首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Multipotent mesenchymal stromal cells (MSCs) are a promising therapeutic tool for the treatment of equine tendon and other musculoskeletal injuries. While bone marrow is considered the ‘gold standard’ source of these cells, various other tissues contain MSCs with potentially useful features. The aim of this study was to compare clinically relevant characteristics of MSCs derived from bone marrow, umbilical cord blood and tissue and from adipose tissue and tendon. Cell yield, proliferation, migration, tendon marker expression and differentiation into adipocytes, chondrocytes and osteoblasts was assessed, quantified and compared.MSC numbers obtained from adipose, tendon or umbilical cord tissues were 222-fold higher than those obtained from bone marrow or cord blood. Cells derived from tendon and adipose tissues exhibited most rapid proliferation. Osteogenic differentiation was most prominent in MSCs derived from bone marrow, and was weak in MSCs derived from umbilical cord blood and tissue. In contrast, the highest levels of chondrogenic differentiation were observed in MSCs derived from these sources. Collagen 1A2 expression was highest in adipose- and tendon-derived MSCs, while scleraxis expression was highest in cord blood- and in tendon-derived MSCs. The findings indicate that MSCs from different sources display significantly diverse properties that may impact on their therapeutic application.  相似文献   

2.
Mesenchymal stem cells (MSCs) have the capabilities for self-renewal and differentiation into cells with the phenotypes of bone, cartilage, neurons and fat cells. These features of MSCs have attracted the attention of investigators for using MSCs for cell-based therapies to treat several human diseases. Because bone marrow-derived cells, which are a main source of MSCs, are not always acceptable due to a significant drop in their cell number and proliferative/differentiation capacity with age, human umbilical cord blood (UCB) cells are good substitutes for BMCs due to the immaturity of newborn cells. Although the isolation of hematopoietic stem cells from UCB has been well established, the isolation and characterization of MSCs from UCB still need to be established and evaluated. In this study, we isolated and characterized MSCs. UCB-derived mononuclear cells, which gave rise to adherent cells, exhibited either an osteoclast or a mesenchymal-like phenotype. The attached cells with mesenchymal phenotypes displayed fibroblast-like morphologies, and they expressed mesenchym-related antigens (SH2 and vimentin) and periodic acid Schiff activity. Also, UCB-derived MSCs were able to transdifferentiate into bone and 2 types of neuronal cells, in vitro. Therefore, it is suggested that the MSCs from UCB might be a good alternative to bone marrow cells for transplantation or cell therapy.  相似文献   

3.
Background: Adult mesenchymal stem cells(MSCs) can be conveniently sampled from bone marrow, peripheral blood, muscle, adipose and connective tissue, harvested from various species, including, rodents, dogs, cats, horses,sheep, goats and human beings. The MSCs isolated from adult tissues vary in their morphological and functional properties. These variations are further complicated when cells are expanded by passaging in culture. These differences and changes in MSCs must be considered prior to their application in the clinic or in a basic research study. Goats are commonly used as animal models for bone tissue engineering to test the potential of stem cells for bone regeneration. As a result, goat MSCs isolated from bone marrow or adipose tissue should be evaluated using in vitro assays, prior to their application in a tissue engineering project.Results: In this study, we compared the stem cell properties of MSCs isolated from goat bone marrow and adipose tissue. We used quantitative and qualitative assays with a focus on osteogenesis, including, colony forming unit, rate of cell proliferation, tri-lineage differentiation and expression profiling of key signal transduction proteins to compare MSCs from low and high passages. Primary cultures generated from each source displayed the stem cell characteristics,with variations in their osteogenic potentials. Most importantly, low passaged bone marrow MSCs displayed a significantly higher and superior osteogenic potential, and hence, will be the preferred choice for bone tissue engineering in future in vivo experiments. In the bone marrow MSCs, this process is potentially mediated by the p38 MAPK pathway. On the other hand, osteogenic differentiation in the adipose tissue MSCs may involve the p44/42 MAPK pathway.Conclusions: Based on these data, we can conclude that bone marrow and fat-derived MSCs undergo osteogenesis via two distinct signaling pathways. Even though the bone marrow MSCs are the preferred source for bone tissue engineering, the adipose tissue MSCs are an attractive alternative source and undergo osteo-differentiation differently from the bone marrow MSCs and hence, might require a cell-based enhancer/inducer to improve their osteogenic regenerative capacity.  相似文献   

4.
Background –  Adult stem cells come from many sources and have the capacity to differentiate into many cell types, including those of the skin. The most commonly studied stem cells are those termed mesenchymal stem cells (MSCs), which are easily isolated from bone marrow and adipose tissue. Mesenchymal stem cells are known to produce a wide array of cytokines that modulate the regeneration process. The ease of collection, propagation and use of these MSCs in therapy of traumatic, ischaemic and immune‐mediated skin conditions is emerging. Approach and evidence –  In traumatic and ischaemic skin damage, MSCs are used in tissue‐engineered skin and by direct injection into damaged tissue. For immune‐mediated diseases, systemic administration of stem cells can modulate the immune system. The earliest clinical work has been with autologous stem cell sources, such as adipose tissue and bone marrow. In immune‐mediated diseases, the MSCs are used to downregulate production of inflammatory cytokines and to block T‐cell activation. Cells are generally given intravenously. Multiple sclerosis, rheumatoid arthritis and lupus have been successfully treated in human clinical trials. Mesenchymal stem cells can also stimulate resident local cells, such as keratinocytes and progenitor cells, to proliferate, migrate and repair skin injury and disease. Looking ahead –  The discovery of the MSC in adipose tissue has spawned a global effort to utilize these cells in therapy of a wide range of diseases of the skin. Reconstructive surgery, scar blocking and resolution and skin regeneration have all been shown to be possible in human and animal studies.  相似文献   

5.
Alternative sources of mesenchymal stem cells (MSCs) for replacing bone marrow (BM) have been extensively investigated in the field of bone tissue engineering. The purpose of this study was to compare the osteogenic potential of canine MSCs derived from adipose tissue (AT), BM, umbilical cord blood (UCB), and Wharton''s jelly (WJ) using in vitro culture techniques and in vivo orthotopic implantation assays. After canine MSCs were isolated from various tissues, the proliferation and osteogenic potential along with vascular endothelial growth factor (VEGF) production were measured and compared in vitro. For the in vivo assay, MSCs derived from each type of tissue were mixed with β-tricalcium phosphate and implanted into segmental bone defects in dogs. Among the different types of MSCs, AT-MSCs had a higher proliferation potential and BM-MSCs produced the most VEGF. AT-MSCs and UCB-MSCs showed greater in vitro osteogenic potential compared to the other cells. Radiographic and histological analyses showed that all tested MSCs had similar osteogenic capacities, and the level of new bone formation was much higher with implants containing MSCs than cell-free implants. These results indicate that AT-MSCs, UCB-MSCs, and WJ-MSCs can potentially be used in place of BM-MSCs for clinical bone engineering procedures.  相似文献   

6.
Reasons for performing study: Autologous cellular therapy products including adipose‐derived stromal vascular fraction (SVF), bone marrow mononuclear cells (BMMNs), cord blood mononuclear cells (CBMNs) and platelet rich plasma are options for treatment of acute orthopaedic lesions while mesenchymal stem cells (MSCs) are culture expanded. These products may contribute to healing by secreting matrix proteins or growth factors, but they may also act on endogenous MSCs to facilitate healing. Objectives: To determine the effects of cell therapy products on MSCs function in vitro. The hypothesis was that cell therapy products promote MSCs functions including proliferation, migration and mediator release. Methods: Fat, bone marrow (BM), cord blood and platelets were obtained from 6 Quarter Horses. The BM‐MSCs and their autologous cell therapy products were co‐incubated in transwells. Mesenchymal stem cells proliferation, migration, gene expression and cytokine concentrations were determined. Results: All cell therapy products increased MSCs proliferation, but SVF induced significantly more proliferation than any other product. Also SVF elicited more MSCs chemotaxis and, along with BMMNs, significantly more MSCs chemoinvasion. Cord blood mononuclear cells stimulated MSCs to produce high concentrations of interleukin‐6 (IL‐6), transforming growth factor‐β1 (TGF‐β1), and prostaglandin E2 (PGE2). Stromal vascular fraction and platelet lysate did not stimulate MSCs but SVF and platelet lysate themselves contained high concentrations of PGE2 and IL‐6 (SVF) and TGF‐β1 (platelet lysate). Conclusions: Autologous cell products variably stimulate MSCs functions with 2 primary patterns apparent. Products either contained preformed mediators that may have intrinsic healing function, or products stimulated MSCs to secrete mediators. Potential relevance: The specific clinical indications for these products may differ to include administration as a sole treatment modality prior to MSCs injection for intrinsic cell and cytokine activity (i.e. SVF) or administration concurrently with MSCs to activate MSCs for treatment of chronic lesions (i.e. CBMNs).  相似文献   

7.
The objective of this study was to validate non-equilibrium gravitational field-flow fractionation (GrFFF), an immunotag-less method of sorting mesenchymal stem cells (MSCs) into subpopulations, for use with MSCs derived from equine muscle tissue, periosteal tissue, bone marrow, and adipose tissue. Cells were collected from 6 young, adult horses, postmortem. Cells were isolated from left semitendinosus muscle tissue, periosteal tissue from the distomedial aspect of the right tibia, bone marrow aspirates from the fourth and fifth sternebrae, and left supragluteal subcutaneous adipose tissue. Aliquots of 800 × 103 MSCs from each tissue source were separated and injected into a ribbon-like capillary device by continuous flow (GrFFF proprietary system). Cells were sorted into 6 fractions and absorbencies [optical density (OD)] were read. Six fractions from each of the 6 aliquots were then combined to provide pooled fractions that had adequate cell numbers to seed at equal concentrations into assays. Equine muscle tissue-derived, periosteal tissue-derived, bone marrow-derived, and adipose tissue-derived mesenchymal stem cells were consistently sorted into 6 fractions that remained viable for use in further assays. Fraction 1 had more cuboidal morphology in culture when compared to the other fractions. Statistical analysis of the fraction absorbencies (OD) revealed a P-value of < 0.05 when fractions 2 and 3 were compared to fractions 1, 4, 5, and 6. It was concluded that non-equilibrium GrFFF is a valid method for sorting equine muscle tissue-derived, periosteal tissue-derived, bone marrow-derived, and adipose tissue-derived mesenchymal stem cells into subpopulations that remain viable, thus securing its potential for use in equine stem cell applications and veterinary medicine.  相似文献   

8.
Umbilical cord blood (UCB)-derived mesenchymal stem cells (MSCs) are multipotent adult stem cells, which can differentiation into cells of connective tissue and neural lineages. This study investigated the potential for neuronal differentiation of red fluorescent protein (RFP)-transgenic cat UCB-derived MSCs. The cells were cultured in pre-induction medium for 24 hr and in neuronal-induction medium for 72 hr. Immunofluorescent staining showed that 6.85% of the total cells were beta III-tubulin-positive, 3.37% were neurofilament light (NF-L)-positive and 7.04% were neurofilament medium (NF-M)-positive. A beta III-tubulin band was detected by western blot analysis. Our results demonstrate that RFP-transgenic UCB-derived MSCs can be differentiated into neuronal cells in vitro. Thus, RFP-transgenic MSCs could provide alternative tracing material for stem cell transplantation.  相似文献   

9.
The objectives of this study were to use non-equilibrium gravitational field-flow fractionation (GrFFF), an immunotag-less method of sorting mesenchymal stem cells (MSCs), to sort equine muscle tissue-derived mesenchymal stem cells (MMSCs) and bone marrow-derived mesenchymal stem cells (BMSC) into subpopulations and to carry out assays in order to compare their osteogenic capabilities. Cells from 1 young adult horse were isolated from left semitendinosus muscle tissue and from bone marrow aspirates of the fourth and fifth sternebrae. Aliquots of 800 × 103 MSCs from each tissue source were sorted into 5 fractions using non-equilibrium GrFFF (GrFFF proprietary system). Pooled fractions were cultured and expanded for use in osteogenic assays, including flow cytometry, histochemistry, bone nodule assays, and real-time quantitative polymerase chain reaction (qPCR) for gene expression of osteocalcin (OCN), RUNX2, and osterix. Equine MMSCs and BMSCs were consistently sorted into 5 fractions that remained viable for use in further osteogenic assays. Statistical analysis confirmed strongly significant upregulation of OCN, RUNX2, and osterix for the BMSC fraction 4 with P < 0.00001. Flow cytometry revealed different cell size and granularity for BMSC fraction 4 and MMSC fraction 2 compared to unsorted controls and other fractions. Histochemisty and bone nodule assays revealed positive staining nodules without differences in average nodule area, perimeter, or stain intensity between tissues or fractions. As there are different subpopulations of MSCs with different osteogenic capacities within equine muscle- and bone marrow-derived sources, these differences must be taken into account when using equine stem cell therapy to induce bone healing in veterinary medicine.  相似文献   

10.
In the dog, mesenchymal stem cells (MSCs) have been shown to reside in the bone marrow (bone marrow-derived mesenchymal stem cells: BM-MSCs) as well as in the adipose tissue (adipose tissue-derived stem cells: ADSCs). Potential application fields for these multipotent MSCs in small animal practice are joint diseases as MSCs of both sources have shown to possess chondrogenic differentiation ability. However, it is not clear whether the chondrogenic differentiation potential of cells of these two distinct tissues is truly equal. Therefore, we compared MSCs of both origins in this study in terms of their chondrogenic differentiation ability and suitability for clinical application. BM-MSCs harvested from the femoral neck and ADSCs from intra-abdominal fat tissue were examined for their morphology, population doubling time (PDT) and CD90 surface antigen expression. RT-PCR served to assess expression of pluripotency marker Oct4 and early differentiation marker genes. Chondrogenic differentiation ability was compared and validated using histochemistry, transmission electron microscopy (TEM) and quantitative RT-PCR. Both cell populations presented a highly similar morphology and marker expression in an undifferentiated stage except that freshly isolated ADSCs demonstrated a significantly faster PDT than BM-MSCs. In contrast, BM-MSCs revealed a morphological superior cartilage formation by the production of a more abundant and structured hyaline matrix and higher expression of lineage specific genes under the applied standard differentiation protocol. However, further investigations are necessary in order to find out if chondrogenic differentiation can be improved in canine ADSCs using different protocols and/or supplements.  相似文献   

11.
The objective of this study was to compare nucleated cell fractions and mesenchymal stromal cells (MSCs) from adipose tissue to bone marrow processed by a point-of-care device that are available for immediate implantation. A paired comparison using adipose and bone marrow from five horses was done. The number of nucleated cells, viability, total adherent cells on day 6 of culture and colony-forming unit fibroblasts (CFU-Fs) were determined. Gene expression for markers of stemness, adipogenic, chondrogenic, osteogenic lineage, and collagen formation was measured in total RNA isolated from adherent adipose and bone marrow cells. Day 6 adherent adipose-derived MSC was frozen briefly, whereas day 6 adherent bone marrow–derived MSC was passaged two additional times to obtain adequate cell numbers for chondrogenic, osteogenic, and adipogenic cell differentiation assays. The total cell count per gram was significantly greater for bone marrow, whereas total adherent cells per gram and the CFU-F per million nucleated cells on day 6 were significantly greater for the adipose. In undifferentiated adherent cells, relative gene expression for CD34, adipogenic, and chondrogenic markers and collagen II was significantly lower in the adipose-derived cells. Conversely, expression of collagen I was significantly higher in the undifferentiated adipose-derived cells. Cell density and total RNA were higher in differentiated adipogenic and osteogenic cultures of adipose cells and in chondrogenic cultures of bone marrow cells. This cell preparation method provides a stromal vascular fraction with a large proportion of multipotent MSCs. There are differences in the cells obtained from the two sources. This method can provide an adequate number of multipotent cells from adipose tissue for immediate implantation.  相似文献   

12.
13.
本研究旨在观察不同代次骨髓间充质干细胞(BMSCs)和脂肪间充质干细胞(ADSCs)体外培养的生长特点和体外诱导成骨能力。通过密度梯度离心和贴壁培养法分离培养大鼠骨髓间充质干细胞和脂肪间充质干细胞,用含地塞米松、抗坏血酸、β-甘油磷酸钠的培养液定向诱导传代细胞向成骨细胞分化,并利用茜素红染色、碱性磷酸酶染色及PCR方法检测成骨细胞。结果表明骨髓及脂肪间充质干细胞呈成纤维细胞样生长,增殖能力强,生长迅速。第5、10、15、20代BMSCs及ADSCs经诱导培养后茜素红染色呈阳性并且出现"矿化"、碱性磷酸酶活性强,随着细胞代次的递增,诱导后细胞碱性磷酸酶活性呈递减趋势;诱导后的两类细胞传代后细胞仍能继续分化,并形成正常的"矿化"结节,且碱性磷酸酶染色均弱于初次诱导。结果提示,BMSCs及ADSCs易于分离培养及体外扩增,诱导条件下成骨能力强且成骨细胞传代培养仍具有成骨能力,适合作为再生医学骨组织工程的种子细胞。  相似文献   

14.
The use of adult stem cells in tissue regeneration appears to be a powerful research tool, due to the intrinsic characteristics of these cells, i.e., self-renewal and unlimited capacity for proliferation. In particular, mesenchymal stem cells (MSCs) obtained from bone marrow or peripheral blood can be easily isolated, cultivated, propagated and can be differentiated into several specialized cell types thanks to their plasticity. Among these cells, MSCs can evolve into cardiac cell lineages. Since heart damage leads to the irreversible loss of cardiac function, cell transplantation could be a potential therapy for heart injury. Our laboratory has focused on the purification and expansion of rat and sheep MSCs, their differentiation into cardiomyocytes and their characterisation. Numerous results indicate that MSCs could be promising for therapy, however we need to better understand the biology of stem cells to improve methods for delivery and/or pharmacological activation. These techniques can indeed track engrafted cells and systems to guarantee their safe use.  相似文献   

15.
Equine mesenchymal stem cells (MSC) are of particular interest both for basic research and for the therapeutic approach to musculoskeletal diseases in the horse. Their multilineage differentiation potential gives them the capability to contribute to the repair of tendon, ligament and bone damage. MSCs are also considered a promising therapeutic aid in allogeneic cell transplantation, since they show low immunogenicity and immunomodulating functions.Adipose tissue-derived adult equine stem cells (AdMSC) can be isolated, expanded in vitro and then inoculated into the damaged tissue, eventually in the presence of a biological scaffold. Here we report our preliminary experience with adipose-derived mesenchymal stem cells in allogeneic cell-therapy of tendonitis in the horse. MSCs, derived from visceral adipose tissue, were grown in the presence of autologous platelet lysate and characterized for their differentiation and growth potential. Expanded AdMSC were inoculated into the damaged tendon after their dispersion in activated platelet-rich plasma (PRP), a biological scaffold that plays an important role in maintaining cells in defect sites and contributes to tissue healing. Fourteen out of sixteen treated horses showed a functional recovery and were able to return to their normal activity.  相似文献   

16.
Del Bue  M.  Ricc&#;  S.  Ramoni  R.  Conti  V.  Gnudi  G.  Grolli  S. 《Veterinary research communications》2008,32(1):51-55
Equine mesenchymal stem cells (MSC) are of particular interest both for basic research and for the therapeutic approach to musculoskeletal diseases in the horse. Their multilineage differentiation potential gives them the capability to contribute to the repair of tendon, ligament and bone damage. MSCs are also considered a promising therapeutic aid in allogeneic cell transplantation, since they show low immunogenicity and immunomodulating functions.Adipose tissue-derived adult equine stem cells (AdMSC) can be isolated, expanded in vitro and then inoculated into the damaged tissue, eventually in the presence of a biological scaffold. Here we report our preliminary experience with adipose-derived mesenchymal stem cells in allogeneic cell-therapy of tendonitis in the horse. MSCs, derived from visceral adipose tissue, were grown in the presence of autologous platelet lysate and characterized for their differentiation and growth potential. Expanded AdMSC were inoculated into the damaged tendon after their dispersion in activated platelet-rich plasma (PRP), a biological scaffold that plays an important role in maintaining cells in defect sites and contributes to tissue healing. Fourteen out of sixteen treated horses showed a functional recovery and were able to return to their normal activity.  相似文献   

17.
通过分离培养兔骨髓来源的间充质干细胞(MSCs),示踪其肝内移植命运,为MSCs的细胞治疗肝脏疾病提供理论依据和试验支持.采取全骨髓贴壁培养法分离培养兔骨髓MSCs,利用携带增强型绿色荧光蛋白(EGFP)的慢病毒载体感染MSCs,选择最优转染效率,并移植入经D-氨基半乳糖诱导的急性/亚急性肝衰竭受体兔体内,荧光显微镜下...  相似文献   

18.
Reasons for performing study: Stem cells derived from umbilical cord tissue (UCT) and umbilical cord blood (UCB) in human subjects and horses can be obtained in a minimally invasive fashion with successful propagation of mesenchymal stem cells (MSCs). Currently there are no detailed protocols documenting a procedure to harvest UCB and UCT safely for equine stem cell propagation. Hypothesis: UCB and UCT could be collected without harm to mare or foal. Objectives: To develop a standard and safe method for UCB and UCT collection, and prospectively to compare foal and mare health between groups of animals where tissue was and was not collected. Methods: This study was conducted at a Thoroughbred breeding facility in central California in 2008. UCB and UCT were collected from 40 mare and foal pairs. Clinical parameters including time for foal to stand and nurse, time for mare to pass the placenta, and foal haematology data at age 24 h were documented and compared to a control group, consisting of the succeeding 40 mare and foal pairs. Results: UCB was obtained successfully from 36 of 40 (90%) mares and UCT from 38 of 40 (95%) mares. Bacterial contamination was documented in 6 out of 36 (16.6%) UCB samples. There were no significant differences in time to stand or nurse for foals or time to pass the placenta for mares, between the experimental and control groups. There were no clinically relevant differences identified in haematological data obtained from foals with and without UCB collection. Conclusions: UCB and UCT can be harvested safely without harm to mares or foals. Potential relevance: UCB and UCT samples collected in an inherently contaminated environment can be successfully disinfected and transported with minimal bacterial overgrowth for use in cell culture to isolate MSCs.  相似文献   

19.
Immune privileged mesenchymal stem cells (MSCs) can differentiate into multiple cell types and possess great potential for human and veterinary regenerative therapies. This study was designed with an objective to isolate, expand and characterize buffalo bone marrow‐derived MSCs (BM‐MSCs) at molecular and cellular level. Buffalo BM‐MSCs were isolated by Ficoll density gradient method and cultured in Dulbecco’s modified Eagle’s medium supplemented with fetal bovine serum (FBS). These cells were characterized through alkaline phosphatase (AP) staining, colony‐forming unit (CFU) assay, mRNA expression analysis (CD 73, CD 90, CD 105, Oct4 and Nanog), immunolocalization along with flow cytometry (Stro 1, CD 73, CD 105, Oct4, Sox2 and Nanog) and in situ hybridization (Oct4 and Sox2). Multilineage differentiation (osteogenic, adipogenic and chondrogenic) was induced in vitro, which was further assessed by specific staining. Buffalo BM‐MSCs have the capacity to form plastic adherent clusters of fibroblast‐like cells and were successfully maintained up to 16th passage. These cells were AP positive, and further CFU assay confirmed their clonogenic property. RT‐PCR analysis and protein localization study showed that buffalo BM‐MSCs are positive for various cell surface markers and pluripotency markers. Cytoplasmic distribution of mRNA for pluripotency markers in buffalo BM‐MSCs and multilineage differentiation were induced in vitro, which was further assessed by specific staining. To the best of our knowledge, this is the first report of buffalo BM‐MSCs, which suggests that MSCs can be derived and expanded from buffalo bone marrow and can be used after characterization as a novel agent for regenerative therapy.  相似文献   

20.
In the last decade, progenitor cells isolated from dissociated endometrial tissue have been the subject of many studies in several animal species. Recently, endometrial cells showing characteristics of mesenchymal stem cells (MSC) have been demonstrated in human, pig and cow uterine tissue samples. The aim of this study was the isolation and characterization of stromal cells from the endometrium of healthy bitches, a tissue that after elective surgery is routinely discarded. Multipotent stromal cells could be isolated from all bitches enrolled in the study (n = 7). The multipotency of cells was demonstrated by their capacity to differentiate into adipocytic, osteocytic and chondrocytic lineages. Clonogenicity and cell proliferation ability were also tested. Furthermore, gene expression analysis by RT‐PCR was used to compare the expression of a set of genes (CD44, CD29, CD34, CD45, CD90, CD13, CD133, CD73, CD31 CD105, Oct4) with adipose tissue‐derived MSC. Stromal cells isolated from uterine endometrium showed similar morphology, ability of subculture and plasticity, and also expressed a panel of genes comparable with adipose tissue‐derived MSC. These data suggest that endometrial stromal cells fulfil the basic criteria proposed by the “Mesenchymal and Tissue Stem Cell Committee of the International Society for Cellular Therapy” for the identification of mesenchymal stem cells. Although endometrial mesenchymal stem cells (EnMSC) showed a lower replicative ability in comparison with adipose tissue‐derived MSC, they could be considered a cell therapeutic agent alternative to adipose tissue or bone marrow‐derived MSC in dog.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号