首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 784 毫秒
1.
Abstract An experiment was carried out over 2 years to evaluate the effects of increasing the proportion of cereal‐based concentrates in diets containing high‐digestibility and conventional medium‐digestibility grass silages on the dry‐matter (DM) intake, liveweight gain and carcass composition of beef cattle, and to examine the effects of grazed grass and the ratio of grass silage:concentrates in the diet on the fatty acid composition of selected muscle tissues. Late‐maturing steers (n = 231) were offered diets based on high‐digestibility (HD) (0·743 digestible organic matter (DOM) in DM) or medium‐digestibility (MD) (0·643 DOM in DM) grass silages supplemented with barley/soyabean meal‐based concentrates. The concentrates constituted 0·20, 0·40, 0·60 and 0·80 of total DM of the diets, which were offered ad libitum (AL). The two diets, which contained 0·80 concentrates, were also offered at 0·80 of AL intake. A further group of fourteen animals were given the medium‐digestibility silage only for 5 months and then grazed perennial ryegrass pastures for a further 5 months (silage/pasture treatment). For the diets containing HD silage and 0·20, 0·40, 0·60 and 0·80 concentrate, and 0·80 concentrate at 0·8 of AL intake, the DM intakes were 9·4, 10·2, 10·4, 10·2 and 8·1 (s.e. 0·16) kg d?1, respectively, and daily carcass gains were 0·67, 0·78, 0·77, 0·79 and 0·62 (s.e. 0·029) kg d?1, respectively; for those containing MD silage and 0·20, 0·40, 0·60 and 0·80 concentrate, and 0·80 concentrate at 0·8 of AL, the DM intakes were 8·2, 9·3, 10·1, 10·1 and 8·0 (s.e. 0·16) kg d?1, respectively, and daily carcass gains were 0·38, 0·48, 0·64, 0·77 and 0·56 (s.e. 0·029) kg d?1 respectively. Increasing the proportion of concentrates in silage‐based diets decreased the concentration of omega‐3 (ω‐3) polyunsaturated fatty acids (PUFA) (P < 0·001) and increased the concentration of ω‐6 PUFA (P < 0·001) in muscle. Cattle on the silage/pasture treatment had the highest concentration of ω‐3 PUFA in muscle (51 g kg?1 lipid), this value being over three times that for animals given diets containing MD silage and 0·80 concentrate in the diet. These results demonstrate the potential of HD silage made from perennial ryegrass relative to high concentrate diets. The consumption of pasture‐finished beef could make a significant contribution towards increasing the intake of ω‐3 PUFA in the human diet.  相似文献   

2.
The effects of offering a range of grass silages and mixtures of grass and maize silages on the intake of beef cattle were studied. Four grass silages (GS1, GS2, GS3 and GS4) were used. Grass silage 1 was ensiled from a second regrowth in mid‐late September and treated with an inoculant additive. Grass silages 2, 3 and 4 were ensiled, without additive, from a primary regrowth harvested in early July, late May and mid‐June respectively. Wilting periods were 8, 30, 36 and 36 h for GS1, GS2, GS3 and GS4 respectively. Grass silages 1, 2 and 3 were precision chopped and ensiled in bunker silos, while GS4 was ensiled in round bales. The DM content (g kg?1) and starch concentration (g kg?1 DM) of the three maize silages (MS1, MS2 and MS3) used were 256 and 128, 256 and 184, and 402 and 328 for MS1, MS2 and MS3 respectively. Seventy‐two Charolais and Limousin cross‐bred steers were used in a changeover design with two 4‐week periods. The study consisted of sixteen treatments incorporating the four grass silages fed alone and with the three maize silages arranged as a 4 × 4 factorial design. The grass silage and maize silage mixtures were offered in a ratio of 0·60:0·40 (DM basis) once daily using individual Calan gates. All silages were offered ad libitum with 3 kg per head per day of a concentrate supplement. Dry matter and metabolizable energy (ME) intakes were highest with diets based on grass silage GS4 compared with diets containing the other grass silages. Metabolizable energy intakes of diets containing no maize silage, and those based on MS1 and MS2, were similar (P > 0·05) but lower than that of diets containing MS3. Only limited increases were found in DM and ME intakes with the inclusion of maize silage in grass silage‐based diets while offering high‐quality grass silage (assessed in terms of DM content, and fibre and N concentrations) promoted high voluntary intakes.  相似文献   

3.
First and second harvests of lucerne (Medicago sativa L.), perennial ryegrass (Lolium perenne L.) and a lucerne–perennial ryegrass mixture [80 or 144 g kg?1 dry matter (DM) of ryegrass] at the first and second harvests were cut and conditioned, wilted to 500 or 700 g DM kg?1 then baled and stretch‐wrapped for silage on the same dates. Lucerne bales were denser (411 kg m?3) than bales of perennial ryegrass (331 kg m?3) (P < 0·05). After an 8‐month storage period, silage made from high DM‐content forage had a higher concentration of neutral‐detergent fibre (NDF) and was less digestible than that made from low DM‐content forage. Daily DM intakes by beef steers, when the silages of the second harvest were fed ad libitum, were 31·2, 31·2 and 22·3 g kg?1 live weight for lucerne, lucerne–perennial ryegrass mixture and perennial ryegrass silages, respectively (P < 0·01), when the herbage had been wilted to 500 g kg?1. In vivo digestibility of NDF in the lucerne–perennial ryegrass mixture silage (0·587) was significantly lower than that of perennial ryegrass silage (0·763) but higher than lucerne silage (0·518). Higher intakes of baled lucerne silage tended to offset its lower digestibility values. Lucerne–perennial ryegrass mixture silage had a higher DM and NDF digestibility than lucerne silage, indicating perhaps the presence of associative effects.  相似文献   

4.
A first cut of timothy, treated with water (untreated), formic acid (FA), cellulase + lactic acid bacteria (CB), cellulase + hemicellulase (CH) or cellulase + hemicellulase + a lignin-modifying enzyme (CHL), was ensiled in pilot-scale silos. Silages, except CB, were fed to four male cattle, each equipped with a rumen and duodenal cannula, in a digestibility trial designed as a 4 × 4 Latin square. The animals were fed a diet of 400 g of concentrate and 600 g of silage at a level of 70 g DM kg?1 live weight (LW0·75). All enzyme-treated silages were well-preserved with a more extensive fermentation than in FA silage. The quality of untreated silage was poorer as indicated by higher pH and ammonia-N content. The amount of effluent from enzyme-treated silages ranged from 116 to 127 g kg?1; for FA and untreated silages values were 101 g kg?1 and 80 g kg?1, respectively. Total DM losses from enzyme-treated silages were higher than from FA silage (P < 0·05). No significant differences were noticed between silages in the apparent digestibility of organic matter (OM), neutral-detergent fibre (NDF), acid-detergent fibre (ADF) or nitrogen (N). The apparent digestibility of cellulose was higher with enzyme-treated silages than with FA silage (P < 0·05). The values for microbial N flow at the duodenum were 80·0, 91·9, 80·7 and 70·5g N d?1, and for the efficiency of rumen microbial N synthesis 38·6, 47·6, 36·9 and 32·5 g N kg?1 OM apparently digested in the rumen for untreated, FA, CH and CHL silages, respectively. In the rumen the molar proportion of propionate was higher (P < 0·01) and that of butyrate lower (P < 0·01) with enzyme-treated silages when compared with FA silage. The proportion of butyrate was also lower with untreated than with other silages (P < 0·01). The rumen residence time of NDF and ADF was longer (P < 0·05) with enzyme-treated silages than with FA silage.  相似文献   

5.
Two silages were made from perennial ryegrass ensiled without wilting in 2-t capacity silos with the application of either formic acid or an enzyme mixture of cellulases and hemicellulases. Effluent losses were monitored over the ensiling period. Subsequent silage analysis showed that the enzyme-treated silage had higher concentrations of residual water soluble carbohydrate, lactic acid and acetic acid, and lower concentrations of cellulose, ADF and NDF. Effluent production was higher with the enzyme silage (formic acid, 211 1 t?1; enzyme, 2671 t?1). The silages were either offered as the sole diet or supplemented with rapeseed meal at two levels (60 or 120 g fresh weight kg?1 silage DM offered) to growing steers equipped with rumen cannulae and T-piece duodenal cannulae. Apparent whole tract digestibilities for DM, OM, N, ADF and NDF were similar for all diets although nitrogen retention (g d?1) was increased with supplementation of both silages (formic acid, 21·1; formic acid + 60 g, 23·5; formic acid+ 120 g, 28·5; enzyme, 22·6; enzyme + 60 g, 25·8; enzyme+ 120 g, 31·6). Rumen pH, ammonia and total volatile fatty acids patterns were similar. Supplementation increased the amount of organic matter apparently digested in the rumen (ADOMR) with formic acid-treated silage but not with enzyme-treated silage. Liveweight gains were similar for both unsupplemented silages (0·49 kg d?1). These increased to 0·55 and 0·65 kg d?1 for formic + 60 and formic + 120 respectively. Liveweight gains for the corresponding enzyme-treated supplemented diets were 0·81 and 0·91 kg d?1 respectively. Liveweight gains on supplemented enzyme-treated diets were significantly (P < 0·05) greater than those on formic acid-treated diets.  相似文献   

6.
This experiment evaluated a bacterial inoculant based on a single strain of Lactobacillus plantarum as a silage additive. Three silages were harvested on 8 September 1989 from the second regrowth of a perennial ryegrass sward, which had received 167 kg N, 28 kg P2O5 and 45 kg K2O ha?1. Mean dry matter (DM) and water soluble carbohydrate concentrations of the herbages at ensiling were 148 g kg?1 and 78 g.(kg DM)?1 respectively. Herbages were treated with either no additive (C), formic acid (3·0 1 t?1) (F) or the inoculant (3·0 1 t?1) (I) and were ensiled in three 80-t capacity silos. For silages C, F and I respectively, pH values were 4·70, 3·77 and 4·47, ammonia-N concentrations were 192, 111 and 182 g (kg total N)?1 and butyrate concentrations were 6·8, 1·8 and 7·1 g (kg DM)?1. The silages were offered ad libitum and supplemented with 2·0 kg concentrates per head daily to thirty-six heifers (mean initial live weight 442 kg). For silages C, F and I, silage DM intakes were 12·7, 14·4 and 14·1 (s.e. 0·42) g (kg live weight)?1, metabolizable energy intakes were 155, 166 and 172 (s.e. 5·1) kJ (kg live weight)?1, and estimated carcass gains were 456, 519 and 518 (s.e. 28·1) g d?1 respectively. A further 18 similar cattle were used in studies on the digestibility of the silages, and rumen degradation of each was estimated with three mature cattle. Inoculant treatment significantly increased crude fibre (P <0·01), neutral detergent fibre (P <0·01), modified acid detergent fibre (P <0·01), hemicellulose (P <0·05) and N digestibilities (P <0·05) and tended to increase N retention from the total diet. It is concluded that although treatment of herbage that was difficult to ensile with the inoculant did not improve silage fermentation, it significantly increased digestibility, especially of the fibre fractions, and silage DM intake and tended to increase animal performance to levels similar to those achieved with a well preserved formic acid-treated silage. Increases in silage DM and metabolizable energy intakes are likely to have been attributable to the effects of the inoculant on digestibility, especially of the fibre fractions.  相似文献   

7.
Grass and maize silages were fed alone and with two levels of a barley supplement to Friesian steers of about 300 kg liveweight. The organic matter (OM) intakes of grass and maize silage were similar although the OM digestibilities of the silages were 0·722 and 0·649 respectively. For both silages, barley supplementation increased total OM intake and total digestible OM intake by 0·46·0·08 and 0·37·0·06 g per g OM of supplement respectively. Liveweight gains on grass and maize silage diets were 1·38 and 1·20 kg d-1 respectively, but the differences were not significant (P> 0·05).  相似文献   

8.
Forty‐eight high‐yielding dairy cows of the Swedish Red breed were used to examine the effects of providing pea–oat silage (P), grass–clover silage (G) and a 0·50:0·50 mixture of the silages (M) ad libitum in diets with two concentrate levels (7 or 10 kg d?1). A 9‐week experiment, including a 2‐week pre‐experimental period in which the cows were all fed the same diet, and an in vivo apparent digestibility study were conducted comparing the six dietary treatments (M7, M10, P7, P10, G7, G10). Intake and digestibility of the diets and milk production and live weight of the cows were measured. The G silage [11·3 MJ ME kg?1 dry matter (DM)] was first‐cut grass herbage wilted for 24 h prior to addition of an additive, containing formic acid, propionic acid and ammonia, at 4 L t?1 fresh matter (FM). The P forage was cut when the peas were at pod fill and ensiled directly with 6 L t?1 FM of the same additive. The main hypothesis tested, that cows fed the M silage would produce more milk than the cows fed either the P or the G silages, was confirmed. The cows fed the M7 dietary treatment had similar milk yield and milk composition to cows offered the M10, G10 and P10 dietary treatments, and cows offered the G7 and P7 dietary treatments had lower milk and milk protein yields. This suggested that a mixed ration of pea–oat bi‐crop and grass–clover silage has a concentrate‐sparing effect, and that the use of pea–oat bi‐crop and grass–clover silage as a mixed ration for high‐yielding dairy cows can be recommended.  相似文献   

9.
Silages were made from pure crops of perennial ryegrass, red clover and white clover over 2 years. In all but one case the silage was stored as bales. A silage additive specially adapted for bales (Kofasil UltraTM) was used for all silages and they were all of good hygienic quality. The additive contained sodium nitrite, hexamethylene, tetraamine sodium bensoate and sodium propionate. The silages were offered ad libitum, either pure or mixed [grass/clover 0·50/0·50 on a dry‐matter (DM) basis] with a fixed amount (8 kg) of concentrate. Two experiments, one in each year, were performed with high‐yielding multiparous dairy cows in mid‐lactation, and both rumen‐cannulated and intact cows were used. The experiments were carried out using an incomplete changeover design with fifteen cows and five treatments each year. The cows consumed large quantities of these silages (12·7–16·3 kg DM per cow per day). The highest intakes were obtained when the red clover and the 0·50 red clover:0·50 perennial ryegrass silage diets were offered. However, there was a difference between years. In year 1, 0·50 red clover:0·50 perennial ryegrass and 0·50 white clover:0·50 perennial ryegrass silage diets showed the highest intakes while pure perennial ryegrass and white clover silage diets gave lower intakes. In year 2 the highest intake of silage was obtained when the diet containing silage from red clover from a second cut was offered, while the silage from red clover from a first cut gave the lowest intake. The voluntary intakes of silages from white clover and perennial ryegrass were intermediate. No cases of bloat or other digestive disturbances were observed. Milk yield was significantly lower for the perennial ryegrass silage diet compared with all other diets in year 1. In year 2 milk yield was highest for the white clover silage diets and lowest for the red clover silage diets from both cuts. In year 1 there were relatively small differences in milk composition while in year 2 milk fat content was significantly lower with white clover silage diet and milk protein content was significantly higher with the perennial ryegrass diet. The overall conclusion from these experiments was that cows were able to consume large quantities of pure legume silage without serious disturbance to their metabolism. Differences in measurements of rumen metabolism were found between diets and especially between years. Milk production differences appears to be coupled to both differences in rumen physical characteristics, such as passage rate and particle size as well as differences in volatile fatty acid production in the rumen.  相似文献   

10.
Abstract Two experiments were carried out in consecutive years to examine the influence of cutting date and restricting fermentation by carboxylic acid treatment on the nutrient intake from grass silage by beef cattle. In year 1, four cutting dates during July and August after a primary growth harvest and, in year 2, five cutting dates of primary growth between mid‐May and early July were examined. Herbage was ensiled either untreated or treated with high levels of acid additive (‘Maxgrass’, mean 8·6 l t?1). Ninety‐six (year 1) or forty‐eight (year 2) continental cross steers were used in partially balanced changeover design experiments with each silage type either unsupplemented or supplemented with 4·5 (year 1) or 5·5 (year 2) kg concentrates head?1 d?1. Silage digestibility declined significantly between initial and final harvest dates (P < 0·001), whereas silage dry‐matter (DM) and digestible energy (DE) intakes were significantly higher in the initial compared with final harvest dates in both years of the study (P < 0·01). Similarly, silage DM and DE intakes, and total DM intakes, of acid‐treated and unsupplemented silages were greater than those of untreated and concentrate supplemented silages, respectively (P < 0·001). The results indicate that earlier cutting dates, and addition of acid to herbage before ensiling, can increase silage DM intake by beef cattle.  相似文献   

11.
Six mid‐lactation multiparous Holstein–Friesian dairy cows were used to examine the potential of a fermented whole‐crop barley (Hordeum vulgare)/kale (Brassica oleracea) bi‐crop as a feed compared with a first‐cut perennial ryegrass silage. The barley/kale bi‐crop was grown as a strip intercrop, and was harvested and ensiled as an intimate mixture [0·80 barley and 0·20 kale on a dry‐matter (DM) basis]. Animals were offered ad libitum access to one of three experimental diets in a duplicated Latin Square design experiment: (i) Bi‐crop (the barley/kale bi‐crop); (ii) Grass (the grass silage); and (iii) Mix (a 1:1 fresh mixture of Bi‐crop and Grass). All animals also received a standard dairy concentrate at a rate of 4 kg d?1 in equal portions at each of two milkings. The Bi‐crop and Grass silages contained 346 and 293 g DM kg?1, 108 and 168 g crude protein kg?1 DM, 268 and 36 g starch kg?1 DM, and had pH values of 3·87 and 3·80 respectively. Animals offered the two bi‐crop silage‐containing diets consumed more forage DM than those offered grass silage (14·6, 14·9 and 12·6 kg DM d?1 for Bi‐crop, Mix and Grass respectively; s.e.d. 0·45, P < 0·01) and yielded more milk (24·0, 23·9, 22·6 kg d?1 for Bi‐crop, Mix and Grass respectively; s.e.d. 0·26, P < 0·01). However, differences in the partitioning of dietary nitrogen towards milk protein and away from excretion in urine suggest a more efficient (rumen) utilization of feed protein by animals offered diets containing the bi‐crop silage. It is concluded that, despite having a low crude protein concentration, barley/kale bi‐crop silage offers excellent potential as a feed for lactating dairy cows.  相似文献   

12.
A randomized block design experiment involving thirty beef cattle (mean initial live weight 462 kg) was carried out to evaluate a bacterial inoculant based on a single strain of Lactobacillus plantarum as a silage additive and to provide further information in relation to its mode of action. Three herbages were harvested on 10 August 1989 using three double-chop forage harvesters from the first regrowth of a perennial ryegrass sward which had received 170 kg N, 25 kg P2O5, and 42 kg K2O ha?1. They received either no additive (silage C), formic acid at 2·91 (t grass)?1(silage F) or the inoculant at 3·21 (t grass)?1 (silage I). Mean dry-matter (DM), water-soluble carbohydrate and crude protein concentrations in the untreated herbages were 158g kg?1, 88 g (kg DM)? and 183g (kg DM)?1 respectively. For silages C, F and I respectively, pH values were 4·01, 3·57 and 3·62; ammonia N concentrations 117, 55 and 77 g (kg total N)?1; and butyrate concentrations 2·18, 0·50 and l·24g (kg DM)?1. The silages were offered ad libitum and supplemented with 2·5 kg concentrates per head daily for 77 days. For treatments C, F and I, silage DM intakes were 6·59, 7·25 and 6·80 (s.e. 0·074)kg d?1; metabolizable energy (ME) intakes 86,99 and 94 (s.e. 0·8) MJ d?1; liveweight gains 0·90, 0·97 and 1·02(s.e.0·066) kg d?1; carcass gains 541,656 and 680 (s.e. 34·0) g d?1. Inoculant treatment increased DM (P < 0·01), organic matter (P < 0·01), crude fibre (P < 0·05), neutral detergent fibre (NDF) (P < 0·05) and energy (P < 0·05) digestibilities, the digestible organic matter concentration (P < 0·01) and the ME concentration (P < 0·05) of the total diets. Additive treatment altered rumen fermentation patterns but had little effect on the rumen degradability of silage DM, modified acid detergent (MAD) fibre, NDF or hemicellulose. It is concluded that treatment with the inoculant improved silage fermentation and increased digestibility, had little effect on silage DM intake but significantly increased carcass gain to a level similar to that sustained by a well-preserved formic acid-treated silage  相似文献   

13.
The effects of incorporating sugar beet pulp with forage maize at ensiling on silage fermentation, effluent output and pollution potential of the effluent was investigated using 200-litre drum silos. A forage maize crop (Zea mais) was harvested on four different dates, generating four different stages of maturity [dry-matter (DM) content 154–235 g kg−1 DM], and molassed sugar beet pulp (MSBP) was added at five different rates (0, 2, 7, 13, 18 kg MSBP 100 kg−1 fresh maize crop). A total of fourteen treatments (each replicated three times) were evaluated. The chemical analysis of the maize silages and the mixtures produced showed that MSBP addition increased DM, ash, neutral cellulase gaminase digestibility (NCGD) and metabolizable energy (ME) contents of the mixture significantly (P < 0·01) for all harvesting dates except for harvest date 1. Silage fermentation in terms of final pH was unaffected by MSBP addition, although lactic acid concentration of the effluent tended to increase with increased MSBP addition. When no MSBP was included, large volumes of effluent were produced, ranging from 200 g kg−1 to 100 g kg−1. MSBP addition significantly (P < 0·01) decreased effluent production except for the driest material. A curvilinear equation was fitted to predict effluent production from DM of the forage maize and pressure applied to the sample (adjusted r2=0·95). In addition, a curvilinear equation was fitted to predict the MSBP addition rate required to prevent effluent production (adjusted r2=0·65). For harvest dates 1, 2 and 3, the biological oxygen demand for 5 days (BOD5) and the chemical oxygen demand (COD) concentration of the effluent were significantly increased (P < 0·05) with increased levels of MSBP addition. However, the pollution potential per kg of material ensiled was significantly reduced (P < 0·05) with increased MSBP addition, since less effluent was produced. The experiment indicates that ensiling low DM silages with appropriate levels of MSBP produces nutritionally valuable silages with reduced pollution potential.  相似文献   

14.
Maize was harvested at one‐third milk line (297 g kg?1 DM) stage. All inoculants were applied at 1 × 106 cfu g?1 of fresh forage. After treatment, the chopped forages were ensiled in 1·5‐L anaerobic jars. Three jars per treatment were sampled on days 2, 4, 7, 12 and 90 after ensiling, for chemical and microbiological analysis. Homofermentative LAB‐inoculated silages had lower pH and higher lactate:acetate ratio (except for Lactobacillus plantarum/Pediococcus cerevisiae and L. plantarum/Propionibacterium acidipropionici) than the control and both heterofermentative LAB‐inoculated silages. Both L. buchneri inhibited yeast growth and CO2 production during exposure of silage to air. The L. plantarum/P. cerevisiae, L. plantarum (Ecosyl) and L. plantarum/Enterococcus faecium‐inoculated silages had higher dry‐matter digestibility than the control and L. buchneri‐inoculated silages. Inoculants did not affect digestibility of neutral detergent fibre, except for L. buchneri (Biotal), organic matter nor ME content of silages. The LAB silage inoculants generally had a positive effect on maize silage characteristics in terms of lower pH and shifting fermentation toward lactate with homofermentative LAB or toward acetate with L. buchneri. The use of L. buchneri can improve the aerobic stability of maize silages by the inhibition of yeast activity.  相似文献   

15.
Abstract The effects of level of concentrate supplementation on the response of dairy cows to grass silage‐based diets containing a constant proportion of fodder beet were examined. Forty Holstein‐Friesian dairy cows of mixed parity were used in a 2 × 5 factorial design experiment. Two basal diet types [grass silage alone or grass silage mixed with fodder beet in a 70:30 dry matter (DM) ratio] were offered ad libitum, and the effects of five levels of concentrate supplementation (mean = 3·0, 5·3, 7·5, 9·8 and 12·0 kg DM per cow d?1) were examined. Concentrate supplements were offered via an out‐of‐parlour feeding system. These treatments were examined in a three‐period (period length = 4 weeks) partially balanced changeover design experiment. Fodder beet inclusion had no significant effect on the estimated metabolizable energy (ME) concentration of the ration (P > 0·001). Total DM intake, estimated ME intake, milk yield, milk protein content and milk energy output all showed significant linear increases with increasing level of concentrate inclusion (P < 0·001) while, in addition, milk yield and milk energy output exhibited a significant quadratic increase (P < 0·01). The inclusion of fodder beet in the diet reduced silage DM intake (P < 0·01) but resulted in an increase in total DM intake and estimated ME intake (P < 0·001). However, inclusion of fodder beet had no significant effect on milk yield (P > 0·05), while increasing milk protein content and milk energy output (P ≤ 0·05). Milk energy output, as a proportion of estimated ME intake, was significantly (P < 0·001) reduced by fodder beet inclusion (0·44 vs. 0·38). Despite large increases in estimated ME intake with the inclusion of fodder beet at all levels of concentrate supplementation, milk energy output responses were small, resulting in an overall reduction in the efficiency of conversion of ME intake into milk energy output. An increased partitioning of dietary ME intake to tissue gain is suggested as the most likely explanation for the observations made.  相似文献   

16.
An experiment was conducted to compare the nutritive value of a range of ensiled forage legumes. Silages were prepared from late second‐cut lotus (Lotus corniculatus), first‐cut sainfoin (Onobrychis viciifolia) and both early and late second‐cut red clover (Trifolium pratense) and lucerne (Medicago sativa). Each experimental silage was offered to six Suffolk‐cross wether lambs, aged 10 months, housed in metabolism crates. Voluntary intakes of dry matter ranged from 71 to 81 g kg?1 liveweight0·75 d?1. Voluntary intakes were similar on the lotus, sainfoin and late‐cut red clover silages, but the voluntary intake on the lotus silage was significantly higher than that on the lucerne silages and early‐cut red clover silage. Digestibility of organic matter in the dry matter was highest for the lotus silage (0·650), and lowest for the sainfoin silage (0·527). Although most of the N in the sainfoin silage appeared to be in an indigestible form, N digestibility was approximately 0·70 for the other legume silages. The highest loss of N in urine, 0·75 of N intake, was recorded for lambs offered the lucerne silage. Differences in N intake, N loss in faeces and N loss in urine led to statistically significant differences in the amount of N retained, with the highest and lowest N balances recorded for the lotus (16 g N d?1) and sainfoin (?2 g N d?1) silages respectively. The results confirm that these high protein forages have high intake potential. While low N digestibility appears to limit the nutritional value of sainfoin, further research could formulate feeding strategies that improve the efficiency with which the protein from red clover, lucerne and lotus is utilized.  相似文献   

17.
Two experiments were conducted to examine the effect of two winter feeding systems on the performance of dairy cows in early lactation. Experiments 1 (144 d duration) and 2 (146 d duration) involved sixty‐four (primiparous) and eighty‐six (primiparous and multiparous) Holstein Friesian dairy cows respectively. Rations offered comprised grass silage, maize silage [0·26–0·29 of forage dry matter (DM)] and concentrates (10–12 kg d?1). With the complete diet (treatment CD), the forage and concentrate components were mixed using a complete diet mixer wagon, and offered daily in the form of a ‘complete diet’. With the easy feed (treatment EF), the dairy cows were offered the forage component of the ration twice weekly in whole blocks, in quantities sufficient for the following 3‐ or 4‐d period, while the concentrate component of the diet was offered via electronic out‐of‐parlour feeding stations. Total DM intakes were similar, namely 17·6 and 17·0 kg d?1 (Experiment 1) and 18·7 and 18·5 kg d?1 (Experiment 2), for treatments CD and EF respectively. Feeding system had no significant effect on milk yield, milk fat or milk protein content, or on end of study indices of body tissue reserves in either experiment (P > 0·05). Similarly, feeding system had no significant effect on the digestibility of the ration measured in Experiment 2 (P > 0·05). Feeding times associated with each component of the two feeding systems were measured, and these were then used to calculate total feeding time for a 97‐cow dairy herd. Calculated feeding times for this herd were 209·3 and 156·0 min week?1 for treatments CD and EF respectively.  相似文献   

18.
Three silages were prepared from perennial ryegrass; unwilted without additive (UW), unwilted treated with 3·5 litres commercial (85%) formic acid (UWA) and prewilted without additive (WN) with dry matter (DM) concentrations of 189, 209 and 328 g kg?1 respectively. The three silages were offered ad libitum in a 348-d feeding experiment to three groups of eight Belgian white-blue bulls with an initial live weight (LW) of 277 kg. The concentrate (47 g digestible crude protein (CP) kg?1) supplementation was 7·5 g (kg LW)?1. Acid treatment (UWA) slightly improved digestibility of all silage nutrients except CP, whereas wilting generally slightly decreased digestibility of the nutrients except DM and ether extract. The daily LW gain averaged 912 g and was not significantly different on the three different treatments. DM intake per (kg LW)0.75 was higher with the UWA silage, 69·3 g, and with the WN silage, 71·6 g, than with the UW silage, 65·8 g. However, this difference in DM intake was not reflected in either daily LW or carcase gain. The DM of UW silage was more efficiently utilized than DM of UWA or WN silage.  相似文献   

19.
Lactobacillus buchneri was investigated as a silage inoculant and as a probiotic on feed intake, apparent digestibility, and ruminal fermentation and microbiology in wethers fed low‐dry‐matter (DM) whole‐crop maize silage. Maize forage (279 g/kg DM) was ensiled without inoculant (untreated) and with L. buchneri CNCM I‐4323 at 1 × 10cfu/g fresh forage (inoculated). Six cannulated wethers were arranged in a double 3 × 3 Latin square and assigned to one of three diets: (i) untreated maize silage (untreated), (ii) inoculated maize silage (inoculated), and (iii) untreated maize silage with a daily dose of L. buchneri (1 × 10cfu/g supplied silage) injected directly into the rumen (LB‐probiotic). Wethers fed the inoculated diet had a higher (= .050) DM intake (1.30% body weight [BW]) than wethers fed untreated and LB‐probiotic diets (1.17% and 1.18% BW respectively). The relative proportion of Ruminococcus flavefaciens (proportion of total estimated rumen bacterial 16S rDNA) in the rumen of wethers fed inoculated and LB‐probiotic diets (both 0.42%) tended (= .098) to be lower than in the untreated diet (0.83%). Lactobacillus buchneri as a silage inoculant or as a probiotic had little effect on the variables measured in wethers.  相似文献   

20.
Effects of formic acid, formaldehyde and two levels of tannic acid on changes in the distribution of nitrogen (N) and plant enzymatic activity during ensilage of lucerne (Medicago sativa) were studied. Lucerne [300 g dry matter (DM) kg?1 forage] silages were prepared untreated (control) and with formic acid (4 g kg?1 DM), formaldehyde (1 g kg?1 DM) and two levels of tannic acid (20 and 50 g kg?1 DM) as additives. Inhibition of proteolysis by formic acid was more effective than the other additives during the first 7 d of ensiling. Tannic acid was as effective at inhibiting production of non‐protein‐N, ammonia‐N and free amino acid‐N as formic acid and formaldehyde. However, increased concentrations of non‐protein‐N and free amino acid‐N in silage from day 1 to 35 of ensiling were less with the higher level of tannic acid than that in the control and other additive‐treated silages. Carboxypeptidase lost its activity slowly with increasing time of ensiling. At day 2, it still had 0·79 of the original activity in the control silage. After 21 d of ensiling, high levels of carboxypeptidase activity, proportionately 0·41, 0·49, 0·10, 0·35 and 0·30 of the original activity, remained in the control silage, and silages made with formic acid, formaldehyde, and low and high levels of tannic acid respectively. There were higher levels of activity of acid proteinase in formic acid‐treated silage than in the control silage until day 2 of ensilage indicating that the reduction of proteolysis by formic acid was probably due to acidifying the forage below the pH optima of plant protease. Aminopeptidase activity in all silages declined rapidly after ensiling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号