首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydraulic properties of xylem in seven species of conifer were studied during late winter and early spring 1991. Vulnerability to cavitation and air embolism was investigated using hydraulic conductivity and acoustic techniques. Embolisms were induced in branches excised from mature trees by air-drying them in the laboratory. Both techniques gave comparable results indicating that they both assess the same phenomenon. Within a tree, vulnerability was related to the permeability of the xylem, the largest stems tended to cavitate before the smallest ones when water deficits developed in a branch. Interspecific comparisons showed large differences in the xylem water potential needed to induce significant embolism, values ranged from -2.5 MPa in Pinus sylvestris to -4 MPa in Cedrus atlantica, but these differences did not correlate with differences in the xylem permeability of the species. The vulnerability of a species to air embolism was found to be consistent with its ecophysiological behavior in the presence of water stress, drought-tolerant species being less vulnerable than drought-avoiding species.  相似文献   

2.
The seasonal progression of xylem dysfunction from tyloses and embolism induced both by cavitation and frost was studied in Quercus rubra L. and Quercus alba L. branches. Vessel lengths and diameters were measured in current-year rings of branches of various ages. Vessels in current-year shoots are about the same size as those in many diffuse porous trees, but vessels in older branches are two to six times larger in diameter and typically more than 10 times longer. Large Quercus vessels were more vulnerable to cavitation than small vessels. The small vessels in current-year shoots were more vulnerable to cavitation than vessels of comparable size in diffuse porous species. Earlywood vessels are completely blocked by tyloses within a year of their formation. Tylose growth starts in winter, but the vessels are not fully blocked until the next summer. Many latewood vessels, by contrast, remain free of complete blockage for several years. In Q. rubra, loss of hydraulic conductivity in current-year shoots due to cavitation reaches 20% by August and > 90% after the first hard frost. Both laboratory and field observations confirm that the role of frost in causing loss of hydraulic conduction by embolism is much more dramatic in Quercus than in conifers and diffuse porous hardwoods.  相似文献   

3.
Taneda H  Tateno M 《Tree physiology》2005,25(3):299-306
To confirm that freeze-thaw embolism is a primary stress for evergreen woody species in winter, hydraulic conductivity, photosynthesis and leaf water potential were measured during fall and winter in trees growing in a cool temperate zone (Nikko) and in a warm temperate zone (Tokyo). We examined two evergreen conifers that naturally occur in the cool temperate zone (Abies firma Siebold & Zucc. and Abies homolepis Siebold & Zucc.), and four evergreen broad-leaved woody species that are restricted to the warm temperate zone (Camellia japonica L., Cinnamomum camphora (L.) J. Presl, Ilex crenata Thunb. and Quercus myrsinaefolia Blume). In Tokyo, where no freeze-thaw cycles of xylem sap occurred, hydraulic conductivity, photosynthesis and water balance remained constant during the experimental period. In Nikko, where there were 38 daily freeze-thaw cycles by February, neither of the tracheid-bearing evergreen conifers showed xylem embolism or leaf water deficits. Similarly, the broad-leaved evergreen trees with small-diameter vessels did not exhibit severe embolism or water deficits and maintained CO(2) assimilation even in January. In contrast, the two broad-leaved evergreen trees with large-diameter vessels showed significantly reduced hydraulic conductivity and shoot die-back in winter. We conclude that freeze-thaw embolism restricts evergreen woody species with large-diameter vessels to the warm temperate zone, whereas other stresses limit the distribution of broad-leaved trees, that have small-diameter vessels, but which are restricted to the warm temperate zone.  相似文献   

4.
Ultrasonic emission (UE) testing is used to analyse the vulnerability of xylem to embolism, but the number of UEs often does not sufficiently reflect effects on hydraulic conductivity. We monitored the absolute energy of UE signals in dehydrating xylem samples hypothesizing that (i) conduit diameter is correlated with UE energy and (ii) monitoring of UE energy may enhance the utility of this technique for analysis of xylem vulnerability. Split xylem samples were prepared from trunk wood of Picea abies, and four categories of samples, derived from mature (I: earlywood, II: 30-50% latewood, III: >50% latewood) or juvenile wood (IV: earlywood) were used. Ultrasonic emissions during dehydration were registered and anatomical parameters (tracheid lumen area, number per area) were analysed from cross-sections. Attenuation of UE energy was measured on a dehydrating wood beam by repeated lead breaks. Vulnerability to drought-induced embolism was analysed on dehydrating branches by hydraulic, UE number or UE energy measurements. In split samples, the cumulative number of UEs increased linearly with the number of tracheids per cross-section, and UE energy was positively correlated with the mean lumen area. Ultrasonic emission energies of earlywood samples (I and IV), which showed normally distributed tracheid lumen areas, increased during dehydration, whereas samples with latewood (II and III) exhibited a right-skewed distribution of lumina and UE energies. Ultrasonic emission energy was hardly influenced by moisture content until ~40% moisture loss, and decreased exponentially thereafter. Dehydrating branches showed a 50% loss of conductivity at -3.6 MPa in hydraulic measurements and at -3.9 and -3.5 MPa in UE analysis based on cumulative number or energy of signals, respectively. Ultrasonic emission energy emitted by cavitating conduits is determined by the xylem water potential and by the size of element. Energy patterns during dehydration are thus influenced by the vulnerability to cavitation, conduit size distribution as well as attenuation properties. Measurements of UE energy may be used as an alternative to the number of UEs in vulnerability analysis.  相似文献   

5.
Silver birch (Betula pendula Roth) is increasingly used in the United Kingdom for reforestation. However, recent evidence indicates that, under some circumstances, planted birch can suffer serious and repeated mortality of the apical leaders and branches, with consequent loss of apical dominance and the formation of a contorted stem. Plants from 37 seed sources of silver birch from Scotland and northern England planted at two sites were compared for several characteristics related to hydraulic architecture, vulnerability to freeze-thaw cycle induced embolism and spring recovery from winter embolism during the period 2000-2002. Phenological rhythms were also monitored in late winter-early spring to document relationships between phenology and water relations parameters. Significant differences were found across seed sources in stage of bud flushing for four dates in spring. Early flushing seed sources differed by about 1 to 2 weeks from late-flushing seed sources across the two sites. Wintertime xylem embolism in stems reached a peak of about 50 to 70% loss of xylem hydraulic conductivity, depending on the size and position of the sample shoots in the canopy. Small apical shoots were significantly more embolized than large basal shoots. Development of winter embolism was coupled to the occurrence of frost events. As percent loss of hydraulic conductivity increased during the winter, wood relative water content declined. Embolism reversal occurred rapidly in spring at the time of development of positive root pressure. No significant differences in the degree of winter embolism in 2001 were found among the three seed sources examined. The investigation was expanded in the winter-spring of 2002 to include 10 seed sources across both sites. Significant differences were found in degree of winter embolism across sites, dates and seed sources. For each date, there was a significant relationship between flushing scores and wood relative water contents across the two sites and all seed sources, suggesting that differences in time of flushing across sites and seed sources were likely caused by differences in the time of occurrence of root pressure, a necessary precondition to flushing.  相似文献   

6.
We examined interrelated xylem water tensions and embolism dynamics under field conditions by simultaneously monitoring ultra-acoustic emissions and changes in stem xylem diameter. Variation in stem xylem diameter was measured with linear displacement transducers to estimate variation in sap tension. Measured ultrasonic acoustic emissions coincided well with changes in xylem diameter, indicating that individual peaks in embolism occurred simultaneously with peaks in water tension. The good time resolution between measurements makes this method especially suitable for observing embolism dynamics on a short timescale. Longer lasting measurements can also be made to monitor inter-daily patterns in water tension and embolism because the techniques are non-destructive. Ultra-acoustic emissions occurred mainly during periods of decreasing stem xylem diameter, i.e., increasing water tension, when the water tension was high enough. Embolism also occurred during periods of increasing xylem diameter, i.e., decreasing water tension, but the number of embolizing conduits under these conditions was small.  相似文献   

7.
Hydraulic conductivity in the terminal branches of mature beech trees (Fagus sylvatica L.) decreased progressively during winter and recovered in the spring. The objective of this study was to determine the mechanisms involved in recovery. Two periods of recovery were identified. The first recovery of hydraulic conductivity occurred early in the spring, before bud break, and was correlated with the occurrence of positive xylem pressure at the base of the tree trunk. Active refilling of the embolized vessels caused the recovery. The second recovery of hydraulic conductivity occurred after bud break and was correlated with the onset of cambial activity. Formation of new functional vessels, leading to an increase in xylem diameter, was largely responsible for the increase in xylem conductivity. The two mechanisms were complementary: active refilling of embolized vessels occurred mostly in the root and the trunk, whereas formation of new functional vessels occurred mainly in young terminal shoots.  相似文献   

8.
Cox RM  Zhu XB 《Tree physiology》2003,23(9):615-624
Yellow birch seedlings (Betula alleghaniensis Britt.) that had lost more than 90% of their stem hydraulic conductivity during ambient winter temperatures were exposed to 0 and 20 days of a simulated winter thaw followed by a 48-h freezing treatment at 0, -5, -10, -20 and -30 degrees C. After measuring freezing injury to shoots and roots, the seedlings were placed in a greenhouse where recovery of xylem conductivity and new growth were measured. Shoot xylem cavitation was measured as percent loss of hydraulic conductivity. Shoot freezing injury was assessed by electrolyte leakage (EL) and root freezing injury was assessed by EL and triphenyl tetrazolium chloride reduction. Seedlings pretreated with thaw had higher stem water contents and suffered more freezing damage to roots and shoots (at -20 and -30 degrees C, respectively) than unthawed seedlings. After 3 weeks in a greenhouse, seedlings from the 0, -5 and -10 degrees C freezing treatments showed complete recovery of xylem conductivity, with substantially increased stem water contents. Poor recovery of hydraulic conductivity was observed only in seedlings that were subjected to freezing treatments at -20 and -30 degrees C, regardless of thaw treatment. Of these embolized seedlings, however, only those not previously thawed showed recovery of hydraulic conductivity or regained stem water content after 9 weeks in the greenhouse. Shoot dieback, bud burst and length of new shoots were significantly related to the extent of stem xylem cavitation and freezing injury. We conclude that (1) the simulated winter thaw predisposed yellow birch seedlings to freezing damage in shoots and roots by dehardening tissues and increasing their water content; (2) root freezing damage in turn affected the seedlings' ability to refill embolized stem xylem, resulting in considerable residual xylem embolism after spring refilling; (3) further recovery of stem xylem conductivity was attributable to growth of new vessels; (4) and the permanent residual embolism, together with root and shoot freezing injury, caused increased dieback, bud mortality and reduced growth of new shoots.  相似文献   

9.
Xylem vessels of Prunus persica Batsch (peach) and Juglans regia L. (walnut) are vulnerable to frost-induced embolism. In peach, xylem embolism increased progressively over the winter, reaching a maximum of 85% loss of hydraulic conductivity (PLC) in early March. Over winter, PLC in walnut approached 100%, but the degree of xylem embolism varied during the winter, reflecting the ability of walnut to generate positive xylem pressures in winter and spring. In contrast, positive xylem pressures were not observed in peach. Controlled freeze-thaw experiments showed that frost alone is insufficient to increase embolism in peach; evaporative conditions during thawing are also required. However, when both species were protected from frost, PLC was zero. At bud break, there was complete recovery from embolism in walnut, whereas PLC remained high in peach. Three mechanisms responsible for the restoration of branch hydraulic conductivity were identified in walnut: the development of stem pressure, the development of root pressure and the formation of a new ring of functional xylem, whereas only one mechanism was observed in peach (new functional ring). The climatic conditions necessary for the manifestation of these mechanisms were investigated.  相似文献   

10.
Domec JC  Gartner BL 《Tree physiology》2002,22(2-3):91-104
We do not know why trees exhibit changes in wood characteristics as a function of cambial age. In part, the answer may lie in the existence of a tradeoff between hydraulic properties and mechanical support. In conifers, longitudinal tracheids represent 92% of the cells comprising the wood and are involved in both water transport and mechanical support. We used three hydraulic parameters to estimate hydraulic safety factors at several vertical and radial locations in the trunk and branches: vulnerability to cavitation; variation in xylem water potential (psi); and xylem relative water content. The hydraulic safety factors for 12 and 88 percent loss of conductivity (S(H12) and S(H88), representing the hydraulic safety factors for the air entry point and full embolism point, respectively) were determined. We also estimated the mechanical safety factor for maximum tree height and for buckling. We estimated the dimensionless hydraulic and mechanical safety factors for six seedlings (4 years old), six saplings (10 years old) and six mature trees (> 110 years old) of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco). Over the natural range of psi, S(H12) decreased linearly from treetop to a minimum of 0.95 at the tree base. Young and mature trees had S(H12) values 1.4 and 1.3 times higher, respectively, at their tips (juvenile wood) than at their bases (mature wood). Modeling analyses indicated that if trees were made entirely of mature wood, S(H12) at the stem base would be only 0.7. The mechanical safety factor was 1.2 times higher for the base of the tree than for the rest of the tree. The minimum mechanical safety factor-1.6 for the critical buckling height and 2.2 for the critical buckling load-occurred at the base of the live crown. Modeling analysis indicated that if trees were made only of mature wood, these values would increase to 1.7 and 2.3, respectively. Hydraulic safety factors had values that were less than half those for mechanical safety factors, suggesting that wood structure in Douglas-fir has evolved primarily as a result of selection for hydraulic safety rather than mechanical safety. The results suggest that forest managers must consider the role of juvenile wood in tree physiology to avoid producing plantations vulnerable to drought.  相似文献   

11.
Taneda H  Sperry JS 《Tree physiology》2008,28(11):1641-1651
Recent work has suggested that the large earlywood vessels of ring-porous trees can be extraordinarily vulnerable to cavitation making it necessary that these trees maintain a consistent and favorable water status. We compared cavitation resistance, vessel refilling, transport capacity and water status in a study of ring-porous Quercus gambelii Nutt. (oak) and diffuse-porous Acer grandidentatum Nutt. (maple). These species co-dominate summer-dry foothills in the western Rocky Mountains of the USA. Native embolism measurements, dye perfusions and balance pressure exudation patterns indicated that the large earlywood vessels of 2-3-year-old oak stems cavitated extensively on a daily basis as predicted from laboratory vulnerability curves, resulting in a more than 80% reduction in hydraulic conductivity. Maple branches showed virtually no cavitation. Oak vessels refilled on a daily basis, despite negative xylem pressure in the transpiration stream, indicating active pressurization of embo-lized vessels. Conductivity and whole-tree water use in oak were between about one-half and two-thirds that in maple on a stem-area basis; but were similar or greater on a leaf-area basis. Oak maintained steady and modest negative xylem pressure potentials during the growing season despite little rainfall, indicating isohydric water status and reliance on deep soil water. Maple was markedly anisohydric and developed more negative pressure potentials during drought, suggesting use of shallower soil water. Although ring porosity may have evolved as a mechanism for coping with winter freezing, this study suggests that it also has major consequences for xylem function during the growing season.  相似文献   

12.
Despite many studies of the percent loss of hydraulic conductivity in excised branches, there is doubt as to whether cutting stems in air introduces unnatural embolism into the xylem at the cut surface. To address this question, hydraulic conductivity was measured in seedlings of northern red oak (Quercus rubra L.) and rooted scions of eastern cottonwood (Populus deltoides Bartr. ex Marsh.) that had been droughted in pots. Results indicate that in situ dehydration produced a very similar vulnerability curve (% loss of conductivity versus water potential) to those previously obtained by bench-top dehydration of excised branches of eastern cottonwood and red oak. In eastern cottonwood cuttings, conductivity loss increased sharply below water potentials of -1.0 MPa, with 100% loss of conductivity occurring by -2.0 MPa, whereas conductivity loss in red oak seedlings was more gradual, i.e., increasing below -1.5 MPa and sustaining 100% loss of conductivity by about -4.0 MPa.  相似文献   

13.
In Massachusetts, low winter temperatures delay the onset of flowering in black birch (Betula lenta L.), but not in gray birch (B. populifolia Marsh.). During the winter of 2006, male inflorescences and twigs of black birch had higher water contents than those of gray birch, and the inflorescences of black birch experienced greater frost kill than those of gray birch. Vessels diameters were greater in black than in gray birch, a difference associated with a higher incidence of winter xylem embolism, as indicated by reduced xylem hydraulic conductance. In both species, recovery of hydraulic conductance in twigs that survived the winter coincided with the development of root pressure. Frost kill to male inflorescences or associated damage to plant tissues may account for the difference between species in the effect of winter temperature on the time of first flowering. In a comparison of 24 birch species, sensitivity of the first flowering date to temperature was also correlated with water content in male inflorescences.  相似文献   

14.
Domec JC  Pruyn ML 《Tree physiology》2008,28(10):1493-1504
Effects of trunk girdling on seasonal patterns of xylem water status, water transport and woody tissue metabolic properties were investigated in ponderosa pine (Pinus ponderosa Dougl. ex P. Laws.) trees. At the onset of summer, there was a sharp decrease in stomatal conductance (g(s)) in girdled trees followed by a full recovery after the first major rainfall in September. Eliminating the root as a carbohydrate sink by girdling induced a rapid reversible reduction in g(s). Respiratory potential (a laboratory measure of tissue-level respiration) increased above the girdle (branches and upper trunk) and decreased below the girdle (lower trunk and roots) relative to control trees during the growing season, but the effect was reversed after the first major rainfall. The increase in branch respiratory potential induced by girdling suggests that the decrease in g(s) was caused by the accumulation of carbohydrates above the girdle, which is consistent with an observed increase in leaf mass per area in the girdled trees. Trunk girdling did not affect native xylem embolism or xylem conductivity. Both treated and control trunks experienced loss of xylem conductivity ranging from 10% in spring to 30% in summer. Girdling reduced xylem growth and sapwood to leaf area ratio, which in turn reduced branch leaf specific conductivity (LSC). The girdling-induced reductions in g(s) and transpiration were associated with a decrease in leaf hydraulic conductance. Two years after girdling, when root-to-shoot phloem continuity had been restored, girdled trees had a reduced density of new wood, which increased xylem conductivity and whole-tree LSC, but also vulnerability to embolism.  相似文献   

15.
We measured xylem pressure potentials, soil osmotic potentials, hydraulic conductivity and percent loss of conductivity (PLC) due to embolism, and made microscopic observations of perfused dye in the white mangrove tree, Laguncularia racemosa (L.) Gaertn. f., (1) to determine its vulnerability to air embolism compared with published results for the highly salt-tolerant red mangrove tree, Rhizophora mangle L., and (2) to identify possible relationships between air embolism, permanent blockage of vessels and stem diameter. Laguncularia racemosa was more vulnerable to embolism than reported for R. mangle, with 50 PLC at -3.4 MPa. Narrow stems (5-mm diameter) had higher PLC than larger stems (8.4- or 14-mm diameter) of the same plants. Basic fuchsin dye indicated that up to 89% of the vessels, especially in the narrow stems, had permanent blockage that could not be reversed by high pressure perfusion. Air embolism could lead to permanent vessel blockage and eventual stem mortality. Such vulnerability to embolism may restrict the growth of L. racemosa and limit its distribution to less salty areas of mangrove communities.  相似文献   

16.
Leaves, the distal section of the soil-plant-atmosphere continuum, exhibit the lowest water potentials in a plant. In contrast to angiosperm leaves, knowledge of the hydraulic architecture of conifer needles is scant. We investigated the hydraulic efficiency and safety of Pinus pinaster needles, comparing different techniques. The xylem hydraulic conductivity (k(s)) and embolism vulnerability (P(50)) of both needle and stem were measured using the cavitron technique. The conductance and vulnerability of whole needles were measured via rehydration kinetics, and Cryo-SEM and 3D X-ray microtomographic observations were used as reference tools to validate physical measurements. The needle xylem of P. pinaster had lower hydraulic efficiency (k(s)?=?2.0?×?10(-4) m(2) MPa(-1) s(-1)) and safety (P(50)?=?-?1.5 MPa) than stem xylem (k(s)?=?7.7?×?10(-4) m(2) MPa(-1) s(-1); P(50)?=?-?3.6 to?-?3.2 MPa). P(50) of whole needles (both extra-vascular and vascular pathways) was?-?0.5 MPa, suggesting that non-vascular tissues were more vulnerable than the xylem. During dehydration to?-?3.5 MPa, collapse and embolism in xylem tracheids, and gap formation in surrounding tissues were observed. However, a discrepancy in hydraulic and acoustic results appeared compared with visualizations, arguing for greater caution with these techniques when applied to needles. Our results indicate that the most distal parts of the water transport pathway are limiting for hydraulics of P. pinaster. Needle tissues exhibit a low hydraulic efficiency and low hydraulic safety, but may also act to buffer short-term water deficits, thus preventing xylem embolism.  相似文献   

17.
The association between water stress and susceptibility of Quercus cerris to the fungal parasite Hypoxylon mediterraneum was studied in field-grown trees and greenhouse-grown seedlings. Susceptibility of Q. cerris to the fungus, expressed as extension of wood discolorations, increased in field-grown trees during drought and increased in greenhouse-grown seedlings in response to limited water supply. In both seedlings and trees, spread of the fungus in the vascular system was higher when leaf water potentials were low than when leaf water potentials were high, and was significantly correlated to loss of hydraulic conductivity of xylem. The presence of the fungus in the xylem suggests that H. mediterraneum could use embolized vessels to spread in the host.  相似文献   

18.
Many authors have attempted to explain the adaptive response of tropical plants to drought based on studies of water relations at the leaf level. Little attention has been given to the role of the xylem system in the control of plant water requirements. To evaluate this role, we studied the hydraulic architecture and water relations parameters of two tropical canopy trees with contrasting leaf phenologies: deciduous Pseudobombax septenatum (Jacq.) Dug and evergreen Ochroma pyramidale (Cav. ex lamb) Urban, both in the family Bombacaceae. The hydraulic architecture parameters studied include hydraulic conductivity, specific conductivity, leaf specific conductivity, and Huber value. Water relations parameters include leaf water potential, stem and leaf water storage capacitance, transpiration, stomatal conductance, and vulnerability of stems to cavitation and loss of hydraulic conductivity by embolisms. Compared to temperate trees, both species showed a pattern of highly vulnerable stems (50% loss of conductivity due to embolism at water potentials less than 1 MPa) with high leaf specific conductivities. The vulnerability of xylem to water-stress-induced embolism was remarkably similar for the two species but the leaf specific conductivity of petioles and leaf-bearing stems of the evergreen species, Ochroma (e.g., 9.08 and 11.4 x 10(-4) kg s(-1) m(-1) MPa(-1), respectively), were 3.4 and 2.3 times higher, respectively, than those of the deciduous species, Pseudobombax (e.g., 2.64 and 5.15 x 10(-4) kg s(-1) m(-1) MPa(-1), respectively). A runaway embolism model was used to test the ability of Ochroma and Pseudobombax stems to maintain elevated transpiration rates during the higher evaporative demand of the dry season. The percent loss of leaf area predicted by the runaway embolism model for stems of Pseudobombax ranged from 5 to 30%, not enough to explain the deciduous phenology of this tree species without analysis of root resistance or leaf and petiole vulnerability to embolism.  相似文献   

19.
We investigated hydraulic constraints on water uptake by velvet mesquite (Prosopis velutina Woot.) at a site with sandy-loam soil and at a site with loamy-clay soil in southeastern Arizona, USA. We predicted that trees on sandy-loam soil have less negative xylem and soil water potentials during drought and a lower resistance to xylem cavitation, and reach E(crit) (the maximum steady-state transpiration rate without hydraulic failure) at higher soil water potentials than trees on loamy-clay soil. However, minimum predawn leaf xylem water potentials measured during the height of summer drought were significantly lower at the sandy-loam site (-3.5 +/- 0.1 MPa; all errors are 95% confidence limits) than at the loamy-clay site (-2.9 +/- 0.1 MPa). Minimum midday xylem water potentials also were lower at the sandy-loam site (-4.5 +/- 0.1 MPa) than at the loamy-clay site (-4.0 +/- 0.1 MPa). Despite the differences in leaf water potentials, there were no significant differences in either root or stem xylem embolism, mean cavitation pressure or Psi(95) (xylem water potential causing 95% cavitation) between trees at the two sites. A soil-plant hydraulic model parameterized with the field data predicted that E(crit) approaches zero at a substantially higher bulk soil water potential (Psi(s)) on sandy-loam soil than on loamy-clay soil, because of limiting rhizosphere conductance. The model predicted that transpiration at the sandy-loam site is limited by E(crit) and is tightly coupled to Psi(s) over much of the growing season, suggesting that seasonal transpiration fluxes at the sandy-loam site are strongly linked to intra-annual precipitation pulses. Conversely, the model predicted that trees on loamy-clay soil operate below E(crit) throughout the growing season, suggesting that fluxes on fine-textured soils are closely coupled to inter-annual changes in precipitation. Information on the combined importance of xylem and rhizosphere constraints to leaf water supply across soil texture gradients provides insight into processes controlling plant water balance and larger scale hydrologic processes.  相似文献   

20.
Global change challenges forest adaptability at the distributional limit of species. We studied ring-porous Quercus canariensis Willd. xylem traits to analyze how they adjust to spatio-temporal variability in climate. Trees were sampled along altitudinal transects, and annual time series of radial growth (ring width (RW)) and several earlywood vessel (EV) traits were built to analyze their relationships with climate. The trees responded to increasing water constraints with decreasing altitude and changes in climate in the short term but the analyses showed that xylem did not acclimate in response to long-term temperature increase during the past 30 years. The plants' adjustment to climate variability was expressed in a different but complementary manner by the different xylem traits. At low elevations, trees exhibited higher correlations with water stress indices and trees acclimated to more xeric conditions at low elevations by reducing radial growth and hydraulic diameter (D(H)) but increasing the density of vessels (DV). Average potential conductivity (K(H)) was similar for trees at different altitudes. However, inter-tree differences in xylem traits were higher than those between altitudes, suggesting a strong influence of individual genetic features or micro-site conditions. Trees exhibited higher RW those years with larger D(H) and particularly the linear density of vessels (DV(l)), but partly, climatic signals expressed in RW differed from those in EVs. Trees produced larger D(H) after cold winters and wet years. Ring width responded positively to wet and cool weather in fall and spring, whereas the response to climate of DV and K(H) was generally opposite to that of RW. These relationships likely expressed the negative impact of high respiration rates in winter on the carbon pools used to produce the EVs in the next spring and the overall positive influence of water availability for trees. Our results showed that trees at different sites were able to adjust their hydraulic architecture to climatic variability and temperature increase during recent decades coordinating several complementary traits. Nonetheless, it should be monitored whether they will succeed to acclimate to future climatic scenarios of increasing water stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号