首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 456 毫秒
1.
The degree to which freezer storage fulfilled the chilling requirement of ponderosa pine (Pinus ponderosa Dougl. ex Laws.) seedlings of two sources was determined by monitoring their development after potting or planting. The seedlings were lifted in September, October, November, or March and subjected to storage before outplanting. The fulfillment of chilling was assessed by measuring days to budbreak, cumulative percentage of seedlings flushing, foliated shoot length, and rate of bud abortion. The effect of freezer storage depended on stage of seedling development at lifting, length of storage, and seed source. Storage did not totally replace winter conditions, especially for seedlings lifted in September and October. Those from a high-elevation seed source flushed sooner than those from a low-elevation source. Delayed budbreak after planting of early lifted seedlings from the high-elevation source disappeared in the second year, but those from the low-elevation source continued to show effects. Seedlings lifted and stored in November had patterns of budbreak that were similar to those of seedlings that had overwintered in beds.  相似文献   

2.
Photosynthetic and stomatal responses to a soil drying cycle were examined in half-sib seedlings of four walnut (Juglans nigra L.) families. Well-watered seedlings of an Iowa seed source had significantly higher rates of net photosynthesis than seedlings from New York or Michigan sources. This superior photosynthetic potential was associated with both greater stomatal conductance and mesophyll capacity for CO(2) fixation. In a drying soil, net photosynthesis and leaf conductance to water vapor of all families declined substantially, even under mild water stress. These responses were more strongly related to soil water status, as estimated by predawn leaf water potential, than to leaf water potential at the time of gas exchange measurement. There were no differences among families in the pattern of gas exchange response to developing water stress; however, families differed in capacity for recovery of gas exchange from water stress following rehydration. Sensitivity of photosynthesis of black walnut seedlings to water stress may be associated with poor growth and survival of this species in xeric habitats.  相似文献   

3.

This study examined the effects of low-temperature storage of white spruce [ Picea glauca (Moench) Voss] bareroot seedlings to determine whether the time between lifting and planting of spring-lifted seedlings could be extended. Seedlings were lifted from the nursery beds on May 4, 1994, and stored at- 2C (frozen storage) and 4C (cold storage) for 3, 5 and 7 weeks. Frozen storage of spring-lifted seedlings resulted in an increase in sugar levels in roots and needles that progressed with storage duration. Seedlings stored in cold storage maintained a relatively constant sugar content. Needle starch content decreased with storage duration in both frozen and cold storage. In the roots of cold-stored seedlings, starch content remained relatively constant during storage; however, in the frozen-stored seedlings, root starch levels sharply declined during the initial 3 weeks of storage. The levels of total non-structural carbohydrates (starch and sugars) decreased in both types of storage in needles, but not in roots. However, the decrease was more pronounced in the cold-stored than in the frozen-stored seedlings. Gas exchange, root growth potential and number of days to bud break were similar in frozen- and cold-stored seedlings planted in the greenhouse. However, following planting in the forest, cold-stored seedlings flushed buds earlier than did frozen-stored seedlings. The results indicate that tree nurseries could consider frozen storage of spring-lifted white spruce seedlings to facilitate lifting and planting schedules.  相似文献   

4.
The capacity of radiata pine seedlings to overcome planting shock in wet and dry conditions and their dependence on previous history was analysed by studying post-planting resumption of gas exchange and photochemical reactions, and survival 2 months later. Even under well-irrigated soil conditions, seedlings showed the effects of stress: gas exchange was reduced, but a clear difference between soil-plugged (PR) seedlings and bare-root (BR) seedlings was observed. Drought enhanced the severity of photosynthesis deprivation. Photochemical reactions, analysed by chlorophyll a fluorescence parameters, were not affected by planting shock in conditions of available soil water, but altered dramatically when drought stress was raised, suggesting structural damage of photosynthetic machinery. Despite the dramatic sensitivity of radiata pine to water availability, rewatering produced remarkable recovery, indicating good photosynthetic components repair capacity, which depended, however, on stock quality at the moment of planting. The ability of radiata pine to cope with drought in terms of post-planting performance depended on both storage conditions and water availability at the planting site. These findings provide information for tree physiologists and foresters as to how the management of radiata pine seedlings before planting can affect post-planting performance potential under wet or dry environmental conditions.  相似文献   

5.
Omi SK  Yoder B  Rose R 《Tree physiology》1991,8(3):315-325
Post-storage water relations, stomatal conductance, and root growth potential were examined in ponderosa pine (Pinus ponderosa Dougl. ex Laws.) seedlings from high- and low-elevation seed sources that had been lifted either in October or November and freezer stored, or in March, and then grown hydroponically in a greenhouse for 31 days. Seedlings lifted in October had poor root initiation (< 17 new roots per seedling), low predawn leaf water potentials (< -1.5 MPa), and low stomatal conductance (7.10 mmol m(-2) s(-1)) compared with seedlings lifted in November or March. There was little difference in post-storage water relations and stomatal conductance between seedlings lifted in November and those lifted in March. Throughout the 31-day test, seedlings from the high-elevation seed source produced 3-9 times more new roots, had higher predawn leaf water potentials (-0.6 to -0.7 MPa versus -1.1 to -1.6 MPa), and 1.3-5 times greater stomatal conductance than seedlings from the low-elevation seed source. For all seedlings on Day 31, the number of new roots was significantly related to predawn leaf water potential (r(2) = 0.65) and stomatal conductance (r(2) = 0.82). Similarly, the dry weight of new roots per seedling on Day 31 accounted for a significant amount of the variation in predawn leaf water potential (r(2) = 0.81) and stomatal conductance (r(2) = 0.49).  相似文献   

6.
梭梭(HaloxylonAmmodendronBge,一种C4灌木)苗种植在15升的容器中,给予不同的水分胁迫处理,研究了其水分关系和气体交换特征。结果表明:当土壤水分含量大于11%时,梭梭苗有高的蒸腾量;土壤水分含量低于6%时,苗木就不能从土壤中吸取水分;很好供水的苗木的蒸腾量与潜在蒸发量成线型相关。气体交换测定发现,随着土壤水分含量的下降,造成了不同程度的气孔导度、叶蒸腾强度和光合作用的下降。对同一苗木而言,由于这个地区有高的水气压亏缺(VPD),很好和中度供水的苗木在气孔反应方面有较宽的范围,气孔在决定光合作用方面起着较小的作用,二者没有明显的线型相关关系。虽然水分胁迫使蒸腾速率比光合速率下降的更快,提高了水分利用效率,而较高的蒸发需求增加了蒸腾量,限制了光合作用,但是总的趋势是光合作用和蒸腾强度成线型相关。图6表2参15。  相似文献   

7.
Will RE  Teskey RO 《Tree physiology》1997,17(10):655-661
To determine the effects of CO(2)-enriched air and root restriction on photosynthetic capacity, we measured net photosynthetic rates of 1-year-old loblolly pine seedlings grown in 0.6-, 3.8- or 18.9-liter pots in ambient (360 micro mol mol(-1)) or 2x ambient CO(2) (720 micro mol mol(-1)) concentration for 23 weeks. We also measured needle carbohydrate concentration and water relations to determine whether feedback inhibition or water stress was responsible for any decreases in net photosynthesis. Across all treatments, carbon dioxide enrichment increased net photosynthesis by approximately 60 to 70%. Net photosynthetic rates of seedlings in the smallest pots decreased over time with the reduction occurring first in the ambient CO(2) treatment and then in the 2x ambient CO(2) treatment. Needle starch concentrations of seedlings grown in the smallest pots were two to three times greater in the 2x ambient CO(2) treatment than in the ambient CO(2) treatment, but decreased net photosynthesis was not associated with increased starch or sugar concentrations. The reduction in net photosynthesis of seedlings in small pots was correlated with decreased needle water potentials, indicating that seedlings in the small pots had restricted root systems and were unable to supply sufficient water to the shoots. We conclude that the decrease in net photosynthesis of seedlings in small pots was not the result of CO(2) enrichment or an accumulation of carbohydrates causing feedback inhibition, but was caused by water stress.  相似文献   

8.
Photosynthetic performance and root respiration were measured for seedlings of Scots pine and Norway spruce under constant conditions in an open gas exchange system in the laboratory. Measurements were carried out after root exposure to ‐20, ‐5 and 0°C and subsequent longtime storage in darkness at +1 or +4°C. Stomatal conductance in relation to net photosynthetic rates was also investigated after the same treatment of seedlings. Root respiration was low for seedlings whose root system had been exposed to ‐20°C, Scots pine showing lower rates than Norway spruce. This was probably an indication of root damage. At least for one provenance of Scots pine, respiration rates were higher for seedlings stored at +1 than at +4°C. Photosynthetic performance was also lowest for seedlings whose roots had been exposed to +20°C compared to higher temperatures, the difference being more clear‐cut for Norway spruce than for Scots pine. Storage at +1 gave slightly higher photosynthetic rates than at +4°C. There was a close relation between stomatal conductance measured on individual needles and photosynthetic performance measured on the whole seedling.  相似文献   

9.
Seedlings of Pinus sylvestris were cold‐stored for three or six months at ‐4°C or 2°C or overwintered outdoors. Dry weight development and net photosynthetic capacity were then measured during a 60‐day cultivation period in a controlled environment. In all storage regimes the longer storage period gave a faster growth initiation. Photosynthetic recovery was faster for seedlings stored at 2°C than at ‐4°C, due to better recovery of stomatal conductance. The results suggest that there is little difference in seedling development between storage temperatures of ‐4°C and 2°C whereas outdoor storage might cause certain negative effects on subsequent growth of seedlings. This result is discussed with regard to the present winter climate.  相似文献   

10.
Effects of flurprimidol on plant water relations and leaf gas exchange were investigated in one-year-old white ash (Fraxinus americana L.) seedlings subjected to soil water deficits. Flurprimidol (20 mg kg(-1) of soil equivalent) was applied to the soil surface of pot-grown seedlings after shoot growth was completed. Two months after flurprimidol application, water was withheld from one-half of the seedlings. Leaf water relations and gas exchange parameters were measured 5, 7, 10, 14, 18 and 22 days after withholding water. Under both irrigated and nonirrigated conditions, flurprimidol treatment resulted in reduced net CO(2) assimilation rate and transpirational water loss of seedlings as a result of decreased stomatal conductance. Consequently, flurprimidol-treated seedlings had higher leaf water potential and relative water content than untreated seedlings. Nonirrigated flurprimidol-treated seedlings also had greater turgor and sap osmolality and lower osmotic potential at full turgor than seedlings in the other treatments, indicating that flurprimidol increased osmotic adjustment. Under water-stress conditions, water use efficiency was lower and gas exchange efficiency was higher in flurprimidol-treated seedlings than in untreated seedlings, suggesting that flurprimidol treatment enhances survival of plants subjected to soil water deficits.  相似文献   

11.
Information on the morphological and physiological responses of seedlings to stressors, such as water stress, is required for successful early establishment of seedlings. We examined provenance variation in morphological and physiological traits of Quillaja saponaria Molina seeds from nine provenances representing a latitudinal transect across the species range in Chile. The seedlings were subjected to two water regimes (well-watered vs water restriction) in a nursery experiment, and growth, biomass, survival, and gas exchange traits were measured. As expected, well-watered seedlings exhibited a superior performance in all traits analysed. Provenance effects were significant for most of the morphological and physiological traits. In the growth and biomass analysis, the northernmost provenance showed the lowest survival, growth and dry biomass, whereas in the gas exchange analysis, the southern interior provenance showed the highest net photosynthesis, transpiration, stomatal conductance and water use efficiency. The interaction between water regimes and provenance was only significant for diameter and net photosynthesis. These results indicate that different provenances of Q. saponaria show a stable performance across different controlled drought conditions. This information is of relevance for sourcing seeds for the restoration of the species.  相似文献   

12.
为模拟三峡库区消落带土壤水分变化特征,作者设置了常规生长水分条件(CK)、轻度干旱水分胁迫(T1)、土壤水饱和(T2)以及水淹(T3)4个不同处理组,研究池杉当年实生幼苗在三峡库区消落带水位变化条件下的光合生理生态响应机理和适应对策.研究结果表明,不同水分处理均显著影响池杉幼苗光合色素、叶片气体交换以及表观资源利用效率.池杉幼苗不仅具有耐水湿的特点,还具有一定程度的耐旱性.在消落带防护林体系建设中,池杉适宜栽植于土壤饱和水或渍水的环境中;在干旱环境条件下应注意浇水抗旱,使池杉保持正常的净光合速率.  相似文献   

13.
Four different kinds of water treatments were applied to study the photosynthetic eco-physiological characteristics of Taxodium ascendens seedlings in the environment of the Three Gorges hydro-fluctuation belt. The four kinds of water treatments were: normal growth water condition (CK), light drought stress (T1), soil water saturation (T2), and soil submersion (T3). The results showed that different water treatments could effectively influence the content of the photosynthetic pigment, leaf gas exchange and apparent resources use efficiency of T. ascendens seedlings. It was also demonstrated that the T. ascendens seedlings could not only tolerate water submersion and wet conditions but also endure a certain degree of drought. To establish a protection forest system in the hydro-fluctuation belt in the Three Gorges Reservoir Area, the species T. ascendens is suitable for planting in conditions of root submersion or water-saturated soil. In case it is planted in drought conditions, this tree species should be watered appropriately in order to keep its normal net photosynthetic rate. Translated from Forest Research, 2006, 19(1): 54–60 [译自: 林业科学研究]  相似文献   

14.
Water deficit is an important environmental factor restricting plant growth and photosynthesis. The effect of water deprivation on leaf water status, photosynthetic gas exchange, chlorophyll content and fluorescence parameters of artà (Calligonum comosum) was studied. Five-month-old artà seedlings, grown in pots in the open air, were subjected to one of four drought treatments (i.e., mild, moderate, severe and extreme drought stress) and compared to control seedlings (normal watering regime). Results show that leaf water potential, net photosynthesis, stomatal conductance, transpiration, photosynthetic pigment content (chlorophyll a and b) decreased with increasing levels of drought stress. Inactivation of the photosynthetic apparatus was accompanied by changes in the fluorescence characteristics, providing evidence that reduction of photosynthetic rate could be attributed to non-stomatal limitations. Alterations imply changes in photochemical conversion efficiency of photosystem II by which plants could reduce water transpiration or protect their photosynthetic apparatus from destruction. These adaptations are discussed in relation to the strategies developed to grow drought-resistant artà seedlings in desert environments.  相似文献   

15.
水分胁迫对栓皮栎幼苗生理特性及生长的影响   总被引:11,自引:0,他引:11  
通过盆栽实验,研究了在不同的水分条件下栓皮栎幼苗生理特性的变化和苗木生长量的变化。研究表明,在水分胁迫初期,随土壤含水量的降低,栓皮栎叶片的净光合速率、蒸腾速率下降,而水分利用效率提高。在水分胁迫末期,由于长期的干旱胁迫,水分条件最差的一组苗木已干枯死亡,土壤含水量从38.123%下降到20.323%时,净光合速率和蒸腾速率均下降,水分利用效率也下降。随着土壤含水量的降低,苗高、地径和生物量均有下降的趋势,其中生物量下降的幅度最大。  相似文献   

16.
  • ? Water oak (Quercus nigra L.) is a tardily deciduous species commonly planted in afforestation projects in the Lower Mississippi River Alluvial Valley, USA. Field performance is often marked by low survival rates and top dieback, which may be associated with poor physiological quality of planting stock.
  • ? We investigated physiological status of cold stored (2–4 °C; CS) and freshly lifted (FL) seedlings during the period between lifting and planting (December — February). In mid-February, seedlings were transplanted into a controlled greenhouse environment for 90 d to evaluate post-transplant growth performance.
  • ? Net photosynthetic rates were positive until late January (generally greater in CS seedlings) and became negative thereafter. FL seedlings generally had lower LT50 values from freeze-induced electrolyte leakage (FIEL), reflecting greater cold hardiness. FIEL of foliage provided the best indicator of physiological status, though terminal buds may serve as a suitable substitute. All seedlings experienced top dieback following transplant; CS seedlings had less relative root-collar diameter, height, and root volume increments.
  • ? Cold storing seedlings did not appear to prolong dormancy, increase stress resistance, or hold promise as a means to improve outplanting success. Regardless of storage regime, seedlings appeared to be most cold hardy and perhaps stress resistant until late January.
  •   相似文献   

    17.
    The water relation and leaf gas exchange of saxoul (Haloxylon Ammodendron Bge, a C4 shrub) seedlings were studied under water stress in 2001. Saxoul seedlings maintained high transpiration when the soil moisture was above 11%. The seedlings were able to take up water from soil with above 6 % soil water content, which was the threshold level of soil moisture for seedlings. The relationship between transpiration and potential evaporation was linear for well-watered seedlings. The decrease of soil water availability led to different degrees of down-regulation of stomatal conductance, leaf transpiration and net CO2 assimilation rate. The stomata played a relatively small part in determining the net CO2 assimilation rate for the same seedling. The relationship between net CO2 assimilation rate and transpiration was linear diurnally, and reduction scale of leaf transpiration was much bigger than that of net CO2 assimilation rate by waters tress treatments, therefore intrinsic water-use-efficiency increased. High evaporative demand increased the leaf transpiration but inhibited net CO2 assimilation rate.Because of the effect of VPD on transpiration in this region, the transpiration of well-watered and mild water stress seedlings becomes responsive to change in stomatal conductance over a wider range.  相似文献   

    18.
    Slash and loblolly pine 1-0 seedlings were lifted from the nurserybed in late November, mid-December, late December, and mid-February. The buds of the seedlings were classified as set or growing two weeks prior to lifting and were re-examined upon lifting. For both species, buds that had set remained set whereas those that were classified as growing showed an decreasing trend of setting from November through December. A subset of seedlings was potted and maintained in a greenhouse to determine rate of budbreak; the remainder were field planted. In the greenhouse, loblolly pine broke bud fastest and slowest when lifted in mid-February and mid-December, respectively. The rate of slash pine budbreak increased over successive lifting dates. In the field, loblolly pine lifted in mid-December exhibited the highest percentage of growing seedlings; these seedlings were also tallest after one year in the field. Field-planted slash pine had the highest percentage of growing seedlings when lifted in late November. However, seedlings lifted in mid-December were tallest after one year.  相似文献   

    19.
    Harper  C. P.  O'Reilly  C. 《New Forests》2000,20(1):1-13
    The effect of warm storage (15 °C)for up to 21 days on the vitality of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) seedlings lifted on four occasions from October to January wasassessed using fine root electrolyte leakage (REL). After 0, 7 and 21 days warm storage, additionalseedlings were potted and placed in a controlledgreenhouse environment to determine root growthpotential (RGP) after 4 weeks and survival after 8weeks. REL was a poor indicator of survival potential;REL increased after 7 days storage, despite the factthat RGP and survival were unaffected. REL increased further during the remainder of the 21-days storage period, but values were often not greatly different from those following 7days storage. Storage for up to 21 days greatlydecreased RGP and survival. Seedlings lifted inOctober and November were most affected by storagetreatments, but differences among lifting dates wererelatively small.  相似文献   

    20.
    We measured net photosynthesis, leaf conductance, xylem water potential, and growth of Pinus strobus L. seedlings two years after planting on two clear-cut and burned sites in the southern Appalachians. Multiple regression analysis was used to relate seedling net photosynthesis to vapor pressure deficit, seedling crown temperature, photosynthetically active radiation (PAR), needle N, xylem water potential, and soil water, and to relate seedling size and growth to physiological measurements (average net photosynthesis, leaf conductance, and cumulative xylem water potential), soil water, needle N, seedling temperature, and PAR. Seedling net photosynthesis was significantly related to vapor pressure deficit, midday water potential, crown temperature, and PAR (r(2) = 0.70) early in the growing season (May 1992) with vapor pressure deficit alone explaining 42% of the variation. As neighboring vegetation developed, light became more limiting and significantly reduced seedling net photosynthesis later in the growing season (July, August, and September). Final seedling diameter was significantly related to competitor biomass, average photosynthetic rate, and needle N (r(2) = 0.68).  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号