首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
由于受到传统精耕细作模式的束缚,大部分耕地未进行过深松作业,土壤耕层逐年变浅,犁底层逐年增厚,土壤板结现象日趋严重,粮食产量增速明显放缓。现代农业种植模式,迫切需要推广深松技术,通过深松作业打破顽固的犁底层,改善耕层质量,提高耕地产出,增强农业综合生产能力。机械化深松作业对于土壤的改良和保护水土同样具有重要意义,推广机械化深松作业势在必行。  相似文献   

2.
1深松作业的作用机理1.1疏松土壤,改善土壤耕层结构。深松作业可形成适宜作物生长发育的土体结构。常年的等深耕作,尤其是由小型拖拉机和畜力牵引的铧式犁,由于耕作动力小、耕层浅,耕层底部形成坚硬的犁底层。中科院地理所的调查表明,我国耕地普遍存在犁底层,一般出现在12~25c  相似文献   

3.
机械深松整地技术,可打破犁底层,加深耕作层,形成虚实并存的耕层构造,为农作物发育创造良好的土壤条件.为此,介绍了机械深松整地的技术体系,并以青冈县为例进行了经济效益分析.  相似文献   

4.
深松技术在机械化保护性耕作中的作用   总被引:5,自引:0,他引:5  
机械化深松覆盖免耕沟播技术是一种比较理想的保护性耕作方式,也是一种新型的耕作技术,它由免耕播种技术、秸秆残茬处理技术、杂草控制技术和深松技术组成。其中,运用深松技术可以打破犁底层,加深耕层,且不翻转土壤,在达到调节土壤三相比、改善土壤结构、减轻土壤侵蚀和提高土壤蓄水抗旱能力的同时,还可以适当提高地温,促进种子发芽。1打破犁底层,改善土壤耕层结构常年的等深耕作,尤其是小型拖拉机和畜力牵引的铧式犁,由于耕作动力小、耕层浅,耕层底部易形成坚硬的犁底层。据中科院地理所的调查研究表明,我国耕地普遍存在犁底层,一般出现在1…  相似文献   

5.
机械深松耕作技术及应用   总被引:5,自引:0,他引:5  
介绍了以七铧犁加垄沟深松部件组成的深松机具.该机具作业加深了耕作层,打破了犁底层,并实现了间隔深松,建立起上虚下实,虚实并存的耕层构造,经多点田间对比试验,取得了显著的增产效果.  相似文献   

6.
<正>东昌府区地处鲁西平原,属于沿黄灌区。由于土壤多年旋耕作业,耕层逐年变浅,全区普遍耕层深度在10cm左右,耕层下形成一个坚硬的犁底层,厚度约15cm左右,犁底层密度大约在1.35 g/cm~3~1.45g/cm~3,阻碍水分、养分运移,不利于农作物的根系发育,严重制约着粮食产量进一步提升。为提升耕地质量,2014年东昌区区开展深松补贴作业,要求深松深度大于25cm。在实施深松补贴项目过程中,对于深松深度产  相似文献   

7.
<正>机械化深松是利用拖拉机及配套的深松机具完成农田深松作业,深度一般在犁底层以下35~40 cm处,不翻转土层,只局部松动耕层土壤和耕层下面土壤的一种耕作技术。深松作业可以打破犁底层,加深耕作层,能够改善土壤的通透性,提高土壤蓄水保墒能力,增加作物产量。为了准确掌握目前全县土地深松的实际情况及成效,为下一步工作提供依据,日前,鄄城县农机局抽调专业技术人员深入17个乡镇(办事处)对土地深松情况进行了调查。1.机械化土地深松技术推广现状适合机械化土地深松的土壤有壤土、黏土、沙壤土等,且土层较厚。鄄城县可耕地土壤大多为壤土、黏土、沙壤土,这3种土壤均可以实施深松作  相似文献   

8.
传统的翻耕技术由于机具的长期碾轧、降雨、灌溉和土壤本身的沉积作用,在耕层下面形成紧实犁底层,它不仅妨碍作物根系的发育,影响作物生长,而且还使土壤肥力、蓄水能力和耐旱耐涝能力降低,大雨时极易形成径流。因此,耕层浅和紧实坚硬的犁底层已成为一项世界性的公害。   全方位深松机和旋耕深松机,是消灭犁底层比较理想的深松机具。   全方位深松机是采用全新的梯形框架式深松部件对土壤进行高效深松,它充分利用刃切割作用,使土壤的有限侧挤压减至最小,不翻动土层,不形成空隙,松土范围大,松碎效果好;在适宜的结构参数下,…  相似文献   

9.
机械深松项目的经济效益   总被引:2,自引:0,他引:2  
机械深松项目是针对梨树县犁底层变厚(测定为12cm)变硬,土壤退化,耕层变浅提出并实施的。犁底层的危害是在干旱缺雨时,阻碍地下水向上供应,在7、8月份降雨量集中时又妨碍地表水向下渗入,形成地表经流,造成水土流失。而机械深松恰恰能打破犁底层,是抗旱排涝最有效的工程措施。该项目2008年在6乡镇实施,对全县近三年完成省里下达的大型机械深松任务仍起奠基作用,项目区区域连片,规模大,影响大,是前所未有的,对提高梨树县农业机械化水平起重要作用。  相似文献   

10.
<正>山东省耕地1.1亿亩,主要种植小麦、玉米、棉花和花生。多年来,农民广泛应用旋耕机进行耕整地作业,造成土地耕层变浅,普遍在10cm~15cm;耕层构造恶化,犁底层厚达20多厘米,严重制约着农作物产量的进一步提升,急需对土壤进行机械深松。机械深松能打破多年旋耕形成的坚硬犁底层,改善土壤结构,涵养雨雪,抗旱防涝,利于农作物生长发育,也是近年来国家强力推进的一项新技术。由于山东省土壤种类繁多,农业生产条件禀赋不同,何时  相似文献   

11.
耕作方式对砖红壤物理特性和含水率的影响   总被引:2,自引:0,他引:2  
对横直深松、深松-浅耕和深耕3种不同耕作方式对砖红壤的孔隙度、圆锥指数、干密度和含水率的影响进行了试验研究,试验结果表明,横直深松更有利于提高砖红壤的孔隙度,增加土壤的透气性,降低土壤的圆锥指数,横直深松和深松-浅耕都能使土壤密度显著下降。数理统计分析表明,深松-浅耕、横直深松和深耕对含水率的影响有显著差异。深松能显著改善土壤的物理性质,有利于提高砖红壤的保水能力,是合理的耕作模式。  相似文献   

12.
暗管排水和有机肥施用下滨海设施土壤氮素行为特征   总被引:3,自引:0,他引:3  
为揭示暗管排水和微生物有机肥施用下滨海设施土壤氮素的归趋和转化机制,设计了暗管排水结合有机肥处理(S-OF)、暗管排水结合无机肥处理(S-IF)和无暗管排水的无机肥处理(CK),以葡萄和油菜间作栽培为模型系统,观测土壤总氮含量在垂直剖面上的分布、耕层土壤矿质态氮含量和有机态氮含量的变化及其与土壤理化性质的相关性。结果表明:暗管排水和微生物有机肥共同驱动下,土壤容重有所降低,孔隙度升高;暗管排水促使耕层土壤总氮向深层土壤迁移,相比S-IF,S-OF处理耕层土壤总氮的降低幅度较小;滨海设施土壤耕层的总氮80%以上以有机态形式存在,矿质态氮所占比例很小,S-OF处理有利于试验后期土壤矿质态氮含量的提升;耕层土壤矿质态氮含量与土壤有机质、总有机碳含量呈极显著正相关。暗管排水和微生物有机肥施用有利于改善滨海设施土壤结构,提高耕层土壤有机质和总有机碳含量,促进土壤有机态氮向矿质态氮的转化,本研究结果可为滨海设施土壤改良和水肥决策提供科学依据。  相似文献   

13.
犁耕装置是农业生产过程中非常重要的土壤耕作机具,其核心部件是犁片结构,但犁片是曲面形状,其设计和优化过程较为困难。为此,提出了一种基于Solid Works软件的耕犁装置设计和仿真优化方法,有效地提高了犁耕装置的设计效率。以30系列悬挂铧式犁耕装置为例,对其结构和参数性能进行了分析,然后根据其结构参数建立了犁耕装置的三维模型,并以犁片为研究对象,对其进行了运动仿真。由建模和仿真结果可以看出:采用Solid Works软件可以成功实现犁耕装置犁片和土壤的三维建模,运用其运动仿真功能成功实现了耕犁作业的运动动画的制作,为耕犁装置的优化设计提供了一种新的方案。  相似文献   

14.
保护性耕作对土壤养分及部分物理性状的影响   总被引:2,自引:0,他引:2  
以青海省互助县南门峡镇农田为研究对象,选取了留茬免耕(PA)、带状免耕旋播(PB)、秸秆还田免耕(PC)和常规耕翻(P0)4种耕作措施,对其土壤养分和部分物理性状进行研究。结果表明,保护性耕作能显著增加表层土层的养分含量,留茬免耕(PA)、带状免耕旋播(PB)、秸秆还田免耕(PC)3种保护性耕作处理的土壤氮素、有机碳均高于常规处理(P<0.05)。随着土层深度的增加,不同耕作方式下土壤全氮、碱解氮含量有所减少。保护性耕作能有效地改善土壤物理性质,提高土壤肥力,增加土壤水分。因此,保护性耕作能使土壤朝着有利于土壤质量提高的方向发展,是青海省半干旱地区农业发展值得推广的措施之一。  相似文献   

15.
“彗星式通孔”减阻犁的试验研究   总被引:1,自引:1,他引:1  
在分析犁耕阻力形成的基础上,提出改善摩擦面摩擦条件的设想。通过在铧式犁的犁胸和犁铧上设计“彗星式通孔”,使犁耕过程中犁面与土垡的接触界面形成气液相介质层,改变土壤与金属的摩擦性能,减小摩擦系数,从而达到减摩减阻的目的。田间试验表明:设计有“彗星式通孔”的犁在水耕时可减小犁耕比阻8%~12%,旱耕时犁耕比阻也可减小2.5%~3.5%左右。  相似文献   

16.
Normally sown in March in the region of Meknès (Morocco), rainfed sunflower suffers from a severe water deficit from anthesis which seriously affects grain filling. Increasing the stored soil water by appropriate management during the long period of bare soil preceding sunflower planting could be an opportunity which has not been explored for this spring-sown crop.Five methods for autumn soil tillage (mouldboard ploughing, chiselling, paraploughing, disc harrowing, no tillage) and four fallowing methods (chemical weed control, mechanical weeding, allowing weeds and volunteer crops, sowing barley) were compared in Meknès between 1994 and 1998 on calcimagnesic soils with vertic behaviour. Two additional experiments were carried out in 1997 and 1998 to create a range of leaf area indexes and transpiration requirements for sunflower. This was obtained (i) in 1997, by four levels of plant density (2.5–10.0 plants/m2) and three levels of soil water at planting (89, 37, and 29% of total available soil water); (ii) in 1998, by six levels of sunflower defoliation at star bud stage. Simulations with the EPIC-Phase model were performed to explore a wider range of weather conditions (1960–1998) than experienced.The differences in water storage at planting were explained partly by the mode of action of each of the implements tested and partly by the weather conditions which prevailed during the fallow period. After a very dry fallow period (with a frequency less than 1 year in 10), water storage was maximal after disc harrowing and paraploughing (including straw mulching) because soil layers were only marginally exposed to evaporation. Conversely, in a year with a wet fallow period (with a frequency of 4 years in 10), mouldboard and chisel ploughing gave the largest water reserves at planting because of better infiltration at depth with increased porosity. When the fallow period was initially wet, but dry in early spring (with a frequency of 2 years in 10), minimum and no tillage gave the best water storage but the differences between tillage methods were small. In spite of differences in soil water content at planting and clear differences in rooting systems, sunflower yield and seasonal water use were not significantly affected by soil tillage provided that the plant population was the same and weed control was adequate in reduced tillage systems. However, chisel ploughing was a good compromise for maximising stored water at sunflower planting on the clay soils of Meknès.Surprisingly, maximizing soil water content at sunflower planting was not systematically the best solution for maximizing sunflower yield and water use efficiency under the semi-arid conditions of Meknès. A high soil water content at planting leads to excessive leaf area index at the bud stage and consequently to rapid water depletion and yield reduction, especially when seasonal precipitation is low. A 50% refilling of the soil water reserve is sufficient for spring-sown sunflower as was confirmed by the simulation study. Soil moisture in the uppermost layer which governs seedling establishment is a more limiting factor for sunflower yield than total soil water content at planting.  相似文献   

17.
为探究滴灌条件下地膜覆盖-耕作层-犁底层形成的夹心结构水盐运移及时空分布特征,采用土柱试验,设计耕作层深度为30 cm,设置入渗和蒸发条件下3个灌水量处理(SW1:2 L,SW2:3 L,SW3:5 L)和相同灌水量下3种土体构型处理(SW3:夹心结构;LW3:不覆膜有犁底层;CK:均质土壤).结果表明:入渗过程中,采用单因素方差法对单一耕作层和土柱整体土壤含水率进行对比分析,发现夹心结构下3个灌水量处理耕作层土壤剖面含水率差异具有统计学意义(P<0.01);夹心结构SW3处理和不覆膜有犁底层LW3处理之间差异不具有统计学意义,但与CK处理差异均具有统计学意义(P<0.05).夹心结构中水分入渗速率减缓,入渗时间延长,耕作层土壤含水率提高了22.52%~29.33%,盐分被淋洗至犁底层处,淋洗效果劣于均质土壤.蒸发过程中,夹心结构对土壤表层盐分抑制率最高达88.65%,水分抑制率达57.65%,夹心结构抑蒸和抑盐效果最优.该研究可为节水条件下改良和利用盐碱地,防止盐分表聚提供理论参考.  相似文献   

18.
Summary Development of a ploughpan has been reported in Bangladesh for almost all ploughed soils which are puddled for transplanted rice cultivation. Field information on the water requirement of dryland crops such as wheat and the effects of loosening the dense layer on crop yield and water use efficiency are very limited. Field experiments were, therefore, conducted in the grey floodplain soil of Sonatala series (Aeric Haplaquept) to study the irrigation and tillage effects on the yield and water relations of wheat (Triticum aestivum L. cv. Sonalika). The split plot design experiment comprised four irrigation treatments in the mainplots viz. W0 = no irrigation, W1 = irrigation of 5 cm at 4 weeks after planting, W2-W1 + irrigation(s) of 5 cm each at irrigation water to cummulative pan evaporation (IW/CPE) ratio of 0.75 and W3- W1 + irrigation(s) of 5 cm eacht at IW/CPE ratio of 0.50. The sub-plot tillage depth treatments were: A-7.5 cm (traditional), B-15 cm, C-22.5 cm, D-22.5 cm practised in alternate wheat seasons. Measurements were made of grain and straw yield, soil water depletion and water expense efficiency.Irrigation had no effect on grain or straw yield. Tillage to 15 cm increased wheat yield by about 15% over traditional depth to ploughing. In general, deep tillage coupled with one irrigation at four weeks after planting produced the largest wheat yield.Soil water depletion (SWD) in the 0–90 cm profile was greatest in the treatment receiving two irrigations, one at 4 weeks and again at IW/CPE ratio of 0.50. The average SWD in this treatment was 113 in 1982–83 and 82 mm in 1983–84. Plots receiving traditional tillage (7.5 cm) had the greatest SWD. Total water expense were the greatest in treatments receiving three irrigations. The maximum water expense efficiency (WEE) of wheat was observed in the non-irrigated plots in 1982–83 and 1983–84, respectively. Deep tillage treatments, in general, had significantly greater WEE than those under traditional ploughing. Intensive irrigation and efficient soil and water management are important factors in enhancing crop productivity. The former not only permits judicious water use but also better utilization of other production factors thereby leading to increased crop yield which, in turn, helps stabilize the farming economy. The best way to meet increasing demand for water is to adopt efficient water management practices to increase water use efficiency.Irrigation should aim at restoring the soil water in the root zone to a level at which the crop can fully meet its evapo-transpiration (ET) requirement. The amount of water to be applied at each irrigation and how often a soil should be irrigated depend, however, on several factors such as the degree of soil water deficit before irrigation, soil types, crops, and climatic conditions (Chaudhury and Gupta 1980).Knowledge of movement of water through the soil is imperative to efficient water management and utilization. The presence of a dense pan impedes water movement into the sub-soil. As a result, the top soil becomes saturated by irrigation and sensitive dryland crops can fail as this plough layer impedes the penetration of roots into deeper soil layers and decreases water extraction. Crops growing in these soils often undergo severe water stress within 5–8 days after rainfall or irrigation (Lowry et al. 1970). Due to decrease rates of water flow, the lower soil layer may remain unsaturated and as a result, the recharge and soil water storage in the profile are considerably decreased (Sur et al. 1981).In Bangladesh, ploughpans develop to varying degree in almost all ploughed soils (Brammer 1980). They are particularly marked in soils which are puddled for transplanted rice cultivation where the pan is usually only 8–10 cm below the soil surface and 3–5 cm thick. Its presence is generally regarded as advantageous for cultivation of transplanted rice in that it prevents excessive deep percolation losses of water. But in the same soil this cultivation for a subsequent dryland crop would adversely affect yield. A slight modification of the plough layer could enable good yields of both rice and a dryland crop to be obtained in the same soil in different seasons (Brammer 1980). The sub soils have a good bearing capacity, both when wet and dry and the pan can easily be reformed, if desired, for cultivating transplanted rice after a dryland crop like wheat.Professor of Soil Science, Dhaka University, Dhaka, Bangladesh  相似文献   

19.
基于最小数据集的东北旱作区耕层质量评价与障碍诊断   总被引:2,自引:0,他引:2  
为准确评价东北旱作区耕层质量特征,针对全部初选指标采用主成分分析法(PCA)建立了东北旱作区耕层质量评价的最小数据集(Minimum data set, MDS),并运用最小数据集耕层质量指数(MDS-Plough horizon integrated quality index, MDS-PHIQI)和障碍因子诊断模型对研究区耕层质量及主导障碍因子进行分析。结果表明:东北旱作区耕层质量评价的最小数据集由土壤有机质含量、全氮含量、有效磷含量、粘粒含量、耕作层穿透阻力和压实层厚度组成,最小数据集可替代全部初选指标对东北旱作区耕层质量进行评价;东北旱作区耕层质量指数分布在0.10~0.53之间,均值为0.30,整体处于低和中等水平。东北旱作区合理耕层指标参数的适宜范围为:有机质质量比大于等于37.16g/kg,全氮质量比大于等于1.75g/kg,有效磷质量比大于等于26.38mg/kg,粘粒质量分数为4.60%~6.19%,耕作层穿透阻力小于等于364.56kPa,压实层厚度小于等于8.18cm。东北旱作区粮食产量低产区耕层多存在结构型障碍,中产区耕层结构型障碍和养分限制共存,而高产区耕层主要表现为养分限制型障碍。整体来看,研究区耕层质量的主要障碍因素为耕作层穿透阻力、土壤全氮含量、有机质含量,需针对上述指标采取针对性的耕作和培肥措施。  相似文献   

20.
豫北潮土灌区土壤肥力特征与作物产量的关系研究   总被引:2,自引:0,他引:2  
【目的】了解豫北潮土水浇地土壤肥力特征及其与作物产量的关系,为建立豫北潮土区水浇地合理耕层评价指标提供基础数据支撑。【方法】本研究对豫北潮土区62个样点进行了抽样调查,调查指标包括:耕层深度、犁底层厚度、土壤体积质量、紧实度、土壤p H值、土壤电导率、土壤有机质、速效磷、速效钾以及耕作方式、播种、灌水、施肥。【结果】豫北潮土区田整体耕层深度16.8 cm,犁底层厚度11.2 cm;低产田耕层深度在15.2 cm,犁底层厚度11.9 cm,高产田耕层深度20.0 cm,犁底层厚度9.8 cm;高、中、低3种产田耕层土壤的平均紧实度分别为1 725、1 449、1 831 kPa,土壤的平均土壤体积质量分别为1.46、1.51、1.53 g/cm~3,pH值分别为8.47、8.39、8.39,有机质量分别为12.34、11.81、10.67 g/kg,速效磷量分别为16.05、12.84、10.89 mg/kg,速效钾量分别为156.69、157.20、120.56 mg/kg,养分主要分布于0~40 cm土层土壤;产量与耕层深度及耕层土壤速效钾、有机质、速效磷均呈显著正相关关系,与犁底层厚度、土壤紧实度及耕层土壤体积质量均呈显著负相关关系;产量与深层土壤pH值显著负相关,与深层土壤速效钾、有机质显著正相关。【结论】豫北潮土区影响作物产量的主要因素为耕层深度、犁底层厚度以及耕层土壤速效钾、有机质量,对作物产量的贡献大小为耕层深度>犁底层厚度>速效钾>有机质。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号