dates from June through October 1999. Mean foliar nutrient and carbohydrate concentrations and water content were generally within the range published for healthy sugar maple trees. However, foliar nitrogen (N) concentrations were near deficiency values for some trees. The timing and extent of red leaf coloration was consistently correlated with both foliar N concentrations and starch or sugar concentrations, which also varied with N status. Leaves of trees with low foliar N concentrations turned red earlier and more completely than those of trees with high foliar N concentrations. Low-N trees also had higher foliar starch concentrations than high-N trees. During the autumn development of red leaf coloration, foliar starch, glucose and fructose concentrations were positively correlated with red leaf color expression. At peak red expression, the concentrations of glucose, fructose, sucrose and stachyose were all positively correlated with red color expressed as a percent of total leaf area.  相似文献   

2.
We explored environmental and genetic factors affecting seasonal dynamics of starch and soluble nonstructural carbohydrates in needle and twig cohorts and roots of Scots pine (Pinus sylvestris L.) trees of six populations originating between 49 degrees and 60 degrees N, and grown under common garden conditions in western Poland. Trees of each population were sampled once or twice per month over a 3-year period from age 15 to 17 years. Based on similarity in starch concentration patterns in needles, two distinct groups of populations were identified; one comprised northern populations from Sweden and Russia (59-60 degrees N), and another comprised central European populations from Latvia, Poland, Germany and France (49-56 degrees N). Needle starch concentrations of northern populations started to decline in late spring and reached minimum values earlier than those of central populations. For all populations, starch accumulation in spring started when minimum air temperature permanently exceeded 0 degrees C. Starch accumulation peaked before bud break and was highest in 1-year-old needles, averaging 9-13% of dry mass. Soluble carbohydrate concentrations were lowest in spring and summer and highest in autumn and winter. There were no differences among populations in seasonal pattern of soluble carbohydrate concentrations. Averaged across all populations, needle soluble carbohydrate concentrations increased from about 4% of needle dry mass in developing current-year needles, to about 9% in 1- and 2-year-old needles. Root carbohydrate concentration exhibited a bimodal pattern with peaks in spring and autumn. Northern populations had higher concentrations of fine-root starch in spring and autumn than central populations. Late-summer carbohydrate accumulation in roots started only after depletion of starch in needles and woody shoots. We conclude that Scots pine carbohydrate dynamics depend partially on inherited properties that are probably related to phenology of root and shoot growth.  相似文献   

3.
Cheng L  Fuchigami LH 《Tree physiology》2002,22(18):1297-1303
Bench-grafted Fuji/M.26 apple (Malus domestica Borkh.) trees were fertilized with a nutrient solution (fertigation) containing 0, 2.5, 5, 7.5, 10, 15 or 20 mM nitrogen (N) in a modified Hoagland's solution from June 30 to September 1. In mid-October, half of the trees in each N treatment were sprayed twice with 3% urea, 1 week apart. The remaining trees served as controls. All trees were harvested after leaf fall and stored at 2 degrees C over winter. One group of trees from each treatment was destructively sampled before bud break to determine amounts of reserve N and total nonstructural carbohydrates (TNC); the remaining trees were transplanted to N-free medium in the spring. These trees were supplied with Hoagland's solution with or without 10 mM N (from 15N-depleted NH4NO3) for 60 days, starting from bud break. With increasing N supply from fertigation, tree N concentration increased, whereas TNC concentration decreased. Foliar urea applications increased tree N concentration and decreased TNC concentration in each N fertigation treatment. There was a negative linear relationship between tree N concentration and TNC concentration. Irrespective of whether N was provided the following spring, trees with high N reserves but low carbohydrate reserves produced a larger total leaf area at the end of the regrowth period than trees with low N reserves but high carbohydrate reserves. The pooled data on reserve N used for new growth showed that, regardless of the spring N supply, there was a linear relationship between total N accumulated in the tree during the previous season and the amount of reserve N remobilized for new shoot and leaf growth. About 50% of tree N content was remobilized to support new shoot and leaf growth over the range of tree N status examined. We conclude that the initial growth of young apple trees in the spring is determined mainly by reserve N, not reserve carbohydrates. The amount of reserve N remobilized for new growth in spring was proportional to tree N status and was unaffected by current N supply.  相似文献   

4.
We investigated effects of nutrient addition on several physiological characteristics of 60-cm-tall black spruce (Picea mariana Mill. B.S.P.) layers (i.e., rooted branches of overstory trees) and 20-cm-tall planted seedlings on a clear-cut, N-limited boreal site. After two growing seasons, current-year and one-year-old needles of fertilized trees (layers and seedlings combined) had higher net photosynthetic rates (A(n)) and maximum capacity of Rubisco for CO(2) fixation (V(max)) than unfertilized trees. One-year-old needles of fertilized trees had higher stomatal conductance (g(s)), higher water-use efficiency, and lower intercellular to ambient CO(2) ratio than unfertilized trees. Additionally, fertilized trees had higher predawn and midday shoot water potentials than unfertilized trees. Stomatal conductance of 1-year-old needles was 23% higher in seedlings than in layers, but there were no significant differences in g(s) of current-year needles between the regeneration types. For both needle age-classes, A(n) and V(max) of layers were 25 and 40% higher, respectively, than the corresponding values for seedlings. The higher values of A(n), V(max) and foliar N concentration of layers compared with seedlings after two growing seasons may be associated with the larger root systems of the layers compared with the transplanted seedlings.  相似文献   

5.
Zha T  Wang KY  Ryyppö A  Kellomäki S 《Tree physiology》2002,22(17):1241-1248
Sixteen 20-year-old Scots pine (Pinus sylvestris L.) trees growing in the field were enclosed in environment-controlled chambers that for 4 years maintained: (1) ambient conditions (CON); (2) elevated atmospheric carbon dioxide concentration [CO2] (ambient + 350 micromol mol-1; EC); (3) elevated temperature (ambient + 2-3 degrees C; ET); or (4) elevated [CO2] and temperature (EC+ET). Dark respiration rate, specific leaf area (SLA) and the concentrations of starch and soluble sugars in needles were measured in the fourth year. Respiration rates, on both an area and a mass basis, and SLA decreased in EC relative to CON, but increased in ET and EC+ET, regardless of needle age class. Starch and soluble sugar concentrations for a given needle age class increased in EC, but decreased slightly in ET and EC+ET. Respiration rates and SLA were highest in current-year needles in all treatments, whereas starch and soluble sugar concentrations were highest in 1-year-old needles. Relative to that of older needles, respiration of current-year needles was inhibited less by EC, but increased in response to ET and EC+ET. All treatments enhanced the difference in respiration between current-year and older needles relative to that in CON. Age had a greater effect on needle respiration than any of the treatments. There were no differences in carbohydrate concentration or SLA between needle age classes in response to any treatment. Relative to CON, the temperature coefficient (Q10) of respiration increased slightly in EC, regardless of age, but declined significantly in ET and EC+ET, indicating acclimation of respiration to temperature.  相似文献   

6.
Carbohydrate reserve storage in trees is usually considered a passive function, essentially buffering temporary discrepancies between carbon availability and demand in the annual cycle. Recently, however, the concept has emerged that storage might be a process that competes with other active sinks for assimilate. We tested the validity of this concept in Hevea brasiliensis Müll. Arg. (rubber) trees, a species in which carbon availability can be manipulated by tapping, which induces latex regeneration, a high carbon-cost activity. The annual dynamics of carbohydrate reserves were followed during three situations of decreasing carbon availability: control (no tapping), tapped and tapped with Ethephon stimulation. In untapped control trees, starch and sucrose were the main carbohydrate compounds. Total nonstructural carbohydrates (TNC), particularly starch, were depleted following bud break and re-foliation, resulting in an acropetal gradient of decreasing starch concentration in the stem wood. During the vegetative season, TNC concentration increased. At the end of the vegetative season, there were almost no differences in TNC concentration along the trunk. In tapped trees, the vertical gradient of starch concentration was locally disturbed by the presence of the tapping cut. However, the main effect of tapping was a dramatic increase in TNC concentration, particularly starch, throughout the trunk and in the root. The difference in TNC concentration between tapped and untapped trees was highest when latex production was highest (October); the difference was noticeable even in areas of the trees that are unlikely to be directly involved in latex regeneration, and it was enhanced by Ethephon stimulation, which is known to increase latex metabolism and flow duration. Thus, contrary to what could be expected if reserves serve as a passive buffer, a decrease in carbohydrate availability resulted in a net increase in carbohydrate reserves at the trunk scale. Such behavior supports the view that trees tend to adjust the amount of carbohydrate reserves stored to the level of metabolic demand, at the possible expense of growth.  相似文献   

7.
Tropical tree fodder is harvested by frequent prunings, and resprouting depends on nonstructural carbohydrate reserves in the remaining tree parts. We studied the effects of three pruning intensities (removal of all leaves and branches leaving 1 m of stem once a year (T-12), or every 6 months (T-6), and about 50% pruning every 2 months (P-2)) on regrowth and the dynamics of soluble sugars and starch in the legume tree Gliricidia sepium (Jacq.) Walp. growing under humid tropical conditions in Guadeloupe, Lesser Antilles. Carbohydrates were sampled in roots, stems and branches. Among pruned trees, trees in the T-6 harvest regime had the highest leaf fodder yield (0.73 kg tree(-1) year(-1)). High litter loss reduced leaf yield of T-12 trees, but compared with the other treatments, T-12 trees produced the most branch biomass (3.43 kg tree(-1)). Among treatments, P-2 trees had an intermediate leaf fodder yield and the lowest branch production. Sucrose, glucose and fructose were the most common sugars in all biomass compartments. Mannose, pinitol and an unidentified cyclitol were relatively abundant in branches. Root sugar and starch concentrations were unaffected by harvest regime. There was a significant interactive effect of harvest intensity and regrowth time on stem sugar concentration. Stem starch concentration was highest in T-12 trees. After a year of fodder harvesting, whole-tree reserves of nonstructural carbohydrates were highest in T-12 trees; however, a larger proportion of reserves were located in roots and stems of T-6 and P-2 trees. These reserves, which were not lost in pruning and contributed to regrowth of G. sepium after pruning, may explain the relatively small effects of harvesting regime on soluble sugar and starch concentrations.  相似文献   

8.
Will RE  Teskey RO 《Tree physiology》1997,17(10):655-661
To determine the effects of CO(2)-enriched air and root restriction on photosynthetic capacity, we measured net photosynthetic rates of 1-year-old loblolly pine seedlings grown in 0.6-, 3.8- or 18.9-liter pots in ambient (360 micro mol mol(-1)) or 2x ambient CO(2) (720 micro mol mol(-1)) concentration for 23 weeks. We also measured needle carbohydrate concentration and water relations to determine whether feedback inhibition or water stress was responsible for any decreases in net photosynthesis. Across all treatments, carbon dioxide enrichment increased net photosynthesis by approximately 60 to 70%. Net photosynthetic rates of seedlings in the smallest pots decreased over time with the reduction occurring first in the ambient CO(2) treatment and then in the 2x ambient CO(2) treatment. Needle starch concentrations of seedlings grown in the smallest pots were two to three times greater in the 2x ambient CO(2) treatment than in the ambient CO(2) treatment, but decreased net photosynthesis was not associated with increased starch or sugar concentrations. The reduction in net photosynthesis of seedlings in small pots was correlated with decreased needle water potentials, indicating that seedlings in the small pots had restricted root systems and were unable to supply sufficient water to the shoots. We conclude that the decrease in net photosynthesis of seedlings in small pots was not the result of CO(2) enrichment or an accumulation of carbohydrates causing feedback inhibition, but was caused by water stress.  相似文献   

9.
Vegetative buds of peach (Prunus persica L. Batsch.) trees act as strong sinks and their bud break capacity can be profoundly affected by carbohydrate availability during the rest period (November-February). Analysis of xylem sap revealed seasonal changes in concentrations of sorbitol and hexoses (glucose and fructose). Sorbitol concentrations decreased and hexose concentrations increased with increasing bud break capacity. Sucrose concentration in xylem sap increased significantly but remained low. To clarify their respective roles in the early events of bud break, carbohydrate concentrations and uptake rates, and activities of NAD-dependent sorbitol dehydrogenase (SDH), sorbitol oxidase (SOX) and cell wall invertase (CWI) were determined in meristematic tissues, cushion tissues and stem segments. Only CWI activity increased in meristematic tissues shortly before bud break. In buds displaying high bud break capacity (during January and February), concentrations of sorbitol and sucrose in meristematic tissues were almost unchanged, paralleling their low rates of uptake and utilization by meristematic tissues, and indicating that sorbitol and sucrose play a negligible role in the bud break process. Hexose concentrations in meristematic tissues and glucose imported by meristematic tissues correlated positively with bud break capacity, suggesting that hexoses are involved in the early events of bud break. These findings were confirmed by data for buds that were unable to break because they had been collected from trees deprived of cold. We therefore conclude that hexoses are of greater importance than sorbitol or sucrose in the early events of bud break in peach trees.  相似文献   

10.
Leaf-level physiological processes were studied in Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) to determine whether apparent increases in stand-level water use efficiency (WUE) observed in response to nitrogen (N) fertilization were attributable to foliar N effects on carbon fixation rates or on stomatal control of water loss. Photosynthesis and transpiration were measured at different light intensities and ambient CO(2) molar fractions and comparisons were made between current-year shoots with average foliar N concentrations of 1.58% (High-N) and 1.25% (Low-N). Photosynthetic rates and foliar N concentrations were positively correlated. In response to light, photosynthesis and stomatal conductance were closely coupled and a similar coupling was observed in response to different ambient CO(2) concentrations. Partitioning the photosynthetic responses into mesophyll and stomatal components indicated that foliar N altered mesophyll conductance but not stomatal control of water loss. High-N shoots had significantly greater rates of photosynthesis and transpiration than Low-N shoots and, as a result, instantaneous WUE did not differ significantly between High-N and Low-N shoots.  相似文献   

11.
Northern red oak (Quercus rubra L.) seedlings and trees differ in their response to ozone. Previous work reported reductions in net photosynthesis, carboxylation efficiency and quantum yield of mature tree leaves, whereas seedling processes were unaffected by the same ozone exposure. To further characterize differences in ozone response between seedlings and mature trees, we examined carbon partitioning and allocation in 32-year-old trees and 4-year-old seedlings of northern red oak after exposure to subambient (seasonal SUM00 dose (sum of all hourly ozone exposures) = 31 ppm-h), ambient (SUM00 dose = 85 ppm-h) and twice ambient (SUM00 dose = 151 ppm-h) ozone concentrations for three growing seasons. For mature trees, ozone exposure decreased foliar starch partitioning, increased starch partitioning in branches and increased (14)C retention in leaves. In contrast, starch partitioning in leaves and branches, and foliar (14)C retention in seedlings were unaffected by ozone exposure, but soluble carbohydrate concentrations in coarse and fine roots of seedlings were reduced. Differences in carbohydrate demand between seedlings and mature trees may underlie the higher leaf ozone uptake rates and greater physiological response to ozone in mature northern red oak trees compared with seedlings.  相似文献   

12.
Effects of elevated CO2 concentration ([CO2]) on carbon assimilation and needle biochemistry of fertilized and unfertilized 25-30-year-old Scots pine (Pinus sylvestris L.) trees were studied in a branch bag experiment set up in a naturally regenerated stand. In each tree, one branch was enclosed in a bag supplied with ambient [CO2] (360 micromol mol(-1)), a second branch was enclosed in a bag supplied with elevated [CO2] (680 micromol(-1)) and a control branch was left unbagged. The CO2 treatments were applied from April 15 to September 15, starting in 1993 for unfertilized trees and in 1994 for fertilized trees, which were treated with N in June 1994. Net photosynthesis, amount and activity of Rubisco, N, starch, C:N ratio and SLA of needles were measured during the growing season of 1995. Light-saturated net photosynthetic rates of 1-year-old and current-year shoots measured at ambient [CO2] were not affected by growth [CO2] or N fertilization. Elevated [CO2] reduced the amount and activity of Rubisco, and the relative proportion of Rubisco to soluble proteins and N in needles of unfertilized trees. Elevated [CO2] also reduced the chlorophyll concentration (fresh weight basis) of needles of unfertilized trees. Soluble protein concentration of needles was not affected by growth [CO2]. Elevated [CO2] decreased the Rubisco:chlorophyll ratio in unfertilized and fertilized trees. Starch concentration was significantly increased at elevated [CO2] only in 1-year-old needles of fertilized trees. Elevated [CO2] reduced needle N concentration on a dry weight or structural basis (dry weight minus starch) in unfertilized trees, resulting in an increase in needle C:N ratio. Fertilization had no effect on soluble protein, chlorophyll, Rubisco or N concentration of needles. The decrease in the relative proportions of Rubisco and N concentration in needles of unfertilized trees at elevated [CO2] indicates reallocation of N resources away from Rubisco to nonphotosynthetic processes in other plant parts. Acclimation occurred in a single branch exposed to high [CO2], despite the large sink of the tree. The responses of 1-year-old and current-year needles to elevation of growth [CO2] were similar.  相似文献   

13.
The effects of pre-storage CO(2) enrichment on growth, non-structural carbohydrates and post-storage root growth potential of Engelmann spruce (Picea engelmannii Parry) seedlings were studied. Seedlings were grown from seed for 202 days in growth chambers with ambient (340 micro l l(-1)) or CO(2) enriched (1000 micro l l(-1)) air. Some seedlings were transferred between CO(2) treatments at 60 and 120 days. Photoperiod was reduced at 100 days to induce bud set and temperature was reduced at 180 days to promote frost hardiness development for storage at -5 degrees C for 2 or 4 months. Stored seedlings were planted in a growth chamber after thawing for one week at +5 degrees C. At 80, 120, 140 and 202 days, and at each planting time after storage, seedlings were harvested for growth measurements and analysis of starch and soluble sugar concentrations. Planted seedlings were assessed for bud break every two days and new roots > 5 mm long were counted after four weeks. Carbon dioxide enrichment increased root collar diameter and almost doubled seedling biomass, with the most obvious effects occurring after bud set. Stem height was affected only slightly and shoot/root ratios were not affected at all. Carbon dioxide enrichment increased the rate of reserve carbohydrate accumulation, but did not influence the final concentration attained before storage (accounting for 32% of seedling dry weight). Needles were the major storage organ for soluble sugars, whereas roots were the major storage organ for starch. Soluble sugars were not strongly affected by two or four months of storage, but starch was reduced by more than 50% in all plant parts. None of the CO(2) treatments had an impact on bud break or root growth potential.  相似文献   

14.
Abstract

Wood ash treatment can probably increase forest productivity on low fertility sites. However, the resulting effect on the carbohydrate concentration as the main carbon and energy reserve in trees is little studied. In 2000, a square of 0.1 ha sandy soil below a 19-year-old Scots pine (Pinus sylvestris) plantation was treated with raw fly ash (0.5 kg.m-2); untreated square was used as control. One year after the treatment, carbohydrates (glucose, fructose, sucrose, maltodextrins, starch and excess bound fructose) were analyzed enzymatically from current-year and one-year-old needles. The ratio K/N in needles suggested an improved balance between these elements in treated trees, in which the K concentration was higher. The largest relative differences (50% of control) were observed in glucose and fructose in summer. The squares did not differ in the concentration of the accumulated carbohydrate reserves in needles during low temperature stress in winter and before the growth of new shoots in spring. During the vegetation period decreased levels of soluble carbohydrates and starch were observed (max 70% of the control value around 100 mg total carbohydrates g-1 dry mass). Because the experiment was designed without true replicates, reasons for the observed differences require further study.  相似文献   

15.
To explore the physiological mechanisms underlying ozone-induced growth reductions in loblolly pine (Pinus taeda L.), seedlings were exposed to sub-ambient (charcoal-filtered), ambient or twice-ambient ozone in open-top chambers for three growing seasons. In the final year of exposure, current-year needle fascicles were labeled with (14)CO(2) and the incorporation of (14)C into biochemical fractions was followed for 48 hours. Irrespective of ozone treatment, losses of (14)C-assimilates from foliage to respiration and translocation were minimal during the first 3 hours, whereas more than 60% of the label was lost during the next 45 hours. Radiolabel in sugar decreased rapidly after a lag period, roughly paralleling the pattern of total (14)C loss. The amount of (14)C label in starch and lipids plus pigments remained constant throughout the 48-hour chase period, whereas the amount of (14)C label in other fractions showed a net decrease over the 48-hour chase period. Ozone treatments altered foliar carbon dynamics in two ways: (1) ozone exposure increased foliar (14)C retention up to 21% for the first 5 hours after labeling, but not thereafter, and (2) ozone exposure decreased partitioning of (14)C into starch and increased partitioning of (14)C into organic acids, residue, and lipids plus pigments, indicating an intensified partitioning of carbon to injury and repair processes. Both short-term carbon retention and diversion of carbon from storage compounds to repair processes are foliar mechanisms by which ozone exposure could decrease growth in loblolly pine seedlings.  相似文献   

16.
Strand M 《Tree physiology》1997,17(4):221-230
Photosynthetic O(2) evolution at high irradiances (approximately 600-1000 micro mol m(-2) s(-1)) and O(2) uptake in darkness were measured in needles of control, irrigated and irrigated-fertilized trees of Norway spruce (Picea abies (L.) Karst.). Measurements were made at 20 degrees C and at high CO(2) concentrations. The results suggest that, at given times of the year, a major part of the variation in gross photosynthesis of current-year and one-year-old needles across treatments is associated with differences in needle N content. Furthermore, the rate of O(2) uptake measured after 5 or 10 min in darkness was positively correlated with both the preceding rate of gross O(2) evolution and the N content in fully expanded current-year needles. Measurements of chlorophyll a fluorescence, taken simultaneously with measurements of O(2) evolution in current-year sun needles, showed that Stern-Volmer quenching of minimum fluorescence and the ratio of variable to maximum fluorescence in the dark- and light-adapted state were strongly correlated with the gross rate of O(2) evolution. This suggests that the increased rate of gross photosynthesis in needles of irrigated-fertilized trees was associated with adjustments in the thermal energy dissipation within photosystem II.  相似文献   

17.
We examined the effects of three foliar potassium concentrations (high, intermediate and low) on the morphology, ultrastructure and polyamine concentrations of current-year and 1- and 2-year-old needles of 30-year-old Scots pine (Pinus sylvestris L.) trees. Foliar K concentration had only a slight effect on needle morphology. The sclerenchyma cell walls were thinner, the xylem area was larger, and the resin ducts were smaller in needles with a low K concentration than in needles with a high or intermediate K concentration. In addition, the bundle sheath cells were collapsed in needles having a low K concentration. The secondary growth of phloem tissue and the mesophyll area were greater in needles with a high or intermediate K concentration than in needles with a low K concentration, possibly indicating greater production of photoassimilates in these trees. At the ultrastructural level, mesophyll cells with enlarged central vacuoles and small vacuoles containing electron-dense material were common in needles having a low K concentration. Enlargement of the central vacuole coincided with an exponential increase in putrescine concentration in needles with a low K concentration, suggesting that the central vacuole may function as a storage site for putrescine.  相似文献   

18.
Oksanen E 《Tree physiology》2003,23(9):603-614
Physiological responses of 4-year-old potted saplings of an O3-tolerant clone of Betula pendula Roth to short-term ozone (O3) exposure (one growing season) were compared with those of 6-year-old open-soil-grown trees of the same clone fumigated with O3 for six growing seasons. In the 2001 growing season, both groups of plants were exposed to ambient (control) and 1.6x ambient (elevated) O3 concentration under similar microclimatic conditions in a free air O3 exposure facility. Growth, net photosynthesis, stomatal conductance, stomatal density, visible foliar injury, starch and nutrient concentrations, bud formation and differences in O3 responses between lower, middle and upper sections of the canopy were determined. The potted saplings were unaffected by elevated O3 concentration, whereas the open-soil-grown trees showed a 3-38% reduction in shoot growth, a 22% reduction in number of overwintering buds, a 26-65% decrease in autumnal net photosynthesis, 30% and 20-23% reductions in starch and nitrogen concentrations of senescing leaves, respectively, and disturbances in stomatal conductance. The greater O3 sensitivity of open-soil-grown trees compared with potted saplings was a result of senescence-related physiological factors. First, a lower net photosynthesis to stomatal conductance ratio in open-soil-grown trees at the end of the season promoted O3 uptake and decreased photosynthetic gain, leading to the onset of visible foliar injuries. Second, decreased carbohydrate reserves may have resulted in deleterious carry-over effects arising from the reduced formation of over-wintering buds. Finally, the leaf-level O3 load was higher for open-soil-grown trees than for potted saplings because of slower leaf senescence in the trees. Thus, O3 sensitivity in European white birch increases with increasing exposure time and tree size.  相似文献   

19.
Bauer G  Schulze ED  Mund M 《Tree physiology》1997,17(12):777-786
Mineral nutrition of Norway spruce (Picea abies (L.) Karst.) and beech (Fagus sylvatica L.) was investigated along a transect extending from northern Sweden to central Italy. Nitrogen (N) concentrations of needles and leaves in stands growing on acid soils did not differ significantly between central Italy and southern Sweden (1.0 +/- 0.1 mmol N g(-1) for needles and 1.9 +/- 0.14 mmol N g(-1) for leaves). In both species, foliar N concentrations were highest in Germany (1.2 mmol N g(-1) for needles and 2.0 mmol N g(-1) for leaves) and decreased by 50% toward northern Sweden (0.5 mmol N g(-1)). Both species showed constant S/N and P/N ratios along the transect. Calcium, K and Mg concentrations generally reflected local soil conditions; however, Mg concentrations reached deficiency values in Germany. Leaf area per unit dry weight varied significantly along the transect with lowest values for Norway spruce recorded in northern Sweden and Italy (3.4 m(2) kg(-1)) and a maximum in central Europe (4.7 m(2) kg(-1)). A similar pattern was observed for beech. Despite the low variation in foliar N concentrations on the large geographic scale, local and regional variations in N concentrations equalled or exceeded the variation along the entire continental transect. Furthermore, nutrient contents (i.e., nutrient concentration x dry weight per needle or leaf) showed a greater variation than nutrient concentrations along the transect. Nitrogen contents of Norway spruce needles reached minimum values in northern Sweden (2.4 micro mol N needle(-1)) and maximum values in Denmark (5.0 micro mol N needle(-1)). The N content of beech leaves was highest in Denmark (242 micro mol N leaf(-1)). At the German site, foliar N content rather than N concentration reflected the seasonal dynamics of foliar growth and N storage of the two species. During foliage expansion, there was an initial rapid increase in N content and a decrease in N concentration. This pattern lasted for about 2 weeks after bud break and was followed by 6 weeks during which dry weight and N content of the foliage increased, resulting in a further decrease in N concentration. During summer, dry weight and N content of mature needles of Norway spruce increased further to reach a maximum in autumn, whereas N concentration remained constant. In spring, reallocation of N from 1- and 2-year-old needles was 1.5 and 1.0 micro mol N needle(-1), respectively. This remobilized N was a major source of N for the development of new needles, which had an N content of 1.5 micro mol N needle(-1) after bud break. The seasonal remobilization of N from old foliage decreased with increasing needle age. Needle N content and dry weight decreased progressively with age (1 micro mol N needle(-1) between age classes 2 and 5), whereas N concentrations remained constant. For Norway spruce, annual stemwood production was correlated with needle N content but not with foliar N concentration or with the total amount of N in the canopy. Interspecific and geographical differences in plant nutrition are discussed on the basis of competitive demands for C and N between growth of foliage and wood.  相似文献   

20.
Two-year-old Corsican pine (Pinus nigra ssp. laricio var. Corsicana) seedlings were either well watered or subjected to a moderate drought for one month before being lifted from the nursery bed on October 9 and transplanted. Well-watered, non-transplanted seedlings served as controls. Needle predawn water potential (Psi(wp)), non-structural carbohydrate concentrations and plant development (survival, bud break, shoot elongation) were assessed before and during the first growing season after transplanting. On April 16, just before bud break, Psi(wp) was lower for the well-watered + transplanted and drought-conditioned + transplanted seedlings (Psi(wp) = -1.45 and -1.83 MPa, respectively) than for the controls (Psi(wp) = -0.56). There was a close relationship between the Psi(wp) measured on April 16 and bud break, shoot elongation and plant survival during the following growing period. Above a Psi(wp) of -1.1 MPa, all plants developed normally. Between -1.1 MPa and -1.6 MPa, bud break, and thus shoot elongation, did not occur in all plants. Between -1.6 MPa and -2.1 MPa, the plants were characterized by the absence of shoot growth, but mortality was zero. Below -2.1 MPa, there was a large increase in plant mortality. On April 16, starch concentrations were markedly lower in the roots of transplanted seedlings than in the controls. There was a positive correlation between Psi(wp) and root starch concentration. The Psi(wp) (-2.3 MPa) at which complete starch depletion was observed in the roots corresponded to the Psi(wp) below which plants did not survive. These results suggest that mechanisms specifically linked to altered water status and metabolic processes associated with altered carbohydrate status are involved in transplanting stress; however, it was not possible to disentangle the two effects. Drought conditioning did not lead to a marked increase in soluble carbohydrate concentrations, as reported for other species, and did not increase plant tolerance to transplanting stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号