首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 139 毫秒
1.
The salt‐sensitive Glycine max N23674 cultivar, the salt‐born Glycine soja BB52 population, and their hybrid 4076 strain (F5) selected for salt tolerance generation by generation were used as the experimental materials in this study. First, the effects of NaCl stress on seed germination, tissue damage, and time‐course ionic absorption and transportation were compared. When qualitatively compared with seed germination appearance in culture dishes, and tissue damages on roots or leaves of seedlings, or quantitatively compared with the relative salt injury rate, the inhibition on N23674 was all the most remarkable. After the exposure of 140 mm NaCl for 1 h, 4 h, 8 h, 12 h, 2 days and 4 days, the content of Cl? gradually increased in the roots and leaves of seedlings of BB52, 4076 and 23674. Interestingly, the extents of the Cl? rise in roots of the three experimental soybean materials were BB52 > 4076 > N23674, whereas those in leaves were just on the contrary. Secondly, by using the scanning ion‐selective electrode technique (SIET), fluxes of Na+ and Cl? in roots and protoplasts isolated from roots and leaves were also investigated among the three experimental soybean materials. After 140 mm NaCl stress for 2, 4 and 6 days, and when compared with N23674, slighter net Cl? influxes were observed in root tissue and protoplasts of roots and leaves of BB52 and 4076 seedlings, especially at the cellular protoplast level. The results indicate that with regard to the ionic effect of NaCl stress, Cl? was the main determinant salt ion for salt tolerance in G. soja, G. max and their hybrid, and the difference in their Cl?/salt tolerance is mainly attributed to the capacity of Cl? restriction to the plant above‐ground parts such as leaves.  相似文献   

2.
Forty-five accessions of sunflower collected from different countries were screened for salinity tolerance after 2 weeks growth in sand culture salinized with 150 meq l?1 of NaCl2+ CaCl2 (1:1 ratio equivalent wt. basis) in half strength Hoagland's nutrient solution. The results for plant biomass of 45 accessions show that there was considerable variation in salinity tolerance. In a further greenhouse experiment, the salinity tolerance of three tolerant (HO-1, Predovik, Euroflor) and two sensitive (SMH-24, 9UO-985) lines (selected on the basis of their performance in the seedling experiment) was assessed at the adult stage to evaluate the consistency of salinity tolerance at different growth stages. All three salt tolerant accessions produced significantly greater plant biomass, seed yield and seed oil content than the salt sensitive accessions. The tolerant accessions accumulated less Cl? and more K+ in the leaves under saline conditions compared with the salt sensitive accessions. The salt tolerant accessions also maintained relatively high leaf K:Na ratio and K+ versus Na+ selectivity. Although statistically nonsignificant, all three tolerant accessions had greater soluble carbohydrates, soluble proteins, total free amino acids and proline in the leaves than the sensitive accessions. A field trial conducted in a salt-affected field confirmed the greenhouse results of the selected accessions. This study shows that salinity tolerance of sunflower does not vary with stage of plant cycle, so selection for increased salt tolerance can be carried out at the initial growth stage. Secondly, it is found that there is great variation of salt tolerance in sunflower. Low uptake of Cl?, high uptake of K+, and maintenance of high K:Na ratios and K+ versus Na+ selectivity in the leaves and possibly the accumulation of organic osmotica such as soluble carbohydrates, soluble proteins, proline and free amino acids seem to be the important components of salt tolerance in sunflower.  相似文献   

3.
Four bread wheat genotypes differing in salt tolerance were selected to evaluate ion distribution and growth responses with increasing salinity. Salinity was applied when the leaf 4 was fully expanded. Sodium (Na+), potassium (K+) concentrations and K+/Na+ ratio in different tissues including root, leaf‐3 blade, flag leaf sheath and flag leaf blade at three salinity levels (0, 100 and 200 mm NaCl), and also the effects of salinity on growth rate, shoot biomass and grain yield were evaluated. Salt‐tolerant genotypes (Karchia‐65 and Roshan) showed higher growth rate, grain yield and shoot biomass than salt‐sensitive ones (Qods and Shiraz). Growth rate was reduced severely in the first period (1–10 days) after salt commencements. It seems after 20 days, the major effect of salinity on shoot biomass and grain yield was due to the osmotic effect of salt, not due to Na+‐specific effects within the plant. Grain yield loss in salt‐tolerant genotypes was due to the decline in grain size, but the grain yield loss in salt‐sensitive ones was due to decline in grain number. Salt‐tolerant genotypes sequestered higher amounts of Na+ concentration in root and flag leaf sheath and maintained lower Na+ concentration with higher K+/Na+ ratios in flag leaf blade. This ion partitioning may be contributing to the improved salt tolerance of genotypes.  相似文献   

4.
Although many screening criteria have been suggested to distinguish between genotypes for their salt tolerance under controlled environmental conditions, there is a need to test these criteria in the field. Saline soils are often complex and, therefore, unlikely to show a simple relationship to controlled conditions. To address this deficit, different agronomic and physiological screening criteria for salt tolerance in wheat at different stages were examined under both field and controlled conditions. Four wheat genotypes differing in their salt‐tolerance levels were grown in salt‐affected soil at two different locations and also under greenhouse conditions. Dry weight and leaf area of the upper and lower two leaves of the main stem and total dry weight at Zadoks scale 47 were measured in plants grown under field conditions. The concentrations of Cl?, Na+, K+ and Ca2+ in the upper and lower two leaves of the main stem at Zadoks scale 47 and different yield components were measured in plants grown under both conditions. Our results indicate that measurements derived from the upper two leaves of the main stem were generally more effective as screening criteria than those from the lower two leaves. Correlation coefficients between grain yield and either dry weight or leaf area of the upper two leaves of the main stem indicated that dry weight is inferior to leaf area as a screening criterion under field conditions. Number of sterile spikelets per plant performed well under both conditions, whereas the number of spikelets per plant and 1000‐grain weight failed to distinguish the differences of salt‐tolerance levels among genotypes accurately. Weight and number of grains per plant and number of fertile spikes per plant were poor criteria under controlled conditions, but effective under field conditions. The maintenance of low Cl? and Na+ concentrations in the upper two leaves offered the best guide to salt tolerance under both conditions. Potassium concentration was a poor criterion compared with the selectivity of K+ over Na+, which was useful under both field and controlled conditions. Calcium concentration and Ca2+ over Na+ selectivity in the upper and/or lower two leaves of the main stem were also effective in ranking genotypes according to their salt tolerance under both field and controlled conditions. Therefore, we conclude that simple measurements of the upper two leaves of the main stem including a straightforward measurement of leaf area, visually estimating the number of sterile spikelets, and a quick, practical determination of Na+ and Ca2+ concentration constitute effective criteria to screen wheat genotypes for salt tolerance under both field and controlled conditions.  相似文献   

5.
Drought stress is a major limiting factor for crop production in the arid and semi‐arid regions. Here, we screened eighty barley (Hordeum vulgare L.) genotypes collected from different geographical locations contrasting in drought stress tolerance and quantified a range of physiological and agronomical indices in glasshouse trails. The experiment was conducted in large soil tanks subjected to drought treatment of eighty barley genotypes at three‐leaf stage and gradually brought to severe drought by withholding irrigation for 30 days under glasshouse conditions. Also, root length of the same genotypes was measured from stress‐affected plants growing hydroponically. Drought tolerance was scored 30 days after the drought stress commenced based on the degree of the leaf wilting, fresh and dry biomass and relative water content. These characteristics were related to stomatal conductance, stomatal density, residual transpiration and leaf sap Na, K, Cl contents measured in control (irrigated) plants. Responses to drought stress differed significantly among the genotypes. The overall drought tolerance was significantly correlated with relative water content, stomatal conductance and leaf Na+ and K+ contents. No significant correlations between drought tolerance and root length of 6‐day‐old seedling, stomatal density, residual transpiration and leaf sap Cl? content were found. Taking together, these results suggest that drought‐tolerant genotypes have lower stomatal conductance, and lower water content, Na+, K+ and Cl? contents in their tissue under control conditions than the drought‐sensitive ones. These traits make them more resilient to the forthcoming drought stress.  相似文献   

6.
Salinity is known to reduce chickpea yields in several regions of the world. Although ion toxicity associated with salinity leads to yield reductions in a number of other crops, its role in reducing yields in chickpea growing in saline soils is unclear. The purpose of this study was to (i) identify the phenological and yield parameters associated with salt stress tolerance and sensitivity in chickpea and (ii) identify any pattern of tissue ion accumulation that could relate to salt tolerance of chickpea exposed to saline soil in an outdoor pot experiment. Fourteen genotypes of chickpea (Cicer arietinum L.) were used to study yield parameters, of which eight were selected for ion analysis after being grown in soil treated with 0 and 80 mm NaCl. Salinity delayed flowering and the delay was greater in sensitive than tolerant genotypes under salt stress. Filled pod and seed numbers, but not seed size, were associated with seed yield in saline conditions, suggesting that salinity impaired reproductive success more in sensitive than tolerant lines. Of the various tissues measured for concentrations of Cl?, Na+ and K+, higher seed yields in saline conditions were positively correlated with higher K+ concentration in seeds at the mid‐filling stage (R2 = 0.55), a higher K+/Na+ ratio in the laminae of fully expanded young leaves (R2 = 0.50), a lower Na+ concentration in old green leaves (R2 = 0.50) and a higher Cl? concentration in mature seeds. The delay in flowering was associated with higher concentrations of Na+ in the laminae of fully expanded young leaves (R2 = 0.61) and old green leaves (R2 = 0.51). We conclude that although none of the ions appeared to have any toxic effect, Na+ accumulation in leaves was associated with delayed flowering that in turn could have played a role in the lower reproductive success in the sensitive lines.  相似文献   

7.
Genetic relationships between salt tolerance and expression of various physiological traits during vegetative growth in tomato, Lycopersicon esculentum Mill., were investigated. Parental, F1, F2 and backcross progeny of a cross between a salt tolerant (PI174263) and a salt sensitive tomato cultivar (‘UCT5’) were evaluated in saline solutions with electrical conductivity of 0.5 (non-stress) and 20 dS/m (salt stress). Absolute growth, relative growth, tissue ion content, leaf solute potential and the rate of ethylene evolution were measured. Growth of both parents was reduced under salt stress; however, the reduction was significantly less in PI174263 than ‘UCT5’, suggesting greater salt tolerance of the former. Under salt stress, leaves of PI174263 accumulated significantly less Na+ and Cl? and more Ca2+ than leaves of ‘UCT5’. Across parental and progeny generations, growth under salt stress was positively correlated with leaf Ca2+ content and negatively correlated with leaf Na+ content. In contrast, no correlation was observed between growth and either leaf solute potential or the rate of ethylene evolution under salt stress. Generation means analysis indicated that under salt stress both absolute and relative growth and the Na+ and Ca2+ accumulations in the leaf were genetically controlled with additivity being the major genetic component. The results indicated that the inherent genetic capabilities of PI174263 to maintain high tissue Ca2+ levels and to exclude Na+ from the shoot were essential features underlying its adaptation to salt stress and that these features were highly heritable. Thus, tissue ion concentration may be a useful selection criterion when breeding for improved salt tolerance of tomato using progeny derived from PI174263.  相似文献   

8.
Soil salinity is a notorious abiotic stress which constrains plant growth and limits crop productivity. Recent advances in phytogenetics especially the discovery of marker-trait association have facilitated the efficient selection of stress-tolerant crops. The objective of this study was to evaluate tall fescue (Festuca arundinacea Schreb.) accessions growing under salt stress in order to identify salt-tolerant and salt-sensitive genotypes using physiological and molecular markers. The population consisted of 114 diverse tall fescue accessions which were assessed using 99 simple sequence repeat (SSR) markers and five functional physiological traits i.e., turf quality, leaf water content, chlorophyll content, relative growth rate, and evapotranspiration rate. Salinity stress induced great variations among the functional physiological traits and there were significant correlations among them. The population structure analysis revealed two distinct populations, while association mapping between the SSRs and phenotypic traits identified significant associations. In addition, the accessions that maintained relatively higher physiological traits had a significantly lower accumulation of Na+ and Cl? in the roots compared to those whose functional traits declined. We identified six most salt-tolerant accessions due to their high values of physiological parameters and significantly low accumulation of Na+ and Cl? in the roots. Similarly, we identified six accessions we considered to be most salt-sensitive as observed by high Na+ and Cl? accumulation plus a decline in the physiological activities. Our findings are helpful to tall fescue breeders with a goal of producing tall fescue cultivars with enhanced salt tolerance.  相似文献   

9.
Soybean has been considered a cold intolerant species; based largely upon seed germination and soil emergent evaluations. This study reports a distinct acquisition of cold tolerance, in seedlings, following short acclimation periods. Diversity in cold responses was assessed in eight cultivars of Glycine max and six accessions of G. soja. All varieties of soybean significantly increased in freezing tolerance following acclimation. This study indicates soybean seedlings are indeed capable of sensing cold and acquiring cold tolerance. Germination rates after cold imbibition were negatively correlated with maturity group, but positively correlated with cold acclimation potential in G. soja. Seed fatty acid composition was varied between the species, with Glycine soja accessions containing about 2‐times more linolenic acid (18:3) than G. max. Furthermore, high levels of linoleic acid (18:2) in seeds were positively correlated with germination rates following cold imbibition in G. soja only. We suggest that domestication has not impacted the overall ability of soybean to cold acclimate at the seedling stage and that there is little variation within the domesticated species for ability to cold acclimate. Thus, this brief comparative study reduces the enthusiasm for the “wild” species as an additional source of genetic diversity for cold tolerance.  相似文献   

10.
The degree of salt tolerance of two newly developed genotypes of spring wheat, S24 and S36 was assessed with respect to their parents, LU26S (from Pakistan) and Kharchia (from India). These four lines along with a salt-tolerant genotype SARC-1 and two salt-sensitive cvs Potohar and Yecora Rojo were subjected to salinized sand culture containing 0, 125 or 250 mol m?3 NaCl in full strength Hoagland's nutrient solution. S24 produced significantly greater grain yield and had greater 1000 seed weight and number of tillers per plant than those of the other cultivars /lines. S36 was not significantly different from its parents in seed yield and yield components. SARC-1 was the second highest in grain yield of all cultivars/lines, but it did not differ significantly from LU26S and Kharchia in 1000 seed weight and number of tillers per plant. The greater degree of salt tolerance of S24 could be related to its lower accumulation of Na+ in the leaves and maintenance of higher leaf K/Na ratios and K versus Na selectivity as compared to its parents. S36, which was as good as its parents in growth, also had lower Na+ and higher K/Na ratios and K versus Na selectivity in the leaves at the highest salt level than those in its parents. SARC-1 did not differ from LU26S and Kharchia in ionic content or K/Na ratios and K versus Na selectivities of both leaves and roots. Both the salt-sensitive cultivars, Potohar and Yecora Rojo, had significantly greater leaf Na+ and Cl? concentrations and lower leaf K/Na ratios and K versus Na selectivities than all the salt-tolerant lines examined in this study. From this study it is evident that improvement in salt tolerance of spring wheat is possible through selection and breeding, and pattern of ion accumulation is not consistent among the salt-tolerant genotypes in relation to their degree of salt tolerance.  相似文献   

11.
Chloride tolerance in soybean and perennial Glycine accessions   总被引:2,自引:0,他引:2  
Diversity for chloride tolerance exists among accessions of perennial Glycine. Accessions whose tolerance thresholds exceed those of Glycine max cultivars may be useful germplasm resources. Soybean cultivars including ‘Jackson’ (sensitive) and ‘Lee’ (tolerant) and 12 accessions of perennial Glycine were evaluated for sodium chloride tolerance after 14 days in hydroponic culture at 0, 5, 10, and 15 g L-1 NaCl. Sodium chloride had adverse effects on the growth of G. max cultivars and perennial Glycine accessions; however differential responses to salinity were observed among accessions. Considerably greater variation in sodium chloride tolerance existed among the perennial Glycine accessions than among the G. max cultivars. Sodium chloride tolerance thresholds ranged from 3.0 to 17.5 g L-1 NaCl for the perennial accessions but only ranged from 5.2 to 8.0 g L-1 for the cultivars, based on a Weibull model of leaf chlorosis. All G. max cultivars were severely injured or killed by NaCl at 10 g L-1 and above. Five tolerant perennial Glycine accessions, G. argyrea 1626, G. clandestina 1388 and 1389, and G. microphylla 1143 and 1195, were significantly lower in leaf chlorosis score than any of the G. max cultivars at the 10 g L-1 NaCl treatment. Two accessions, G. argyrea 1626 and G. clandestina 1389 were able to tolerate 15 g L-1 NaCl with only moderate visual injury while all other accessions were severely injured or killed at this salt level. Variability for chloride tolerance observed among the perennial Glycine accessions has potential utility for developing enhanced salt tolerance in soybean. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
Na+ accumulation in the leaf apoplast has been suggested to lead to dehydration, later wilting and finally, the death of the affected leaves. Our aim has been to evaluate whether the reduction in the plant growth of sensitive maize in response to salinity is correlated with higher amounts of Na+ and Cl? concentrations in the leaf apoplast. Subcellular ion patterns in intact leaves were investigated by using deionised water infiltration. We found an increase in soluble Na+ and Cl? concentrations of about 16‐ and 4‐fold, respectively, compared with the control. These concentrations characterized the apoplasts of expanding leaves that had entirely developed under salinity. Interestingly, the K+ concentration was significantly reduced by 64 % compared with its control in the symplast under salinity. Our finding of a significantly decreased Ca2+ concentration in shoots suggested a possible association of Ca2+ concentration with the reduction in leaf expansion under salinity. As the absolute increase in the apoplastic Na+ concentration during salt treatment was much lower compared with the increase in the symplastic Na+ concentration, salt treatment in maize appears not to result in osmotic stress imposed by a high apoplastic Na+ concentration as has been suggested for other plant species (Oertli hypothesis).  相似文献   

13.
The genetic base for soybean cultivars is narrow compared to most other crop species. Twenty-seven wild perennial Glycine species comprise the tertiary gene pool to soybean that may contain many genes of economic importance for soybean improvement. We evaluated 16 accessions of G. argyrea, G. clandestina, G. dolichocarpa, and G. tomentella for resistance to Heterodera glycines (HG), also known as the soybean cyst nematode, and to multiple isolates of Phakopsora pachyrhizi, the causal fungus of soybean rust. All 16 accessions were classified as resistant to H. glycines HG Type 2.5.7, based on number of cysts per root mass with plant introductions (PIs) 483227, 509501, 563892, and 573064 (all G. tomentella) void of any cysts indicating no reproduction by this pest. All 16 accessions had an immune reaction to one isolate of P. pachyrhizi. Regardless of isolate, no sporulating uredinia were observed on G. argyrea (PI 505151) and G. tomentella (PIs 483227, 509501, and 573064). These results demonstrate that some accessions within the perennial Glycine species harbour resistance to both H. glycines and P. pachyrhizi and would be good candidates for wide hybridization programs seeking to transfer potentially unique multiple resistance genes into soybean.  相似文献   

14.
Assessment of salt tolerance at all growth stages is crucial to determine the overall tolerance of a crop. Salt tolerance of five tolerantILL 5845, ILL 6451, ILL 6788, ILL 6793 andILL 6796, three moderately tolerant ILL 6431. ILL 6770 andILL 6784, and three sensitiveILL 6210, ILL 6439 andILL 6778 accessions selected at the germination and seedling stages was assessed at the adult stage using sand culture sahnized with 0, 30, or 60 mol m?3 NaCl. A positive correlation was observed between degrees of salt tolerance at different growth stages in three tolerant accessionsILL 6451, ILL 6788 andILL 6793 which produced significantly higher seed yield than the other accessions. This was also affirmed in three sensitive and two moderately tolerant accessions (ILL 6770 andILL 6784) whose salt sensitivity was conferred consistently at all growth stages. In contrastILL 5845, andILL 6796 which were highly salt tolerant andILL 6431 which was moderately tolerant at the early growth stages had relatively low seed yield, hence showing a negative correlation between tolerances at different growth stages. High yielding accessionsILL 6451, ILL 6788 andILL 6793 in general, accumulated higher Na+ and higher or moderate Cl? in their shoots compared with the other accessions, thus showing a typical halophytic mechanism of salt inclusion. K/Na ratios of all the tolerant, moderately tolerant and sensitive accessions exceptILL 6784 andILL 6778 were less than 1, a suggested minimum level for normal functioning of many metabolic processes in plants. The present study shows that salt tolerance observed previously at the early growth stages is conferred at the adult stage in most of the accessions of lentil examined here; but for others in which no positive correlation was observed between different growth stages suggests that a combination of certain characters can be used as selection criterion for improving salinity tolerance in lentil through exploitation of inter- and intra-cultivar/line variation.  相似文献   

15.
Screening sorghum genotypes for salinity tolerant biomass production   总被引:1,自引:0,他引:1  
Genetic improvement of salt tolerance is of high importance due to the extent and the constant increase in salt affected areas. Sorghum [Sorghum bicolor (L.) Moench] has been considered relatively more salt tolerant than maize and has the potential as a grain and fodder crop for salt affected areas. One hundred sorghum genotypes were screened for salinity tolerance in pots containing Alfisol and initially irrigated with a 250-mM NaCl solution in a randomized block design with three replications. Subsequently 46 selected genotypes were assessed in a second trial to confirm their responses to salinity. Substantial variation in shoot biomass ratio was identified among the genotypes. The performance of genotypes was consistent across experiments. Seven salinity tolerant and ten salinity sensitive genotypes are reported. Relative shoot lengths of seedlings were genetically correlated to the shoot biomass ratios at all stages of sampling though the relationships were not close enough to use the trait as a selection criterion. In general, the whole-plant tolerance to salinity resulted in reduced shoot Na+ concentration. The K+/Na+ and Ca2+/Na+ ratios were also positively related to tolerance but with a lesser r 2. Therefore, it is concluded that genotypic diversity exists for salt tolerance biomass production and that Na+ exclusion from the shoot may be a major mechanism involved in that tolerance.  相似文献   

16.
Salinity primarily affects plants by inhibiting shoot growth. Salt‐sensitive plants have been suggested to accumulate Na+ within their leaf apoplast under salinity, leading to a reduced water status. Evidence related to apoplastic Na+ accumulation is still enigmatic. We have focused on the effect of a short‐term salt treatment by using the salt‐sensitive Vicia faba. Moreover, we have examined the role of silicon in alleviating sodium accumulation in the apoplast. Salt‐sensitive field beans have been subjected to increasing levels of salinity, with and without the addition of silicon under hydroponic conditions. We have demonstrated that the dicot Vicia faba exhibits a rise in Na+ concentration in the leaf apoplast at higher salinity levels; this is significantly ameliorated by the addition of silicon. Further, enhanced shoot growth under high salt treatment in the presence of added silicon is correlated with a significant decrease in Na+ concentration in the leaves. The novelty of the current study is the detection of a high Na+ concentration in the leaf apoplast of the salt‐sensitive dicot field bean. Our results support Oertli's hypothesis that extracellular salt accumulation can lead to wilting leaves, plant growth reduction and cell death.  相似文献   

17.
The complexity and polygenic nature of the salt tolerance trait in plants needs to develop a multiple indicator in the screening process. The mentioned issue led us to carry out an experiment to identify tolerant genotypes through multiple parameters in Andrographis paniculata. For this purpose, the 40-days seedlings were grown in different salinity levels (control, 4, 8, 12 and 16?dS?m?1) on Hoagland??s medium. The results indicated that salinity had a significant effect on the morphological, physiological and biochemical traits. All measured morphological traits, and chlorophyll, K+ and Ca2+ content were significantly decreased with increasing salinity levels, while proline and Na+ content increased. The present exploration revealed that, salt tolerance index (STI), using the multiple regression model, demonstrated a more stable trend than the single variable assay (total dry weight). Furthermore, STI based on multiple regression analysis gives an accurate definition of salt-tolerant individuals. Under salt stress, tolerant accessions had high STI and produced higher proline, K+ and Ca2+, and lower Na+ content than sensitive accessions. Cluster analysis based on related traits to STI, indicated high similarity in each group. These outcomes can be utilized to evaluate the salt tolerance threshold in the species and may have a great advantage over conventional methods. Probably, our upshots can be applied in the next breeding programs to develop salt-tolerant varieties.  相似文献   

18.
Summary Soybean DNA fingerprints were analyzed by digoxigenin-labeled oligonucleotide probes complementary to simple repetitive sequences. The clearest and most polymorphic patterns were obtained with (AAT)6 as a probe, with which all 47 soybean cultivars tested could be distinguished. However, DNA fingerprints of individuals within cultivars showed the same pattern. Using (CT)8, (GAA)5 or (AAGG)4 as probes, clear polymorphic patterns among cultivars and accessions in the subgenus Soja (Glycine max and Glycine soja) were not observed, while quite different patterns were found in accessions in the subgenus Glycine. The results suggest that G. max and G. soja are closer in their genome structure. DNA fingerprints of reciprocal crosses between cultivars and accessions in the subgenus Soja were similar, and contained bands of both parents. In an F2 population from these crosses, such bands segregated in a Mendelian fashion.  相似文献   

19.
Cowpea is widely cultivated in arid and semi‐arid regions of the world where salinity is a major environmental stress that limits crop productivity. The effects of moderate salinity on growth and photosynthesis were examined during the vegetative phase of two cowpea cultivars previously classified as salt‐tolerant (Pitiúba) and salt‐sensitive (TVu). Two salt treatments (0 and 75 mm NaCl) were applied to 10‐day‐old plants grown in nutrient solution for 24 days. Salt stress caused decreases (59 % in Pitiúba and 72 % in TVu) in biomass accumulation at the end of the experiment. Photosynthetic rates per unit leaf mass, but not per unit leaf area, were remarkably impaired, particularly in TVu. This response was unlikely to have resulted from stomatal or photochemical constraints. Differences in salt tolerance between cultivars were unrelated to (i) variant patterns of Cl? and K+ tissue concentration, (ii) contrasting leaf water relations, or (iii) changes in relative growth rate and net assimilation rate. The relative advantage of Pitiúba over TVu under salt stress was primarily associated with (i) restricted Na+ accumulation in leaves paralleling an absolute increase in Na+ concentration in roots at early stages of salt treatment and (ii) improved leaf area (resulting from a larger leaf area ratio coupled with a larger leaf mass fraction and larger specific leaf area) and photosynthetic rates per unit leaf mass. Overall, these responses would allow greater whole‐plant carbon gain, thus contributing to a better agronomic performance of salt‐tolerant cowpea cultivars in salinity‐prone regions.  相似文献   

20.
Soil salinity is a major limitation to legume production in many areas of the world. The salinity sensitivity of soybean was studied to determine the effect of salinity on seed germination, shoot and root dry weights, and leaf mineral contents. Three soybean cultivars, Lee, Coquitt, and Clark 63, were planted in soils of different salinity levels. The electrical conductivity (EC) of the soils used in this experiment was 0.5 dS m?1. The soil salinity treatments were 0.5, 2.5 4.5, 6.5 and 8.5 dS m?1. Saline drainage water from a drainage canal with an EC of 15 dS m?1 was used to treat the soil samples in order to obtain the desired salinity levels. Germination percentages were recorded 10 days after planting. Shoot and root dry weights of 45‐day‐old plants were measured. Nutrient concentrations for Na+, K+, Ca2+, Mg2+ and Cl? were determined. Germination percentages were significantly reduced with increasing salinity levels. The cultivar Lee was less affected by salinity stress than Coquitt and Clark 63. At 8.5 dS m?1 a significant reduction in plant height was found in all three cultivars. However, Lee plants were taller than plants of the other two cultivars. Salinity stress induced a significant increase in leaf sodium (Na+) and chloride (Cl?) in all cultivars. However, the cultivar Lee maintained lower Na+ and Cl+ concentrations, a higher potassium (K+) concentration and a higher K+/Na+ ratio at higher salinity levels than Coquitt and Clark 63. Saline stress reduced the accumulation of K+, calcium (Ca2+) and magnesium (Mg2+) in the leaves of the cultivars studied. This study suggests that Lee is the most tolerant cultivar, and that there is a relationship between the salt tolerance of the cultivar and macronutrient accumulation in the leaves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号