首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
An understanding of the genetic basis of characters of commercial importance is critical if a breeder is attempting to move such characters into breeding material. A number of particularly interesting characters or genes have been identified in cool season food legumes, and in pea many of these have been tagged by molecular markers such as allozyme or DNA polymorphisms. This process of mapping and tagging genes has been greatly accelerated by recent developments in molecular biology. It appears that markers will soon be available for many genes in lentil, faba bean, and chickpea and that genetic knowledge developed in one crop will have significant applications in the other cool season food legumes.  相似文献   

2.
Doubled haploid oilseed rape lines segregating for a transgene inducing herbicide resistance (bar gene) were investigated for the wide mapping of the T-DNA insertion site. Bulk segregant analysis using presence/absence and intensity polymorphisms between the bulks, as well as comparative mapping with a linkage group deriving from another cross, led to the identification of 11 random amplified polymorphic DNA (RAPD) markers tightly or loosely linked to the bar gene. Ten RAPD loci out of 11 were located on the same side of the bar locus, strongly suggesting that the T-DNA integrated in a telomeric or subtelomeric position. The eleventh RAPD marker exhibited a strong segregation distortion, which could be the result of a heteroduplex formation. Comparison of the linkage groups obtained from the two crosses showed different recombination rates between markers, possibly reflecting differences in parental genetic backgrounds. Consequences and potential applications in transgene dispersal safety assessment studies are discussed.  相似文献   

3.
4.
Molecular genetic mapping of peach   总被引:17,自引:0,他引:17  
E. Dirlewanger  C. Bodo 《Euphytica》1994,77(1-2):101-103
Summary A project to develop a linkage map of the peach (Prunus persica) genome is underway using an F2 population segregating for several morphological characters and pest resistance e.g., nectarine (g), weeping shape (pl) and aphid resistance (Rml). The RAPID technique was used to analyse 270 plants. Linkage analysis of the F2 population was performed using the MAPMAKER software. Eight linkage groups were established and RAPID markers flanking thepl gene were found.  相似文献   

5.
For genetic studies and genomics-assisted breeding, particularly of minor crops, a genotyping system that does not require a priori genomic information is preferable. Here, we demonstrated the potential of a novel array-based genotyping system for the rapid construction of high-density linkage map and quantitative trait loci (QTL) mapping. By using the system, we successfully constructed an accurate, high-density linkage map for common buckwheat (Fagopyrum esculentum Moench); the map was composed of 756 loci and included 8,884 markers. The number of linkage groups converged to eight, which is the basic number of chromosomes in common buckwheat. The sizes of the linkage groups of the P1 and P2 maps were 773.8 and 800.4 cM, respectively. The average interval between adjacent loci was 2.13 cM. The linkage map constructed here will be useful for the analysis of other common buckwheat populations. We also performed QTL mapping for main stem length and detected four QTL. It took 37 days to process 178 samples from DNA extraction to genotyping, indicating the system enables genotyping of genome-wide markers for a few hundred buckwheat plants before the plants mature. The novel system will be useful for genomics-assisted breeding in minor crops without a priori genomic information.  相似文献   

6.
7.
QTL analysis and mapping of pre-harvest sprouting resistance in Sorghum   总被引:2,自引:0,他引:2  
One of the most important agronomic problems in the production of sorghum [Sorghum bicolor (L.) Moench] in humid climates is pre-harvest sprouting (PHS). A molecular linkage map was developed using 112molecular markers in an F2 mapping population derived from a cross between IS 9530 (high resistance to PHS) and Redland B2 (susceptible to PHS). Two year phenotypic data was obtained. By means of interval mapping analysis, two significant QTL were detected in two different linkage groups with LOD scores of 8.77and 4.39. Each of these two QTL individually explained approximately 53% of the phenotypic variance, but together, in a two-QTL model, they explained 83% of the phenotypic variance with a LOD score of 12.37.These results were corroborated by a one-way ANOVA in which the four flanking markers of the most likely QTL positions displayed highly significant values in theF-test, and significant variation in trait expression was associated with marker genotypic classes. The four markers with highest effect in the one-way ANOVA were also detected in the second year replication of the F2 population, and significant genotype × environment interactions was observed. The putative relationship between PHS resistance in sorghum and the maize Vp1 gene is also discussed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
As the storage organ of maize, kernel development and accumulation of storage production directly determines maize yield and quality. In this study, a stable defective kernel mutant, named as defective kernel 101 (dek101), was identified during the development of double haploid (DH) lines in maize. The dek101 kernels displayed severely shrunk kernel appearance, significantly reduced kernel weight, lethal embryo, defective endosperm and were incapable of germinating. The dek101 showed obvious developmental abnormalities at 12 days after pollination (DAP). The fresh weight, dry weight and volume of the kernels were no longer increased after 21 DAP. Scanning electron microscopy (SEM) observation revealed that the starch granules of dek101 were significantly smaller compared with wild-type kernels. Genetic analysis demonstrated that the mutant trait was controlled by a recessive single gene. Using 441 F2 individuals and 1648 F3 individuals, dek101 was narrowed down to a genomic region of about 300 kb between the InDel marker IDP2182 and IDP4600 on chromosome 1, which contains five predicted genes. These results laid the foundation for mining functional genes related to maize kernel development and deciphering the mechanism of grain development.  相似文献   

9.
Molecular and physical mapping of genes affecting awning in wheat   总被引:5,自引:0,他引:5  
P. Sourdille    T. Cadalen    G. Gay    B. Gill  M. Bernard 《Plant Breeding》2002,121(4):320-324
Quantitative trait loci (QTL) for three traits related to awning (awn length at the base, the middle and the top of the ear) in wheat were mapped in a doubled‐haploid line (DH) population derived from the cross between the cultivars ‘Courtot’ (awned) and ‘Chinese Spring’ (awnless) and grown in Clermont‐Ferrand, France, under natural field conditions. A molecular marker linkage map of this cross that was previously constructed based on 187 DH lines and 550 markers was used for the QTL mapping. The genome was well covered (more than 95%) and a set of anchor loci regularly spaced (one marker every 20.8 cM) was chosen for marker regression analysis. For each trait, only two consistent QTL were identified with individual effects ranging from 8.5 to 45.9% of the total phenotypic variation. These two QTL cosegregated with the genes Hd on chromosome 4A and B2 on chromosome 6B, which are known to inhibit awning. The results were confirmed using ‘Chinese Spring’ deletion lines of these two chromosomes, which have awned spikes, while ‘Chinese Spring’ is usually awnless. No quantitative trait locus was detected on chromosome 5A where the B1 awn‐inhibitor gene is located, suggesting that both ‘Courtot’ and ‘Chinese Spring’ have the same allelic constitution at this locus. The occurrence of awned speltoid spikes on the deletion lines of this chromosome suggests that ‘Chinese Spring’ and ‘Courtot’ have the dominant B1 allele, indicating that B1 alone has insufficient effect to induce complete awn inhibition.  相似文献   

10.
Anthocyanins and proanthocyanidins are the primary pigments of red rice and are also important functional nutrients for human health. To identify novel quantitative trait loci (QTLs) underlying anthocyanins and proanthocyanidins (ANC and PAC) in rice, a recombinant inbred line (RIL) derived from a cross of red rice ‘Hong Xiang 1’ (‘HX1’) and white rice ‘Song 98-131’ (‘S98-131’) was cultivated in six environments. A genetic map containing 126 markers covering 1833.4 cM with an average of 14.55 cM between markers was constructed. A total of 21 additive QTLs (A-QTLs) for ANC and PAC were identified from six environments using the IciMapping v3.3 software. Two new QTLs, qANC3 and qPAC12-4, were detected in several environments, and explained significant phenotypic variance. Nine QTLs of ANC and PAC were detected with additive × environmental interaction effects (AE effects) by QTLNetwork 2.1 software, but no epistatic and epistatic × environmental interaction effects (AA and AAE effects) were detected. The information obtained in this study could be useful for fine mapping and molecular marker-assisted selection of ANC and PAC in rice.  相似文献   

11.
Evaluation and QTL mapping of phosphorus concentration in soybean seed   总被引:1,自引:0,他引:1  
Phosphorus (P) is an essential macronutrient required for many biological and metabolic plant functions. Phosphate is the form of P used by plants. Reducing the amount of P in the seed can further aide breeding efforts to reduce the amount of P released into the environment due to the indigestibility of the complexes formed with metal ions. Analysis of the variation of phosphorus concentration in soybean seed under non-stressed conditions revealed that phosphorus ranged from 3,948.1 to 5,695.8???g/g total phosphorous (TP) in combined years. The averages for independent years were significantly different from one another. Quantitative trait loci (QTL) analysis of TP was performed to identify candidate gene(s) that is (are) involved in P accumulation in soybean seed. One putative QTL region was identified on chromosome 12 in the combined data that contained a phosphate transporter gene. Two additional suggestive QTL were identified on chromosomes 7 and 17 with chromosome 7 having both a phosphate transport gene and a ZIP transporter gene in the region of the QTL. There were additional genes in these regions that are involved in phosphate metabolism and transport.  相似文献   

12.
Four agronomic traits were analysed including dry matter concentration (DMC) and dry matter yield (DMY) for stover, plant height (PHT) and days from planting to silking (DPS). We mapped quantitative trait loci (QTL) in three populations with doubled haploid lines (DHL), one RIL population and two testcross (TC) populations derived from crosses between two of the four populations mentioned above to elite tester lines, based on field phenotyping at multiple locations and years for each; 146–168 SSRs were used for genotyping of the four mapping populations. Significant high phenotypic and genotypic correlations were found for all traits at two locations, while DMC was negatively correlated with the other traits. A total of 42, 41, 54, and 45 QTL were identified for DMC, DMY, PHT, and DPS, respectively, with 9, 7, 12, and 7 major QTL for each trait. Most detected QTL displayed significant interactions with environment. Major QTL detected in more than two populations will contribute to marker‐assisted breeding and also to fine mapping candidate genes associated with maize agronomic traits.  相似文献   

13.
The New Zealand apple genome mapping project   总被引:2,自引:0,他引:2  
Summary This project was initiated three years ago to support the New Zealand apple breeding programme at HortResearch and is funded by both the New Zealand Foundation for Research, Science and Technology and the New Zealand Apple and Pear Marketing Board. Our initial goal is to construct a linkage map comprising RFLP, RAPD and isoenzyme markers as well as characters of importance to our breeders and this will enable the breeders to use marker assisted selection to identify the most promising seedlings within progeny populations at an early age. Characters of interest in the shorter term include resistances to scab, powdery mildew, woolly apple aphid and silver leaf, and in the longer term more complex traits such as early and late fruit maturity, fruit quality characters, low temperature tolerance and rootstock influences such as dwarfing and precocity are under consideration. We are currently developing long-term plans for isolation of apple genes in association with other molecular biologists in Hort Research. We have used a cDNA library from apple flesh as a prolific source of RFLP probes and detect their hybridization to Southern blots using a chemiluminescent method. We have screened our mapping line of seedlings for more than 160 markers so far (1/3 RFLP, 2/3 RAPD). Detection of in situ hybridization of key RFLP probes to metaphase chromosome preparations for the purpose of associating marker linkage groups with physical chromosomes is by a digoxygenin or biotin linked immunoassay. The project has collaborative links to apple genome mapping projects in America and Europe.  相似文献   

14.
The analysis of association mapping populations is frequently complicated by substructure within the population. If this is unaccounted for, it generally results in many false positive marker-trait associations. In this study, we simulate a large barley population, modelling inbreeding and selection, and compare five models for analysing marker-trait associations. One of these includes no population substructure, one includes information about geographical origin and type of barley to represent structure within the population and three use different approaches that have been proposed for estimating marker-based kinship. Kinship methods reduced the number of false positives substantially compared to the other models but none of these approaches had a clear advantage over the others. One solution is to fit more than one model and to consider as candidate associations those markers that are significant by all models. None of the approaches were very successful at detecting true associations at the lowest level of heritability considered (25%), suggesting it is important to consider power in association mapping studies to avoid missing some true associations and overestimating others.  相似文献   

15.
Selection of oat genotypes combining earliness and short plant height could stimulate oat cultivation worldwide. However, the mechanisms involved with the genetic control of heading date and plant height traits are not fully understood to date. This study aimed to identify genomic regions controlling heading date and plant height in two hulled by naked oat populations and to compare these genomic regions with that of other grass species. Recombinant inbred lines of each population and their parents were genotyped by a 6 K BeadChip Illumina Infinium array and assessed for heading date and plant height in two sowing dates. The quantitative trait loci (QTL) affecting these traits were detected by simple interval mapping. The two oat populations showed different genetic mechanisms controlling heading date. A major QTL was identified in one of the populations, mapped into the ‘Mrg33’ consensus linkage group from the current oat map. Two other QTL were detected into the ‘Mrg02’ and ‘Mrg24’ groups, in the second population. On the other hand, both populations presented the same genomic region controlling plant height. Six SNP markers, mapping on the same linkage group within each population, were associated with the trait, regardless the sowing date, explaining more than 20% of the phenotypic variation. Five of these six markers were mapped into three different linkage groups on the oat consensus map. Genomic regions associated with heading date and plant height in oat seem to be conserved in Oryza sativa L. and Brachypodium distachyon. Our results provide valuable information for marker-assisted selection in oats, allowing selection for earliness and plant height on early segregating generations.  相似文献   

16.
Barley—Pyrenophora graminea interaction: QTL analysis and gene mapping   总被引:2,自引:0,他引:2  
Pyrenophora graminea is a seed-borne pathogen and is the causal agent of the barley leaf stripe disease. Our aim is to study the genetic basis of barley resistance to leaf stripe. A qualitatively acting resistance factor has been identified in the cultivar ‘Vada’ and the partial resistance of the cultivar ‘Proctor’ to a P. graminea isolate has been demonstrated to be dominated by a major quantitative trait locus (QTL), mapped on barley chromosome 1. Map colinearity between the leaf stripe ‘Proctor’ resistance QTLs,‘Vada’ resistance to leaf stripe, and other disease resistance loci have been investigated in this work using molecular markers. Moreover, since inoculation of barley rootlets by the fungus had been shown to induce the accumulation of several PR (pathogen-related) mRNA families, seven barley PR genes have been mapped as RFLPs, and one assigned to a chromosome arm via ditelosomic analysis to verify possible map associations with resistance QTLs. This work discusses the genetic relationships between the known leaf stripe resistance loci, resistance loci towards other seed-borne pathogens and defence gene loci.  相似文献   

17.
The aim of the pedigree-based genome mapping project is to investigate and develop systems for implementing marker assisted selection to improve the efficiency of selection and increase the rate of genetic gain in breeding programs. Pedigree-based whole genome marker application provides a vehicle for incorporating marker technologies into applied breeding programs by bridging the gap between marker–trait association and marker implementation. We report on the development of protocols for implementation of pedigree-based whole genome marker analysis in breeding programs within the Australian northern winter cereals region. Examples of applications from the Queensland DPI&F wheat and barley breeding programs are provided, commenting on the use of microsatellites and other types of molecular markers for routine genomic analysis, the integration of genotypic, phenotypic and pedigree information for targeted wheat and barley lines, the genomic impacts of strong selection pressure in case study pedigrees, and directions for future pedigree-based marker development and analysis.  相似文献   

18.
Four forage maize stover quality traits were analysed including in vitro digestibility of organic matter (IVDOM), neutral detergent fibre (NDF), water‐soluble carbohydrates (WSC) and digestibility of NDF (DNDF). We mapped quantitative trait loci (QTL) in three DH (doubled haploid) populations (totally 250–720 DH lines): one RIL population (358 lines) and two testcross (TC) populations, based on field phenotyping at multiple locations and years for each. High phenotypic and genotypic correlations were found for all traits and significant (< .01) at two locations, and NDF was negatively correlated with the other traits. QTL analyses were conducted by composite interval mapping. A total of 33, 23, 32 and 25 QTL were identified for IVDOM, NDF, WSC and DNDF, respectively, with three, four, five and two major QTL for each. Few consistent QTL for IVDOM, WSC and DNDF were detected in more than two populations. This study contributed to the identification of key QTL associated with forage maize digestibility traits and is beneficial for marker‐assisted breeding and fine mapping of candidate genes associated with forage maize quality.  相似文献   

19.
Cotton (Gossypium spp) is the world's leading natural fiber crop. Genetic manipulation continues to play a key role in the improvement of fiber quality properties. By use of DNA-based molecular markers and a polymorphic mapping population derived from an inter specific cross between TM-1 (G. hirsutum) and 3-79 (G. barbadense), thirteen quantitative trait loci (QTLs) controlling fiber quality properties were identified in 3-79, an extra long staple (ELS) cotton. Four QTLs influenced bundle fiber strength, three influenced fiber length, and six influenced fiber fineness. These QTLs were located on different chromosomes or linkage groups and collectively explained 30% to 60%of the total phenotypic variance for each fiber quality property in the F2 population. The effects and modes of action for the individual QTLs were characterized with 3-79 alleles in TM-1 genetic background. The results indicated more recessive than dominant, with much less additive effect in the gene mode. Transgressive segregation was observed for fiber fineness that could be beneficial to improvement of this trait. Molecular markers linked to fiber quality QTLs would be most effective in marker-assisted selection (MAS) of these recessive alleles in cotton breeding programs. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号