首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Hydroponically cultivated Pinus pinaster Ait. seedlings of a drought-sensitive population from France (Landes) and of a more drought-adapted population from Morocco (Tamjoute) were subjected to a progressive increase in water stress by additions of an osmoticum (polyethylene glycol 600) to the nutrient solution. The final osmotic potential (Psi(ms)) of the nutrient solution was achieved over a period of up to 6 days, and ranged from -0.03 (control, no added osmoticum) to -0.8 MPa. In the 6 days during which water stress was imposed, roots elongated faster in the Moroccan provenance than in the French provenance, but the applied water deficits did not inhibit root elongation in either population. Among treatments, root dry weight per unit root length, total root dry weight and root/shoot dry weight ratio increased with decreasing Psi(ms) in both provenances. Both the water potential (Psi(w)) of the roots (apices) and the water potential difference between the roots and the nutrient solution decreased as Psi(ms) decreased. The reduction in Psi(w) was matched by a decrease of comparable magnitude in cell osmotic potential (Psi(pi)) so that root turgor was unaffected by the Psi(ms). Osmotic adjustment was greater, however, in the Moroccan provenance than in the French provenance. Consequently, under the osmotically imposed water stress, the water potential difference between root and nutrient solution was greater in the Moroccan provenance than in the French provenance. Similar changes in plant water relations were observed when seedlings were grown in drying sand.  相似文献   

2.
Black spruce (Picea mariana (Mill.) BSP) and tamarack (Larix laricina (Du Roi) K. Koch) are the predominant tree species in the boreal peatlands of Alberta, Canada, where low nutrient availability, low soil temperature and a high water table limit their growth. Effects of flooding for 28 days on morphological and physiological responses were investigated in greenhouse-grown black spruce and tamarack seedlings in a growth chamber. Flooding reduced root hydraulic conductance, net assimilation rate and stomatal conductance, and increased water-use efficiency (WUE) and needle electrolyte leakage in both species. Although flooded black spruce seedlings maintained higher net assimilation rates and stomatal conductance than flooded tamarack seedlings, flooded tamarack seedlings were able to maintain higher root hydraulic conductance than flooded black spruce seedlings. Needles of flooded black spruce developed tip necrosis and electrolyte leakage after 14 days of flooding, and these symptoms were subsequently more prominent than in needles of flooded tamarack seedlings. Flooded tamarack seedlings exhibited no visible injury symptoms and developed hypertrophied lenticels at their stem base. Application of exogenous ethylene resulted in a significant reduction in net assimilation, stomatal conductance and root respiration, whereas root hydraulic conductivity increased in both species. Thus, although flooded black spruce seedlings maintained a higher stomatal conductance and net assimilation rate than tamarack seedlings, black spruce did not cope with the deleterious effects of prolonged soil flooding and exogenous ethylene as well as tamarack.  相似文献   

3.
Western red cedar (Thuja plicata Donn) seedlings were grown in a greenhouse and subjected to six nursery cultural treatments (long-day wet (LDW), long-day moderate (LDM), long-day dry (LDD), short-day wet (SDW), short-day moderate (SDM), and short-day dry (SDD)) during mid-summer. Seedling attributes were measured before fall and spring planting.Short-day and moisture stress treatments reduced shoot but not root growth, resulting in reduced shoot to root ratios. Fall tested LDW seedlings had a higher osmotic potential at saturation and turgor loss point than other treatments. Fall tested short-day seedlings had lower resistance to plant water movement. The LDW seedlings had the greatest new root growth in fall testing, while one of the lowest in spring testing. In the fall, LDW seedlings had the greatest net photosynthesis (Pn) at 25 °C root temperature, with all treatments having a similar decline in Pn as root temperatures decreased to 1 °C. In the spring, all treatments had a similar decline in Pn with decreasing predawn shoot water potential. Moisture stress and short-day nursery cultural treatments applied in mid-summer will not harden western red cedar seedlings for all potential field conditions.Spring, compared to fall, tested seedlings had two times the shoot and three times the root dry weight. Spring tested seedlings had a lower osmotic potential, maximum modulus of elasticity, relative water content at turgor loss point and greater dry weight fraction. Fall, compared to spring, tested seedlings had lower resistance to plant water movement and greater cuticular transpiration. In general, fall tested seedlings had more root growth than spring tested seedlings. Spring, compared to fall, tested seedlings generally had greater stress resistance.  相似文献   

4.
Ten-week-old pond pine (Pinus serotina Michx.) seedlings were grown in solution culture at 5 or 100 microM P and under aerobic or hypoxic solution conditions. After 6 and 10 weeks in the treatments, changes in relative growth rate (RGR), P acquisition and allocation, and carbohydrate partitioning were determined by analyzing tissue for total P, soluble sugars and starch. Six weeks of low-P growth conditions decreased seedling dry weight and the ratio of shoot dry weight to root dry weight (S/R) by 39 and 51%, respectively, in comparison to seedlings from the aerobic, high-P (control) treatment. Mean RGRs of shoots in the low-P treatment were reduced by 33%, whereas root growth was unaffected. After 10 weeks of low-P growth conditions, however, both shoot and root RGRs were significantly reduced, and plants had lower S/R ratios than in any other treatment. Slowed shoot growth was accompanied by starch and nonstructural carbohydrate accumulation in needles, indicating that needle growth was not limited by carbohydrate supply. Six weeks of low-P growth conditions decreased total seedling P by 75%, reflecting a 97% reduction in the net uptake rate (NUR). Shoot NUR as a fraction of seedling NUR was also greatly reduced in the low-P treatment, indicating that low-P growth conditions affected P translocation to the shoot more than P accumulation by roots. In contrast, 6 weeks of hypoxic growth conditions decreased total dry weight of seedlings in the high-P treatment by 41% relative to their aerobic counterparts. Root growth was affected more than shoot growth, however, and S/R ratios increased. After 10 weeks, S/R ratios doubled, primarily because of the reduction in root RGR. Nevertheless, roots of hypoxic seedlings contained a higher percentage of total seedling P than their aerobic counterparts. Net P acquisition per seedling decreased by more than 50% under hypoxic growth conditions, as a result of reductions in both root RGR and seedling NUR. Starch accumulation in shoots of hypoxic seedlings reflected reductions both in root growth and in transport of carbohydrates to nonwoody roots. Carbohydrate availability did not appear to be limiting growth of hypoxic woody roots, which are well-aerated internally, but it may have limited metabolic processes in nonwoody roots of seedlings from the high-P treatment.  相似文献   

5.
Effects of root zone temperature on growth, shoot water relations, and root water flow were studied in 1-year-old aspen (Populus tremuloides Michx.) seedlings. Seedlings were grown in solution culture and exposed to day/night air temperatures of 22/16 degrees C and solution culture temperatures of 5, 10, or 20 degrees C for 28 days after bud flush. Compared with root growth at 20 degrees C, root growth was completely inhibited at 5 degrees C and inhibited by 97% at 10 degrees C. The 5 and 10 degrees C treatments severely reduced shoot growth, leaf size, and total leaf area. Root water flow was inhibited by the 5 and 10 degrees C treatments. However, when seedlings were grown for 28 days at 5 degrees C and root water flow was measured at 20 degrees C, there was an increase in flow rate. This increase in root water flow was similar in magnitude to the decrease in root water flow observed when seedlings were grown for 28 days at 20 degrees C and root water flow was measured at 5 degrees C. Reduced root water flow of seedlings grown at 5 and 10 degrees C resulted in decreased stomatal conductance, net assimilation, and shoot water potentials. Root water flow was positively correlated with leaf size, total leaf area, shoot length, and new root growth. Transferring seedlings from 5 to 20 degrees C for 24 h significantly increased root water flow, shoot water potential, and net photosynthesis, whereas transferring seedlings from 10 to 20 degrees C resulted in only a slightly increased shoot water potential. Transferring seedlings from 20 to 5 degrees C greatly reduced root water flow, stomatal conductance, and net photosynthesis, whereas shoot water potential decreased only slightly.  相似文献   

6.
Leaf gas exchange, water relations and osmotic adjustment were studied in hydroponically grown Phillyrea latifolia L. plants exposed to 5 weeks of salinity stress (0, 80, 160, 240 and 320 mM NaCl) followed by 5 weeks of treatment with half-strength Hoagland solution. Whole-plant relative growth rate and root/shoot and lateral/structural root ratios were also evaluated. Net CO2 assimilation rate, stomatal conductance and transpiration rate were markedly decreased by all of the salt treatments. Growth was also strongly depressed by all salt treatments, especially lateral root growth. Leaf water potential decreased soon after salinity stress was imposed, whereas there was a lag of several weeks before leaf osmotic potential decreased in response to the salt treatments. After 5 weeks of salinization, leaf turgor of salt-treated plants was similar to that of controls. Although Na+ + Cl- contributed little to the salt-induced changes in osmotic potential at full turgor (Psi(piFT)), the contributions of K+, mannitol (Man) and glucose (Glc) to Psi(piFT) markedly increased as external salinity increased. Salt accumulation was negligible in the youngest leaves, which mostly accumulated soluble carbohydrates and K+; in contrast, old leaves served as storage sinks for Na+ and Cl-. Photosynthetic performance of salt-treated plants fully recovered once salt was leached from the root zone, with the recovery rate depending on the severity of the salt stress previously experienced by the plants. Recovery of gas exchange occurred even though the leaves still had a salt load similar to that detected in leaves at the end of the 5-week salinity period, and had markedly lower concentrations of K+ and soluble carbohydrates than control leaves. We conclude that salt-induced water stress primarily controlled gas exchange of salt-treated P. latifolia leaves, whereas the salt load in the leaves did not cause irreversible damage to the photosynthetic apparatus.  相似文献   

7.
We assessed clonal variation in morphological variables, mineral nutrition, root growth capacity, net photosynthesis, tannin distribution, and cuticle and epicuticular wax features within four families of white spruce (Picea glauca (Moench) Voss). Seeds were collected from four families obtained through controlled crosses among selected genotypes. For each family, plants were produced either from seeds (zygotic) or by somatic embryogenesis (clones). Each family was therefore represented by its zygotic seedlings and three clones. Within a family and under similar growth conditions, several clones differed significantly from the zygotic seedlings in height, root-collar diameter, needle dry mass, branch density, shoot dry mass, root dry mass, and length of needles. Branch density (number of first-order branches per cm height) of zygotic seedlings and clones varied from 0.8 to 1.4 branches cm(-1) and from 0.6 to 1.3 branches cm(-1), respectively. Mean needle length of zygotic seedlings and clones ranged from 11 to 14 mm and from 11 to 17 mm, respectively. For many variables (height, dry mass of new roots, needle dry mass and branch density), differences among clones were significantly greater than differences among zygotic seedlings within a family. Tannins were more abundant in needles of clones than in needles of zygotic seedlings. In some clones, tannins occurred as a ribbon along the central vacuole, whereas in others they appeared as aggregates dispersed in the vacuole. Within a family, N, P and K showed considerable variations in their use efficiency. Interclonal variations were observed in root growth potential and net photosynthesis. Variations in growth and physiology reflect genetically determined differences among clones within a family.  相似文献   

8.
We examined the post-planting consequences of pre-planting exposure stress on two-year-old, bare-root Corsican pine (Pinus nigra Arnold. ssp. laricio var. Corsicana) seedlings. Seedlings were lifted from a nursery and exposed to ambient conditions for periods of up to 192 h before being planted in minirhizotrons. Exposure decreased seedling water potential, CO(2) assimilation rate, leaf conductance and new root elongation, and increased mortality after planting. During exposure, needle total nonstructural carbohydrates (TNC) concentration (expressed on a dry mass basis) decreased by 0.31 mg g(dm) (-1) h(-1); however, needle and root TNC concentrations remained high (> 100 mg g(dm) (-1)) at planting, even in those treatments leading to severe seedling mortality. More than 90% of the seedlings with predawn water potentials lower than -1.3 MPa at planting did not elongate new roots and did not survive, whereas a similar percentage of seedlings with a predawn water potential above this value at planting elongated new roots and survived, suggesting that this value corresponds to a turgor threshold below which new root formation is inhibited. At planting, embolization of xylem conduits in roots and shoots was low for seedlings in all of the exposure treatments.  相似文献   

9.
Lamhamed  M.S.  Bernier  P.Y.  Hébert  C. 《New Forests》1997,13(1-3):209-223
Containerized black spruce (Picea mariana [Mill.] B.S.P.) seedlings of three different sizes (small, medium, and large) were planted in raised sand beds maintained under wet, moderately dry or dry watering regimes during the growing season. The small seedlings were of a conventional stock type. The two larger sizes were novel stock types grown in larger containers. Physiological measurements during the summer showed that the small and medium seedlings maintained nearly similar levels of gas exchanges and water status, but that the large seedlings had reduced net photosynthesis and stomatal conductance under all watering regimes. Analysis of dry masses showed comparable relative growth rates in the small and medium seedlings, but a small to null growth in the large seedlings. Examination of root relative growth rate under wet conditions revealed significant root growth in small and medium seedlings, but negligible growth in the large seedlings. It was concluded that increasing the shoot size of containerized seedlings can be achieved without increasing the susceptibility of the seedlings to water stress, as long as the vigour of the root system is maintained.  相似文献   

10.
Forty-five-day-old seedlings of sour orange (Citrus aurantium L.) and Citrus macrophylla Wester, the most commonly used rootstocks in lemon orchards, were grown in nutrient solutions containing 1 (control), 10, 20, 30 or 60 mM NaCl for 14 days. The effects of salinity on growth, uptake, transport and accumulation of Cl- and Na+ ions in leaves, stem and four root segments were studied. The 60 mM NaCl treatment reduced leaf dry mass more in C. macrophylla (40%) than in sour orange (20%), whereas it reduced root dry mass more in sour orange (36%) than in C. macrophylla (20%). In C. macrophylla, Cl- and Na+ uptake rates were high at the beginning of the saline treatments, but low at the end of the 14-day experiment. In contrast, sour orange showed high uptake rates at the beginning and end of the experiment. In response to increasing salinity, root and shoot concentrations of Cl- and Na+ increased in sour orange, but not in C. macrophylla. Different loading characteristics of Cl- and Na+ were observed between young and old segments of the root system. In general, old root segments reached quasi-steady-states later than young root segments. These results suggest that sour orange and C. macrophylla have different regulatory mechanisms for uptake and transport of Cl- and Na+.  相似文献   

11.
Three-year-old Scots pine (Pinus sylvestris L.) seedlings were exposed to either ambient or elevated (1.5-1.6 x ambient) ozone concentration ([O3]) for three growing seasons in an open-field fumigation facility where they were irrigated during the growing season with a nutrient solution providing nitrogen (N) at 70 (LN treatment), 100 (control) or 150% (HN treatment) of the optimum supply rate. Treatment effects were most evident during the third year of exposure, when the ambient [O3] + HN treatment enhanced whole-plant biomass, root/shoot dry weight ratio, needle pigment concentrations and the number of chloroplast plastoglobuli in the mesophyll cells in current-year (C) needles, whereas it reduced starch accumulation in C needles and abscission of 2-year-old (C+2) needles. In the control fertilization, 3 years of exposure to elevated [O3] decreased stem-base diameter and increased K concentration and electron density of chloroplast stroma in C needles. Plants in the HN treatment exposed for 3 years to elevated [O3] had significantly lower heights, current-year main shoot length and root/shoot dry mass ratio than control plants, and increased abscission of C+2 needles. In contrast, O3-induced changes in the ultrastructure of mesophyll cells were most evident in seedlings grown for 3 years in the LN treatment. We conclude that, in Scots pine, a relatively O3-tolerant species, chronic O3 exposure leads to cumulative growth reduction, increased needle abscission and changes in carbon allocation that are strongly influenced by plant N availability.  相似文献   

12.
Omi SK  Yoder B  Rose R 《Tree physiology》1991,8(3):315-325
Post-storage water relations, stomatal conductance, and root growth potential were examined in ponderosa pine (Pinus ponderosa Dougl. ex Laws.) seedlings from high- and low-elevation seed sources that had been lifted either in October or November and freezer stored, or in March, and then grown hydroponically in a greenhouse for 31 days. Seedlings lifted in October had poor root initiation (< 17 new roots per seedling), low predawn leaf water potentials (< -1.5 MPa), and low stomatal conductance (7.10 mmol m(-2) s(-1)) compared with seedlings lifted in November or March. There was little difference in post-storage water relations and stomatal conductance between seedlings lifted in November and those lifted in March. Throughout the 31-day test, seedlings from the high-elevation seed source produced 3-9 times more new roots, had higher predawn leaf water potentials (-0.6 to -0.7 MPa versus -1.1 to -1.6 MPa), and 1.3-5 times greater stomatal conductance than seedlings from the low-elevation seed source. For all seedlings on Day 31, the number of new roots was significantly related to predawn leaf water potential (r(2) = 0.65) and stomatal conductance (r(2) = 0.82). Similarly, the dry weight of new roots per seedling on Day 31 accounted for a significant amount of the variation in predawn leaf water potential (r(2) = 0.81) and stomatal conductance (r(2) = 0.49).  相似文献   

13.
Drought stress is the main cause of mortality of holm oak (Quercus ilex L.) seedlings in forest plantations. We therefore assessed if drought hardening, applied in the nursery at the end of the growing season, enhanced the drought tolerance and transplanting performance of holm oak seedlings. Seedlings were subjected to three drought hardening intensities (low, moderate and severe) for 2.5 and 3.5 months, and compared with control seedlings. At the end of the hardening period, water relations, gas exchange and morphological attributes were determined, and survival and growth under mesic and xeric transplanting conditions were assessed. Drought hardening increased drought tolerance primarily by affecting physiological traits, with no effect on shoot/root ratio or specific leaf mass. Drought hardening reduced osmotic potential at saturation and at the turgor loss point, stomatal conductance, residual transpiration (RT) and new root growth capacity (RGC), but enhanced cell membrane stability. Among treated seedlings, the largest response occurred in seedlings subjected to moderate hardening. Severe hardening reduced shoot soluble sugar concentration and increased shoot starch concentration. Increasing the duration of hardening had no effect on water relations but reduced shoot mineral and starch concentrations. Variation in cell membrane stability, RT and RGC were negatively related to osmotic adjustment. Despite differences in drought tolerance, no differences in mortality and relative growth rate were observed between hardening treatments when the seedlings were transplanted under either mesic or xeric conditions.  相似文献   

14.
Non-mycorrhizal Norway spruce seedlings (Picea abies Karst.) and Norway spruce seedlings colonized with Paxillus involutus Fr. were grown in an axenic silica sand culture system. After successful mycorrhizal colonization, the seedlings were exposed to 200 or 800 micro M AlCl(3) for 10 weeks. In both non-mycorrhizal and mycorrhizal seedlings, exposure to Al significantly reduced root growth and the uptake of Mg and Ca. After 5 weeks of exposure to 800 micro M Al, the mycorrhizal seedlings had significantly higher chlorophyll concentrations than the non-mycorrhizal seedlings, although no difference in Mg nutrition was apparent. After 10 weeks of exposure to Al, both non-mycorrhizal and mycorrhizal seedlings exhibited needle chlorosis and reduced photosynthetic activity. However, the aluminum-induced reduction in shoot growth was largely ameliorated by colonization with P. involutus. We conclude that mycorrhizal colonization modifies the phytotoxic effects of Al in Norway spruce seedlings. However, differences in physiological responses to Al between mycorrhizal and non-mycorrhizal seedlings may be largely reduced in the long term as a result of impaired mineral nutrient uptake.  相似文献   

15.
Effects of flurprimidol on plant water relations and leaf gas exchange were investigated in one-year-old white ash (Fraxinus americana L.) seedlings subjected to soil water deficits. Flurprimidol (20 mg kg(-1) of soil equivalent) was applied to the soil surface of pot-grown seedlings after shoot growth was completed. Two months after flurprimidol application, water was withheld from one-half of the seedlings. Leaf water relations and gas exchange parameters were measured 5, 7, 10, 14, 18 and 22 days after withholding water. Under both irrigated and nonirrigated conditions, flurprimidol treatment resulted in reduced net CO(2) assimilation rate and transpirational water loss of seedlings as a result of decreased stomatal conductance. Consequently, flurprimidol-treated seedlings had higher leaf water potential and relative water content than untreated seedlings. Nonirrigated flurprimidol-treated seedlings also had greater turgor and sap osmolality and lower osmotic potential at full turgor than seedlings in the other treatments, indicating that flurprimidol increased osmotic adjustment. Under water-stress conditions, water use efficiency was lower and gas exchange efficiency was higher in flurprimidol-treated seedlings than in untreated seedlings, suggesting that flurprimidol treatment enhances survival of plants subjected to soil water deficits.  相似文献   

16.
One-year-old Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) and lodgepole pine (Pinus contorta Dougl.) seedlings were grown for 17 weeks in 100-cm deep, 7.8-liter containers. Two Douglas-fir provenances, one from a wet and one from a dry site in coastal British Columbia, and two lodgepole pine provenances, one from a wet and one from a dry site in interior British Columbia, were grown in wet (522% water content) or dry (318% water content) peat/vermiculite soil in a factorial design. Each container was sealed so that water loss occurred only through the seedling. Five harvests were made at three to five week intervals and water use, dry matter increment, root length and root weight were determined at each harvest. Stomatal conductance and shoot water potentials were measured during the last 12 weeks of the experiment. Lodgepole pine seedlings had greater dry matter production, water use, stomatal conductance and new root length than Douglas-fir seedlings. New root weight of lodgepole pine seedlings exceeded that of Douglas-fir seedlings during the last five weeks of the experiment, and specific root length (root length per unit root weight) of new roots was higher for lodgepole pine seedlings throughout the experiment. Douglas-fir seedlings showed higher water use efficiency (WUE) than lodgepole pine seedlings, and both species showed higher WUE in the dry soil treatment. Douglas-fir seedlings had lower water potentials and higher water uptake rates per unit of new root length than lodgepole pine seedlings, although water uptake rates per unit of root dry weight showed little difference between species. Soil water treatment influenced specific root length of new roots, water uptake per unit of new root length, and WUE in Douglas-fir seedlings more than in lodgepole pine seedlings.  相似文献   

17.
土壤温度和水分变化对川西云杉幼苗氮和磷含量的影响   总被引:1,自引:0,他引:1  
【目的】研究不同梯度的土壤温度和水分对川西云杉幼苗生长性状和各器官氮和磷含量的影响,以期为全球气候变暖背景下解释川西云杉树线形成的原因提供参考和数据积累。【方法】以5年生川西云杉幼苗为试验材料,采用人工气候室结合嵌套设计,设置5个土壤温度梯度(2、7、12、17、22℃)和3个土壤水分梯度(干旱处理、正常水分含量处理、饱和水分含量处理)。每处理9株幼苗,共135株幼苗。实验处理4个月后,测定并比较分析不同梯度的土壤温度和水分对幼苗的生长性状、各器官干物质含量、各器官全氮、全磷浓度和含量以及土壤全氮和全磷浓度的影响。【结果】土壤温度处理对幼苗基径和株高生长量均无显著影响,而土壤水分处理对幼苗株高生长量有显著影响;在2℃和7℃土壤温度干旱处理下显著降低了幼苗的株高生长量,但随着土壤温度的升高其影响效应不显著。土壤温度处理对土壤氮和磷浓度无显著影响,而干旱处理显著升高了土壤氮和磷浓度。川西云杉幼苗各器官的氮和磷浓度以及当年生叶氮含量随土壤温度降低显著降低;干旱和饱和水分处理显著降低了当年生叶和当年生枝的氮浓度,饱和水分处理显著降低了当年生叶的磷浓度,干旱处理显著降低了当年生枝、茎和根的磷浓度,干旱和饱和水分处理显著降低了当年生叶和根的氮和磷含量,且随着土壤温度升高影响效应更显著。【结论】在短期内,土壤低温对川西云杉幼苗的生长性状没有明显的制约作用,但对川西云杉幼苗各器官的氮和磷浓度及含量影响显著,尤其是当年生叶和根的氮和磷浓度及含量。在川西地区,低温、干旱等极端气候胁迫导致的云杉幼苗氮、磷含量的不足很可能是限制川西云杉垂直分布的重要因素。此外,土壤温度和水分处理存在显著的交互作用,随着土壤温度的降低,水分胁迫对幼苗各器官氮和磷含量的影响由显著变得不再显著,说明随着海拔升高,与水分因子相比,土壤低温成为造成云杉各器官营养元素亏缺的主导因子。  相似文献   

18.
D. S. Thomas 《New Forests》2009,38(3):245-259
Forestry requires low mortality of transplanted seedlings. Mortality shortly after planting is often associated with inadequate hydration of transplants. Seedlings can be hardened to the drought conditions they may experience after transplanting by exposing them to controlled drought conditions in the nursery. Eucalyptus pilularis Sm. seedlings were drought hardened by providing nil (severe treatment) or half (mild treatment) the daily irrigation routinely received (control treatment) for up to two non-consecutive days per week during the last 4 weeks of growth in the nursery. Drought hardening reduced stem diameter, seedling leaf area, leaf area per root biomass and seedling quality measured by the Dickson quality index, but increased root:shoot ratio. Hardened seedlings had lower stomatal conductance and leaf water potential on the days they received less irrigation that the control treatment. Hardened seedlings had greater stomatal conductance and were less water stressed than seedlings experiencing drought for the first time indicating hardened seedlings had adjusted physiologically to drought. Survival after transplanting in the controlled drought environment in a glasshouse was enhanced by the hardening treatments. Non hardened seedlings that had had their upper leaves manually removed immediately prior to transplanting to reduce leaf area (top-clipped) had similar survival to hardened seedlings. Stomatal conductance and leaf water potential after transplanting were higher in hardened and top-clipped seedlings than unhardened control seedlings or vegetative cuttings. Survival in the field trial was over 95% for all treatments, possibly as rain fell within 4 days of planting and follow-up rain occurred in the subsequent weeks. Neither the hardened or top-clipped seedlings planted in the field trial had reduced growth, increased propensity to form double leaders or worse stem form than control seedlings when measured at age 3 years.  相似文献   

19.
We compared the photosynthetic and photoassimilate transport responses of Melaleuca cajuputi Powell seedlings to root hypoxia with those of Eucalyptus camaldulensis Dehnh. Control and hypoxia treated roots were maintained in a nutrient solution through which air or nitrogen was bubbled. Under root hypoxic conditions, seedlings of M. cajuputi, a flood-tolerant species, maintained height growth, whereas seedlings of E. camaldulensis, a moderately flood-tolerant species, showed markedly decreased height growth compared with control seedlings. Root hypoxia caused decreases in whole-plant biomass, photosynthetic rate and stomatal conductance in E. camaldulensis, but not in M. cajuputi. Photoassimilate transport to roots decreased significantly in E. camaldulensis seedlings 4 days after treatment and starch accumulated in mature leaves. Photoassimilate supply to hypoxic roots of E. camaldulensis seedlings was, thus, limited by reduced photoassimilate transport rather than by reduced photosynthesis. In contrast, M. cajuputi seedlings showed sustained photoassimilate transport to hypoxic roots and persistent photosynthesis, which together provided a substantial photoassimilate supply to the roots. Sucrose accumulated in hypoxic E. camaldulensis roots, but not in hypoxic M. cajuputi roots. A stable, low sucrose concentration in hypoxic roots would let M. cajuputi seedlings prolong photoassimilate transport to the roots. Photoassimilate partitioning among the water-soluble carbohydrates, starch and structural carbohydrates within the roots was unaffected by root hypoxia in E. camaldulensis, but in M. cajuputi, partitioning was shifted somewhat from structural carbohydrates to water-soluble carbohydrates. This suggests that M. cajuputi seedlings are able to increase photoassimilate utilization in metabolism and sustain energy production under root hypoxic conditions.  相似文献   

20.
Containerized red pine (Pinus resinosa Ait.) seedlings were grown over a 16-week rotation at different irrigation treatments to assess moisture stress on plant growth and nutrition, and to evaluate container capacity as a guide for irrigation. Wet, moist and dry moisture regimes were induced by watering trees to the container capacity weight of the growing medium after declining to respective 92, 73 and 57% of this reference weight. The seedlings received the same amount of fertilizer over the growth period. Maximum shoot and root growth was attained under the wet moisture regime, but biomass was reduced 21 and 43% for the moist and dry regimes. Plant nutrient concentrations were not significantly affected by watering treatment, and vector diagnosis of dry matter production and element composition indicated that macronutrients were non-limiting. Seedling nutrient uptake however, was significantly diminished by moisture stress which was attributed to decreased root growth and lower mass flow and diffusion of nutrients when moisture availability was reduced in the peat rooting media. Container capacity was found to be a sensitive reference for judging the watering requirements of greenhouse-grown containerized seedlings. The method can be relatively easily applied on an operational basis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号