首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Atmospheric gases and particulates were collected using four-stage filter-pack in Chunchon from January through December in 1999. Particulate SO4 2? and NO3 ?, and gaseous HNO3, SO2 and NH3 were analyzed. Annual average concentration of SO4 2?(S), NO3 ?(S), HNO3 (g), SO2(g) and NH3(g) were 5.75µg/m3, 4.98µg/m3, 0.33ppb, 1.52ppb and 7.25ppb, respectively. Annual dry deposition fluxes were estimated using the measured concentration and dry deposition velocity published by other research group. Annual dry deposition of S was 287kg · (km)?2·y?1, which accounted for about 30% of total S deposition. For N deposition, dry deposition is predominant; about 70% of total N deposition was through dry process mostly as forms of NH3 and HNO3.  相似文献   

2.
Aerodynamically designed surrogate surfaces were used to determine the relative importance of gaseous (SO2, HNO3, NH3) and particulate species (SO4 2?, NO3 ?, NH4 +, Ca2+) in the dry deposition flux. For 11 sampling periods, we measured the deposition fluxes, ambient gaseous concentrations, size distributions of atmospheric aerosols and some meteorological parameters in Uji. The dry deposition of the gas to a nearly perfect sink was calculated by subtracting the greased surface flux from the total deposition flux to both the greased and reagent impregnated (or water) surface. It was found that the gas phase deposition contributed significantly more (60–93%) than the particulate phase to overall deposition of sulfur and nitrogen compounds. The dry deposition velocities of the species were also calculated using the deposition fluxes and the measured ambient concentrations. Comparisons were made between the measured and modeled particulate deposition flux.  相似文献   

3.
We estimated the total inorganic fluxes of nitrogen (N), sulfur (S), chloride (Cl?, sodium (Na+, calcium (Ca2+, magnesium (Mg2+, potassium (K+ and hydronium (H+. The resistance deposition algorithm that is programmed as part of the CALMET/CALPUFF modeling system was used to generate spatially-distributed deposition velocities, which were then combined with measurements of urban and rural concentrations of gas and particle species to obtain dry deposition rates. Wet deposition rates for each species were determined from rainfall concentrations and amounts available from the National Acid Deposition Program (NADP) monitoring network databases. The estimated total inorganic nitrogen deposition to the Tampa Bay watershed (excluding Tampa Bay) was 17 kg-N ha?1 yr?1 or 9,700 metric tons yr?1, and the ratio of dry to wet deposition rates was ~2.3 for inorganic nitrogen. The largest contributors to the total N flux were ammonia (NH3 and nitrogen oxides (NO x at 4.6 kg-N ha?1 yr?1 and 5.1 kg-N ha?1 yr?1, respectively. Averaged wet deposition rates were 2.3 and 2.7 kg-N ha?1 yr?1 for NH4 + and NO3 ?, respectively.  相似文献   

4.
For elucidating the atmospheric deposition contribution of dissolved organic nitrogen (DON) to the total dissolved nitrogen (TDN) deposition rate, dissolved inorganic nitrogen (DIN: NH4 + + NO3 ) and DON deposition rates were annually and monthly estimated during 4 and half-yr monitoring period in an experimental multi-farm under intensive agricultural activities of N fertilizer use and animal husbandry in Central Japan. Annual NH4 +, DON and NO3 deposition rates in bulk and wet deposition data accounted for 48%, 32% and 20% of TDN deposition, respectively, which indicated that this area is strongly affected by the intensive agricultural activities. The DIN and DON deposition rates were respectively estimated at 21.6 and 10.1 kg N ha?1 yr?1, which ranked high in a worldwide regional data set. Consequently, this area has been exposed to a large amount of N deposition including DON with N fertilizer input. The difference between bulk and wet deposition rates (NH4 + and DON) is one of important factors controlling the N deposition in this area. Monthly DON deposition showed positive correlations with DIN and NH4 + deposition rates, respectively, with a significant linear regression curve. The linear regression curve of our monthly data (n = 127) indicates the same trend as the worldwide annual data set (n = 31).  相似文献   

5.
Many ecosystems in Switzerland suffer from eutrophication due to increased atmospheric nitrogen (N) input. In order to get an overview of the problem, critical loads for nutrient N were mapped with a resolution of 1×1 km applying two methods recommended by the UN/ECE: the steady state mass balance method for productive forests, and the empirical method for semi-natural vegetation, such as natural forests, (sub-)alpine or species-rich grassland and raised bogs. The national forest inventory and a detailed atlas of vegetation types were used to identify the areas sensitive to N input. The total N input was calculated as the sum of NO3 ?, NH4 +, NH3, NO2 and HNO3 wet and dry deposition. Wet deposition was determined on the basis of a precipitation map and concentration measurements. Dry deposition was calculated with inferential methods including land-use specific deposition velocities. The concentration fields for NH3 and NO2 were obtained from emission inventories combined with dispersion models. Reduced N compounds account for 63% of total deposition in Switzerland. As indicated by exceeded critical loads, the highest risk for harmful effects of N deposition (decrease of ecosystem stability, species shift and losses) is expected on forests and raised bogs in the lowlands, where local emissions are intense. At high altitudes and in dry inner-alpine valleys, deposition rates are significantly lower.  相似文献   

6.
The effects of enhanced (NH4)2SO4 (NS) deposition on Norway spruce (Picea abies [L.] Karst) fine root biomass, vitality and chemistry were investigated using root-free in-growth cores reproducing native organic and mineral soil horizons. The cores were covered and watered every 2 weeks with native throughfall or throughfall supplemented with NS to increase deposition by 75 kg ha-1 a-1 NH4 +-N (86 kg ha-1 a-1 SO42--S). The in-growth cores were sampled after 19 months and assessed for root biomass, necromass, length, tip number, tip vitality and fine root chemistry. Root biomass and fine root aluminium (Al) concentration were negatively correlated, but NS deposition had no effect on root growth or root tip vitality. NS deposition caused increased fine root nitrogen (N) concentrations in the organic horizon and increased Calcium (Ca) concentrations in the mineral horizon. Fine root biomass was higher in the organic horizon, where fine root Al and potassium (K) concentrations were lower and Ca concentrations higher than in the mineral horizon. Results highlighted the importance of soil stratification on fine root growth and chemical composition.  相似文献   

7.
We measured atmospheric nutrient deposition as wet deposition and dry deposition to dry and wet surfaces. Our analyses offer estimates of atmospheric transport of nitrogen (N), phosphorus (P) and silicon (Si) in an agricultural region. Annual dry and wet deposition (ha?1 year?1) was 0.3 kg of P, 7.7 kg of N, and 6.1 kg of Si; lower than or similar to values seen in other landscapes. N:P and Si:N imply that atmospheric deposition enhances P and Si limitation. Most P and soluble reactive P (SRP) deposition occurred as dryfall and most dry-deposited P was SRP so would be more readily assimilable by plant life than rainfall P. Dry deposition of N to wet surfaces was several times greater than to dry surfaces, suggesting that ammonia (NH x ) gas absorbtion by water associated with wet surfaces is an important N transport mechanism. Deposition of all nutrients peaked when agricultural planting and fertilization were active; ratios of NH x :nitrate (NO x ) hbox{reflected} the predominant use of NH x fertilizer. Wet deposition estimates were consistent over hundreds of km, but dry deposition estimates were influenced by animal confinements and construction. Precipitation wash-out of atmospheric nutrients was substantial but larger rain events yielded higher rates of wet deposition. Methodological results showed that local dust contaminated wet deposition more than dry; insects, bird droppings and leaves may have biased past deposition estimates; and estimating dry deposition to dry plastic buckets may underestimate annual deposition of N, especially NH x .  相似文献   

8.
Nitrogen cycling in two Norway spruce (Picea abies (L.) Karst.) ecosystems in the ARINUS experimental watershed areas Schluchsee and Villingen (Black Forest, SW Germany) and initial effects of a (NH4)2SO4 treatment are discussed. Although N reserves in the soils are similar and atmospheric N input is the same low to moderate level characteristic for many forested areas in SW Germany, N export by both seepage and streamwater differs considerably. At Villingen, deposited N is almost totally retained in the ecosystem, whereas at Schluchsee N export is the order of the input. This is explained by differences in forest management history. The Villingen site had been subject to excessive biomass export (e.g., litter raking) leading to unfavorable microbial transformations in the soil. In contrast, as a ‘relic’ of the former beech stand, the Schluchsee site is characterized by high biological activity in the soil with vigorous nitrification despite low pH values. Accordingly, the two ecosystems responded differently to the additional N input (150 kg NH4 + -N ha?1 as (NH4)2SO4). Nitrification starting immediately in the Schluchsee soils led to continued Al mobilization and leaching of basic cations and NO3 ?. The availability of Mg, already deficient before treatment, further decreased due to Mg leaching and marked N uptake by the stand. In contrast, most of the added N in Villingen was immobilized in the soil. Hence, uptake by the stand and leaching of NO3 ? and cations was correspondingly lower than at Schluchsee. The results emphasize the problems associated with the definition of generally applicable values for ‘critical loads’ of N deposition.  相似文献   

9.
山西省太原市旱作农区大气活性氮干湿沉降年度变化特征   总被引:6,自引:0,他引:6  
鉴于大气氮素沉降对整个生态系统的重要影响,我国近年来陆续开展了不同尺度的大气氮素干、湿沉降的研究,但少有农业区多年连续监测的资料。本研究利用DELTA系统、被动采样器和雨量器在山西省太原市郊区阳曲县河村旱作农业区进行了4年的监测试验,观测大气氮素干、湿沉降的时间变异。结果表明:2011年4月—2015年3月,河村4年大气活性氮NH_3、HNO_3、NO_2、颗粒态NO_3~-(pNO_3~-)、颗粒态NH_4~+(pNH_4~+)平均沉降量分别为4.50 kg(N)·hm~(-2)·a~(-1)、3.54 kg(N)·hm~(-2)·a~(-1)、2.56 kg(N)·hm~(-2)·a~(-1)、1.62 kg(N)·hm~(-2)·a~(-1)、2.75 kg(N)·hm~(-2)·a~(-1),大气氮素干沉降总量为12.38~18.95 kg(N)·hm~(-2)·a~(-1),以2011年的氮干沉降量最高,2014年的最低。2011年4月—2015年3月各月氮干沉降量与氨气沉降量之间存在显著正相关,相关系数在0.809 8~0.937 1,由此可知,该地区活性氮沉降主要受农业氨气排放的影响。河村4年雨水中NO_3~-、NH_4~+平均浓度分别为3.20 mg(N)·L~(-1)和2.43 mg(N)·L~(-1),大气氮素湿沉降11.67~41.31 kg(N)·hm~(-2)·a~(-1)。年度间氮素湿沉降存在很大差异,以2012年氮素年湿沉降量最高,2014年最低,每年大气氮素湿沉降占氮总沉降量的份额超过50%。此外,4年湿沉降中不仅NO_3~--N和NH_4~+-N之间、且二者与降雨量也呈显著线性或二次相关关系,说明降雨量对NO_3~--N和NH_4~+-N的湿沉降影响较大。本研究表明太原市旱作农区不同年份间氮素湿沉降比干沉降差异更大,且总沉降数量较高。虽然是旱作区,该地区氮素干沉降略低于湿沉降。研究结果为该地区农田氮肥施用和氮素循环监测提供了理论依据。  相似文献   

10.
This study assessed the foliar uptake of 15N-labelled nitrogen (N) originating from wet deposition along with leaf surface conditions, measured by wettability and water storage capacity. Foliar 15N uptake was measured on saplings of silver birch, European beech, pedunculate oak and Scots pine and the effect of nitrogen form (NH 4 + or NO 3 ? ), NH 4 + to NO 3 ? ratio and leaf phenology on this N uptake was assessed. Next to this, leaf wettability and water storage capacity were determined for each tree species and phenological stage, and the relationship with 15NH 4 + and 15NO 3 ? uptake was examined. Uptake rates were on average five times higher (p?<?0.05) for NH 4 + than for NO 3 ? and four times higher for deciduous species than for Scots pine. Developing leaves showed lower uptake than fully developed and senescent leaves, but this effect was tree species dependent. The applied NH 4 + to NO 3 ? ratio did only affect the amount of N uptake by senescent leaves. The negative correlation between measured leaf contact angles and foliar N uptake demonstrates that the observed effects of tree species and phenological stage are related to differences in leaf wettability and not to water storage capacity.  相似文献   

11.
One-year field measurements were conducted in a Japanese cedar (Cryptomeria japonica) forest, located in Gunma Prefecture, Japan. On the basis of the meteorological and atmospheric concentration data, the dry deposition of SO2, HNO3, NO2 and HCl was estimated using the inferential method. The annual dry deposition of H+ was estimated at 721 eq ha?1yr?1, which was 40% larger than the measured annual wet deposition of H+ (514 eq ha?1yr?1). Therefore, dry deposition is an important pathway for the atmospheric input of H+ to the forest in the study site. The contribution of each gas to the dry deposition of H+ was as follows: SO2, 25%; HNO3, 32%; NO2, 10%; and HCl, 33%. The extremely high contribution of HCl appeared to be caused by the high emission intensity of HCl due to waste incineration in the site region. The differences between estimated deposition and throughfall and stemflow measurements indicated that about 80% of the total deposition of H+ was taken up by the canopy.  相似文献   

12.
To understand the effect of the NH3 emissions from vehicles, the NH4 + bulk deposition and concentrations of gaseous NH3 and particulate NH4 + were measured at two sites in Saitama prefecture, Japan, one at the roadside of an arterial road (Kounosu), and the other in an agricultural area (Kisai). We observed that the NH4 + bulk deposition and NH3 concentration were significantly increased in Kounosu; the effect of NH3 emissions from vehicles was confirmed. NOx was a primary pollutant mainly emitted by vehicle exhaust in the vicinity of arterial roads, and the relationship between NO x and sum of gaseous NH3 and particulate NH4 + (T-NH4 +) was examined. The [T-NH4 +/NO x ] ratios in Kounosu ranged from 0.08 to 0.23 (average 0.15), and in Kisai they ranged from 0.16 to 0.67 (average 0.39). In Kounosu, the effect of vehicle exhaust was great, but seasonal variation was small. The contribution ratio of NH3 from vehicle emissions increased at low temperatures, while that from the non-vehicle emissions increased at high temperatures.  相似文献   

13.
The distribution of acidic andalkaline constituents (SO4 2-,NO3 -, Cl-, NH4 +, Na+,K+, Ca2+) between the fine and coarseparticle range has been examined in an urban locationin Thessaloniki, N. Greece over an 8-month period. The chemistry of wet and dry deposition collected overthe same period was also examined. Statisticalassociations between species within each environmentalphase were investigated using correlation analysis.Use of principal component analysis was made toinvestigate compositional similarities betweenaerosol, deposited dust and rain. It was found thatSO4 followed by NO3, NH4 and Caprevailed in fine aerosol. Sulphates and Ca were alsothe prevailing ions in the coarse particle fraction.Wet deposition was found to be the dominant depositionmechanism for all species. The high dry depositionrates observed for Ca and SO4 suggest that mostof the dry deposited sulphate is in the form ofCaSO4. Scavenging ratios of ionic speciesassociated with coarse aerosol were higher than thecorresponding ratios for fine particles. Principalcomponent analysis suggested that variations in ioniccomposition of fine aerosol could be interpretedprimarily by gas-to-particle neutralization reactionsinvolving atmospheric ammonia. In contrast, theinteraction between SO2 and HNO3 with Cacompounds seems to be the most likely factor that canexplain variations in wet and dry deposition ioniccontents.  相似文献   

14.
As part of a study of the substance budgets of lakes in south-central Ontario, a network of precipitation collectors (8 bulk, 7 wet only) was operated to measure the deposition of nutrients and major ions. Results are reported for total P, total Kjeldahl N, NO 3 ? ?N, NH 4 + ?N, total N, Fe, H+, Ca++, Mg++, Na+, K+, SO 4 = and CL? for a two year period (August 1976–July 1978). On an equivalent basis the dominant anion in both bulk and wet precipitation was SO 4 = , with H+ the dominant cation. Precipitation in the study area is more acidic than that analyzed at any other location on the Canadian Shield to date. Concentrations of ions varied by 1 to 3 orders of magnitude between individual precipitation events and annual deposition varied by as much as 2-fold in the two years of study. Annual wet deposition contributed >60% of bulk deposition for all substances except total P. Seasonal trends in deposition with summer maxima were noted for most ions. For Harp Lake, a small Precambrian Lake with a lake area of 12.6% of its total drainage area, precipitation input directly to the lake surface was an important source of nutrients and major ions. This was especially the case for P, N and H+ because these substances were retained by the terrestrial drainage basin.  相似文献   

15.
Replacing new corn genotypes in agricultural practices requires adequate information on the reaction of the selected hybrids to Cd uptake in Cd-polluted soil and an understanding of interactions with N fertilizers. A 2 × 2 × 3 factorial pot experiment with limed soil (pH 8), two maize (Zea mays) hybrids (Pioneer cultivar yellow and Pioneer cultivar white), two N fertilization forms (NH4 + and NO3 ?) and three Cd exposures (0, 2 and 5 mg kg?1 soil) was conducted under greenhouse conditions. Shoot dry mass increased significantly with NH4 + nutrition compared with NO3 ? nutrition in both maize hybrids, with greater negative influence of Cd application combined with NH4 + nutrition. The yellow cultivar had significantly greater shoot dry mass and lower Cd uptake than the white cultivar. Both hybrids exhibited similar N uptake in shoots and roots, with the exception of yellow cultivar with NH4 + nutrition without Cd application. NO3 ? nutrition always decreased Cd uptake in both cultivars compared with NH4 + nutrition. The N balance (mean across cultivars and Cd supply) after harvest showed most N uptake with NH4 + nutrition (63.4%) and Nmin remains in the soil with NO3 ? nutrition (48.7%). Soil pH decreased more with NH4 + (?0.95 pH units) than NO3 ? nutrition (?0.21).  相似文献   

16.
Zeolitites (ZTs) are rocks containing more than 50% of zeolite minerals and are known to be a suitable material for agricultural purposes by improving soil physicochemical properties and nitrogen (N) use efficiency. However, little is known about their effects on soil microbial biomass. This study aimed to evaluate short-term effects of different chabazite-rich ZT (CHAZT) amendments on soil microbial biomass and activity. A silty-clay agricultural soil was amended in three different ways, including the addition of natural (5% and 15%) and NH_4~+-enriched (10%) CHAZT. Soil dissolved organic carbon (C), total dissolved N, NH_4~+, NO_3~-, NO_2~-, microbial biomass C and N, and ergosterol were measured periodically over 16 d in a laboratory incubation. To verify the microbial immobilization of the N derived from NH_4~+-enriched CHAZT, a high15N source was used for enriching the mineral to measure the microbial biomass δ15N signature. An increase in the ergosterol content was observed in the soil amended with 5% natural CHAZT. However, no similar result was observed in the soil amended with 15% natural CHAZT, suggesting that the fungal biomass was favored at a lower CHAZT application rate. In the soil amended with NH+ 4-enriched CHAZT, microbial biomass N was related to NO_3~-production over time and inversely related to NH_4~+, suggesting high nitrification process. Isotopic measurements on microbial biomass confirmed immediate assimilation of N derived from NH_4~+-enriched CHAZT. These results suggested that the NH_4~+-enriched CHAZT used in this study supplied an immediately available N pool to the microbial biomass.  相似文献   

17.
The contribution of bacteria and fungi to NH4+ and organic N (Norg) oxidation was determined in a grassland soil (pH 6.3) by using the general bacterial inhibitor streptomycin or the fungal inhibitor cycloheximide in a laboratory incubation study at 20°C. Each inhibitor was applied at a rate of 3 mg g?1 oven‐dry soil. The size and enrichment of the mineral N pools from differentially (NH415NO3 and 15NH4NO3) and doubly labelled (15NH415NO3) NH4NO3 were measured at 3, 6, 12, 24, 48, 72, 96 and 120 hours after N addition. Labelled N was applied to each treatment, to supply NH4+‐N and NO3?‐N at 3.15 μmol N g?1 oven‐dry soil. The N treatments were enriched to 60 atom % excess in 15N and acetate was added at 100 μmol C g?1 oven‐dry soil, to provide a readily available carbon source. The oxidation rates of NH4+ and Norg were analysed separately for each inhibitor treatment with a 15N tracing model. In the absence of inhibitors, the rates of NH4+ oxidation and organic N oxidation were 0.0045 μmol N g?1 hour?1 and 0.0023 μmol N g?1 hour?1, respectively. Streptomycin had no effect on nitrification but cycloheximide inhibited the oxidation of NH4+ by 89% and the oxidation of organic N by more than 30%. The current study provides evidence to suggest that nitrification in grassland soil is carried out by fungi and that they can simultaneously oxidize NH4+ and organic N.  相似文献   

18.
A mixed provenance Sitka spruce plantation, planted in 1986 on a drained deep peat, has been exposed to 6 different simulated mist treatments in 4 replicated blocks since 1996. Treatments provided N and/or S at a concentration of 1.6 mol m?3, supplying ca. 50 kg S and/or N ha?1 yr?1 as N (NH4NO3), S (Na2SO4), NS Acid (NH4NO3 + H2SO4 at pH 2.5), 2NS Acid (double dose by application at twice frequency), a control treatment supplied with additional rainwater only and a 'no treatment' set of plots. Throughfall, preserved with thymol in the field, was collected using gutters with a surface area of 1 m2 in all the replicate plots, and was analysed for all major ions. Prior to treatment in 1999, S deposition in throughfall exceeded that in rain because of dry deposition of SO2 and SO4 2? to the canopy; NH4 + and NO3 ? ions were both retained in the canopy. During treatment, only 20–40% of the applied N in the high-N treatments was retained in the canopy. Acidity in the applied mist was partly neutralised by the canopy, but not primarily through exchange of base cations, leading to the conclusion that weak organic acids, in solution or in situ in the canopy, contributed to the buffering of the H+ ion deposition in the acid treatments.  相似文献   

19.
《Journal of plant nutrition》2013,36(12):2413-2424
Abstract

Tomato and watermelon plants were grown in nutrient solutions in which nitrogen (N) was supplied as NO3 ? (6 mM‐N) or NH4 + (6 mM‐N). The experiments were conducted to evaluate the effect which different N sources exert on iron (Fe) uptake and accumulation, on the enzymatic activities of aconitase (Aco), chelate reductase (FeCH‐R), peroxidase (POD), catalase (CAT), and Fe‐superoxide dismutase (FeSOD), and on biomass production. For both species of plants, fertilization with NH4 + caused the total Fe concentration to be lower, in the roots and in the leaves in relation to the concentrations recorded in plants fertilized with NO3 ?. The response of the enzymes related to Fe correlated with their concentration. The plants treated with N?NO3 ? registered the highest activities in Aco, FeCH‐R, POD, and CAT for both tomato and watermelon. On the other hand, only in the tomato plants was the superoxide dismutase (SOD) activity appreciably influenced primarily by NH4 +, due possibly to the toxic effect of this N source. Finally, in relation to biomass production, fertilization with NH4 + drastically reduced growth in the tomato plants, while in watermelon plants, no significant alteration was detected in dry‐matter production, regardless of the N form used. It was concluded that the response of the parameters analyzed to NH4 + fertilization, in tomato and watermelon, compared to fertilization with NO3 ? was similar. By contrast, tomato plants, but not watermelon plants, were negatively influenced by NH4 +.  相似文献   

20.
As a result of considerable deposition of ammonium sulphate on vegetation and soil the NH4/K ratios in the soil water extracts of pine forests in the Netherlands are increasing. Increasing the NH4/K ratio from 1 to 40 in the solid nutrient medium of isolated ectomycorrhizal fungi will in general result in a 60 to 80% inhibition of the lateral growth. On increasing the NH4/K ratio the biomass of most of the fungi examined shows a maximum at ratios of approximately 10 to 20, although the colony diameter at those ratios remains rather small. NH4 + also exerts a pronounced effect on the uptake rate of Rb+ inRhizopogon luteolus.At low Rb concentrations the inhibitory effect of NH4 + is maximal, whereas on increasing the Rb+ concentration the inhibitory effect of NH4 + is abolished. This means that NH4 + competitively inhibits the Rb+ uptake inR. Iuteolus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号