首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Rice (Oryza sativa L.) is one of the most important crops in the world which survives from various abiotic stresses in natural environments with specific stress‐involved genes expressed. Plant sHSPs (small heat‐shock proteins) were reported to respond to abiotic stresses. To improve the understanding of sHSPs in rice, we characterized heat‐shock‐protein gene OsHSP18.6 here. OsHSP18.6 could be induced by diverse stresses, such as drought, salt and cold, especially under heat. The gene was found expressed in root, stem, leaf, internode and spikelet. Overexpression of OsHSP18.6 results in increased thermotolerance and exhibits universal tolerance to stresses tested, including heat, drought, salt and cold. Lower levels of malondialdehyde (MDA) and greater activities of catalase (CAT) and superoxide dismutase (SOD) were observed in OsHSP18.6‐overexpression rice under heat and drought. OsHSP18.6‐overexpression lines indicated decreased sterile rates under hot weather without remarkable changes in most of other agronomic traits compared with wild‐type plants.  相似文献   

2.
Balanites aegyptiaca is a drought‐tolerant tree naturally distributed in Africa and has a high potential for biofuel production and livelihood. To understand the plant tolerance to drought stress, B. aegyptiaca plants collected from five provenances were subjected for 4 weeks to drought stress through different regimes of soil volumetric water content (VWC, i.e. 25% control, 15% as moderate and 5% as a severe drought stress) followed by 2‐week recovery. Morpho‐physiological responses as well as the changes in antioxidant defences under water stress and recovery were investigated. Drought stress significantly reduced plant biomass‐related parameters, stomatal conductance, quantum efficiency and increased leaf temperature. Each provenance showed specific patterns of stress response reactions that were detected in a cluster analysis. The large leaf area and a high level of lipid peroxidation in Cairo provenance increased its sensitivity to severe drought. For provenances El‐Kharga and Yemen, the highest tocopherol contents and the highest catalytic activities of ascorbate peroxidase (SOD), catalase (CAT), glutathione reductase (GR) and dehydroascorbate reductase (DHAR) were recorded. These traits contributed to the high drought tolerance of these two provenances in comparison with the other provenances. All plants recovered from stress and showed specifically increased activity of glutathione‐S‐transferase (GST) as a repair mechanism. Results showed that the drought tolerance level in B. aegyptiaca is provenance‐dependent.  相似文献   

3.
Among plant species rice (Oryza sativa L.) leaves can be characterised with a very high level of salicylic acid content; however, its exact role is still poorly understood. In the present work, rice genotypes with different levels of drought tolerance have been subjected to PEG‐induced drought or cold stress at 10 °C in order to find relationship between the salicylic acid metabolism and the level of stress tolerance; and between the salicylic acid level and other protective mechanisms. Although the drought‐sensitive genotypes usually contained slightly higher amount of salicylic acid than the tolerant ones, there was no strong correlation between the salicylic acid contents and the degree of drought tolerance. Because the expression pattern of the chorismate synthase and isochorismate synthase genes did not correlate with the level of salicylic acid, but there was a correlation between the levels of salicylic acid and ortho‐hydroxy‐cinnamic, it is assumed that the salicylic acid synthesis via ortho‐hydroxy‐cinnamic acid may play a more decisive role than the chorismate–isochorismate–salicylic acid pathway in rice. While the activity of the glutathione reductase enzyme did not show correlation with drought tolerance, the glutathione S‐transferase activities were usually higher in the leaves of the drought‐tolerant varieties than in the sensitive ones. The salicylic acid contents in the leaves were not substantially affected by the applied stress conditions; however, other stress‐related compounds polyamines showed marked, stress‐specific responses. Correlation data suggest that there is no direct link between the abiotic stress‐induced polyamine changes and the salicylic acid metabolism in rice.  相似文献   

4.
Summary Trehalose (a non-reducing disaccharide) plays an important role in abiotic stress protection. It has been shown that using trehalose synthesis genes of bacterial origin, drought and salt tolerance could be achieved in several plants. A cassette harboring the AtTPS1 gene under the control of the CaMV35S promoter and the Bialaphos resistance gene was inserted in the binary plasmid vector pGreen0229 and used for Agrobacterium-mediated transformation of tobacco (Nicotiana tabacum). T0 plants obtained were analyzed by PCR for the presence of AtTPS1 gene. Thirty lines were positive and seeds were germinated on media with 6 mg/l PPT to obtain T1 plants that were grown in the greenhouse to obtain T2 seeds that were germinated on selective media. Lines which seeds showed a 100 % survival rate were considered homozygous transgenic T1 lines. Three lines were selected and gene expression confirmed by northern and western blots. Transgenic seeds were germinated on media with different concentrations of mannitol (0, 0.25, 0.5 and 0.75 M) and sodium chloride (0, 0.07, 0.14, 0.2, 0.27 and 0.34 M) to score their tolerance to osmotic stress. Assays were conducted to test the tolerance of transgenic plants to drought (measurement of water percentage as a consequence of water withdrawal), desiccation (measurement of water loss as a consequence leaf detaching) and temperature stresses (germination at 15 C and 35C). Transgenic tobacco plant lines registered higher germination rates under osmotic and temperature stress situations than did wild-type plants. Responses to drought and desiccation stresses were similar for all plant lines. It can hence be suggested that the heterologous expression of TPS1 gene from Arabidopsis can be used successfully to increase abiotic stress tolerance in model plants and probably in other crops.  相似文献   

5.
Melatonin (N‐acetyl‐5methoxytryptamine) is an amphiphilic low‐molecular‐weight compound found in evolutionary distant living organisms, from bacteria to mammals. It can be synthesized by plants and acts as a potent antioxidant and/or a regulator of plant growth and development. Here, we investigated the role of melatonin in plant response to drought stress and recovery in maize (Zea mays L.) plants, with an emphasis on its possible photoprotective and antioxidant role and/or signalling function in relation to the stress‐related phytohormones, abscisic acid, salicylic acid and jasmonic acid. Results show a positive correlation between endogenous contents of melatonin and photoprotection, as indicated by the maximum efficiency of photosystem II photochemistry (Fv/Fm ratio), which was confirmed further by exogenous application of melatonin during recovery from drought stress. Melatonin applications during drought recovery improved the Fv/Fm ratio in maize plants exposed to a subsequent drought stress. Furthermore, endogenous contents of melatonin positively correlated with those of stress‐related phytohormones, particularly with those of salicylic acid, although exogenous application of melatonin did not alter the contents of these defence compounds. It is concluded that melatonin can exert a defensive role in maize plants exposed to drought stress, particularly improving the efficiency of photosystem II photochemistry.  相似文献   

6.
Chickpea (Cicer arietinum L.) is a dry season food legume largely grown on residual soil moisture after the rainy season. The crop often experiences moisture stress towards end of the crop season (terminal drought). The crop may also face heat stress at the reproductive stage if sowing is delayed. The breeding approaches for improving adaptation to these stresses include the development of varieties with early maturity and enhanced abiotic stress tolerance. Several varieties with improved drought tolerance have been developed by selecting for grain yield under moisture stress conditions. Similarly, selection for pod set in the crop subjected to heat stress during reproductive stage has helped in the development of heat‐tolerant varieties. A genomic region, called QTL‐hotspot, controlling several drought tolerance‐related traits has been introgressed into several popular cultivars using marker‐assisted backcrossing (MABC), and introgression lines giving significantly higher yield than the popular cultivars have been identified. Multiparent advanced generation intercross (MAGIC) approach has been found promising in enhancing genetic recombination and developing lines with enhanced tolerance to terminal drought and heat stresses.  相似文献   

7.
F. Bakos    É. Darkó    G. Ascough  L. Gáspár    H. Ambrus    B. Barnabás 《Plant Breeding》2008,127(3):235-240
The in vitro selection of microspores and microspore‐derived structures under Al stress is one way to improve the Al tolerance of crops. In our study, cytological alterations caused by Al were examined in anther cultures of a commercial wheat (Triticum aestivum L.) variety ‘Mv Pálma’, and the efficiency of in vitro selection was demonstrated. Although the anther walls retarded the appearance of toxicity symptoms, cytological changes similar to those observed in root cells (inhibition of cell division, intense vacuolisation, occurrence of micronuclei and cell wall thickening) were detected in the microspores. The severity of Al toxicity and the efficiency of selection depended on the Al concentration and the mode of treatment. Single Al treatments (0.6 and especially 1.6 mM) allowed DH lines with increased Al tolerance to be selected. Repeated Al treatment severely inhibited the cell division of the microspores and it was lethal even at a concentration as low as 0.6 mM. The results show that microspore embryogenesis can be exploited for studying the cytological effect of Al and for increasing the Al tolerance of wheat.  相似文献   

8.
To study the effects of early drought priming at 5th‐leaf stage on grain yield and nitrogen‐use efficiency in wheat (Triticum aestivum L.) under post‐anthesis drought and heat stress, wheat plants were first exposed to moderate drought stress (drought priming; that is, the leaf water potential reached ca. ?0.9 MP a) at the 5th‐leaf stage for 11 days, and leaf water relations and gas exchange rates, grain yield and yield components, and agronomic nitrogen‐use efficiency (ANUE ) of the primed and non‐primed plants under post‐anthesis drought and heat stress were investigated. Compared with the non‐primed plants, the drought‐primed plants possessed higher leaf water potential and chlorophyll content, and consequently a higher photosynthetic rate during post‐anthesis drought and heat stress. Drought priming also resulted in higher grain yield and ANUE in wheat under post‐anthesis drought and heat stress. Drought priming at vegetative stage improves carbon assimilation and ANUE under post‐anthesis drought and heat stress and their combination in wheat, which might be used as a field management tool to enhance stress tolerance of wheat crops to multiple abiotic stresses in a future drier and warmer climate.  相似文献   

9.
10.
11.
The effect of 0, 0.05 or 0.1 mm abscisic acid treatment on chilling tolerance and salicylic acid‐related responses was investigated in young maize seedlings (Zea mays L., hybrid Norma). Although the pre‐treatment of maize seedlings with abscisic acid slightly decreased the chlorophyll content, it also reduced the level of chilling injury caused by 6 days of cold treatment at 5 °C. Under normal growth conditions, increased levels of bound salicylic acid and of bound ortho‐hydroxycinnamic acid were observed in the leaves during abscisic acid treatment. In the roots, abscisic acid did not affect the free and bound salicylic acid levels, but increased the amount of free and bound ortho‐hydroxycinnamic acid. The activity of glutathione‐S‐transferase increased on the 3rd day of abscisic acid treatment, whereas it did not change when followed by cold stress, compared with the control leaves. In the roots, the activities of glutathione reductase, glutathione‐S‐transferase and ascorbate peroxidase increased during the abscisic acid treatment, and those of glutathione‐S‐transferase and ascorbate peroxidase were also stimulated when abscisic acid pre‐treatment was followed by cold stress, compared with the control roots. Our results suggest that an overlap may exist between the abscisic acid‐induced cold acclimation and the salicylic acid‐related stress response.  相似文献   

12.
Rice is highly susceptible to drought and cold. The goal of this study was to identify the QTLs affecting the rice heading date (HD), leaf area (LA) and chlorophyll content (CC) under cold and drought stress. A total of twenty‐nine and thirty‐eight additive QTLs were detected from two crosses of ‘Dongnong422’/‘Kongyu131’ and ‘Xiaobaijingzi’/‘Kongyu131’, respectively. qHD1‐7‐1, qHD1‐7‐2, qHD1‐2‐1, qLA1‐7‐1, qLA1‐6‐3 and qCC1‐7‐1 show adaptive effects under cold treatment, while qHD2‐2‐3, qHD2‐2‐2, qLA2‐7‐3 and qCC2‐5‐1 were important for explaining the genetic mechanism during drought tolerance. Additionally, nine and five additive × environment interaction QTLs were detected for two RILs, respectively. RIL26 and RIL73 were two lines that are associated with cold and drought for HD. 339 QTLs related to HD, CC and LA of rice from database and our research were projected onto the genetic map. Nine cloned genes and nineteen homologous candidate genes related to HD, CC, cold tolerance and drought tolerance were mapped by meta‐analysis. These results lay the foundation for the fine mapping of QTLs related to HD, LA and CC for marker‐assisted selection.  相似文献   

13.
Striga hermonthica and drought are the major stresses limiting maize yields in sub‐Saharan Africa. The search for diverse maize lines’ tolerance to drought and resistance to S. hermonthica (DTSTHR) is very crucial for yield improvement in areas affected by the two stresses. Understanding the genetic diversity among the lines is important to develop cultivars resistant to Shermonthica and tolerant to drought. The lines were developed from biparental crosses of drought‐tolerant and Striga‐resistant lines. A total of 128 DTSTHR maize lines were characterized using single‐nucleotide polymorphism (SNP) markers. Results of the cluster analysis based on 3297 SNP markers showed four distinct groups consistent with the pedigrees of the lines. Furthermore, model‐based analysis also formed the same groups of the DTSTHR lines. Integrating the pedigree information with combining ability and the SNP analyses may provide defined heterotic groups for maize improvement work in West and Central Africa. These results also help breeders to utilize DTSTHR lines present at IITA for developing biparental crosses without disrupting the heterotic groups they have established in their breeding programmes.  相似文献   

14.
Cotton breeders in the United States strive to develop region‐specific genotypes adapted to low temperatures and variable soil moistures during early‐season planting. Nine elite upland cotton germplasm (Gossypium hirsutum L.) lines, representing public breeding programmes from nine states across the cotton belt, were evaluated for cold and drought stresses during seed germination and seedling growth stages. Lines were subjected to three treatments, such as low temperature well‐watered (22/14°C, WW), optimal temperature drought stress (30/22°C, DS) and optimal temperature well‐watered (30/22°C, WW; control), to examine genotypic variability for cold and drought tolerance. The treatment including drought stress was irrigated at 50% of the control. Shoot and root traits measured at 25 days after planting were significantly affected by drought and low temperature, where significant genetic variability among lines was observed for both shoot and root parameters. Response indices were developed to quantify variation in the degree of tolerance among the lines to low temperature and drought. Accordingly, OA‐33 was identified as the most low‐temperature‐tolerant line and Acala 1517‐99 as the most drought‐tolerant line. Identification of both cold‐ and drought‐tolerant genotypes suggests existing genotypic variability could provide breeders the opportunity to improve cultivar response to early‐season drought or cold conditions.  相似文献   

15.
非生物胁迫对玉米杂交种及其亲本自交系产量性状的影响   总被引:3,自引:0,他引:3  
以抗逆性较强玉米杂交种郑单958及其亲本(郑58、昌7-2)和抗逆性较差的杂交种陕单902及其亲本(K22、K12)为材料, 在不同种植密度(45 000株 hm-2和75 000株 hm-2)、施氮量(112.5 kg hm-2和337.5 kg hm-2)和灌水量(正常灌水和前期干旱控水)条件下, 分析了2个杂交种及其亲本产量及相关生理特性的变化规律。结果表明, 在非生物胁迫条件下(高密度、低氮和前期干旱控水), 与陕单902相比, 品种郑单958叶面积指数、SPAD值、花后干物质积累量和产量的中亲优势值分别增加18%、9%、28%和22%; 与陕单902亲本(K22、K12)比, 郑单958亲本(郑58、昌7-2)叶面积指数、SPAD值、花后干物质积累量和产量的中亲值分别增加45%、36%、51%和45%; 郑单958产量的中亲值和中亲优势显著高于陕单902, 且中亲值增幅高于杂种优势值。玉米杂交种郑单958较陕单902增产的同时, 增强了对非生物逆境适应的能力。玉米杂交种的抗逆性来自亲本自交系。玉米杂交种抗逆性强在于增强了花后叶片光合能力(较高的LAI和SPAD值), 促进了花后干物质积累。  相似文献   

16.
Drought and low soil fertility are considered the most important abiotic stresses limiting maize production in sub-Saharan Africa. Knowledge of the combining ability and diversity of inbred lines with tolerance to the two stresses and for those used as testers would be beneficial in setting breeding strategies for stress and nonstress environments. We used 15 tropical maize inbred lines to (i) evaluate the combining ability for grain yield (GY), (ii) assess the genetic diversity of this set of inbred lines using RFLP, SSR, and AFLP markers, (iii) estimate heterosis and assess the relationship between F1 hybrid performance, genetic diversity and heterosis, and (iv) assess genotype × environment interaction of inbred lines and their hybrids. The F1 diallel hybrids and parental inbreds were evaluated under drought stress, low N stress, and well-watered conditions at six locations in three countries. General combining ability (GCA) effects were highly significant (P < 0.01) for GY across stresses and well-watered environments. Inbred lines CML258, CML339, CML341, and CML343 had the best GCA effects for GY across environments. Additive genetic effects were more important for GY under drought stress and well-watered conditions but not under low N stress, suggesting different gene action in control of GY. Clustering based on genetic distance (GD) calculated using combined marker data grouped lines according to pedigree. Positive correlation was found between midparent heterosis (MPH) and specific combining ability (SCA), GD and GY. Hybrid breeding program targeting stress environments would benefit from the accumulation of favorable alleles for drought tolerance in both parental lines.  相似文献   

17.
Double haploid (DH) plants of Brassica spp. can be produced via anther culture or culture of microspores. This paper reviews the uses of double haploids in crop improvement research in vegetable brassicas (B. oleracea). Applications of DH lines are described for breeding; construction of linkage maps; genetic analysis of quantitative traits and capturing genetic variation. The advantages and disadvantages of DH lines are discussed  相似文献   

18.
Maize (Zea mays L.) is an important staple food crop in West and Central Africa (WCA). However, its production is constrained by drought. Knowledge and understanding of the genetics of hybrid performance under drought is invaluable in designing breeding strategies for improving maize yield. One hundred and fifty hybrids obtained by crossing 30 inbreds in sets using the North Carolina Design II plus six checks were evaluated under drought and well‐watered conditions for 2 years at three locations in Nigeria. The objectives of the studies were to (i) determine the mode of gene action controlling grain yield and other important agronomic traits of selected early inbred lines, (ii) examine the relationship between per se performance of inbreds and their hybrids and (iii) identify appropriate testers for maize breeding programmes in WCA. General combining ability (GCA) and specific combining ability (SCA) mean squares were significant (P < 0.01) for grain yield and other traits under the research environments. The GCA accounted for 64.5 % and 62.3 % of the total variation for grain yield under drought and well‐watered conditions, indicating that additive gene action largely controlled the inheritance of grain yield of the hybrids. Narrow‐sense heritability was 67 % for grain yield under drought and 49 % under well‐watered conditions. The correlations between traits of early‐maturing parental lines and their hybrids were significant (P < 0.01) under drought, well‐watered and across environments. Mid‐parent and better‐parent heterosis for grain yield were 45.3 % and 18.4 % under drought stress and 111.9 % and 102.6 % under well‐watered conditions. Inbreds TZEI 31, TZEI 17, TZEI 129 and TZEI 157 were identified as the best testers. Drought‐tolerant hybrids with superior performance under stress and non‐stress conditions could be obtained through the accumulation of favourable alleles for drought tolerance in both parental lines.  相似文献   

19.
Worldwide rice productivity is being threatened by increased endeavours of drought stress. Among the visible symptoms of drought stress, hampered water relations and disrupted cellular membrane functions are the most important. Exogenous use of polyamines (PAs), salicylic acid (SA), brassinosteroids (BRs), glycinebetaine (GB) and nitrous oxide (NO) can induce abiotic stresses tolerance in many crops. In this time course study, we appraised the comparative role of all these substances to improve the drought tolerance in rice (Oryza sativa L.) cultivar Super‐Basmati. Plants were subjected to drought stress at four leaf stage (4 weeks after emergence) by maintaining soil moisture at 50 % of field capacity. Pre‐optimized concentrations of GB (150 mg l?1), SA (100 mg l?1), NO (100 μmol l?1 sodium nitroprusside as NO donor), BR (0.01 μm 24‐epibrassinolide) and spermine (Spm; 10 μm ) were foliar sprayed at five‐leaf stage (5 weeks after emergence). There were two controls both receiving no foliar spray, viz. well watered (CK1) and drought stressed (CK2). There was substantial reduction in allometric response of rice, gas exchange and water relation attributes by drought stress. While drought stress enhanced the H2O2, malondialdehyde (MDA) and relative membrane permeability, foliar spray of all the chemicals improved growth possibly because of the improved carbon assimilation, enhanced synthesis of metabolites and maintenance of tissue water status. Simultaneous reduction in H2O2 and MDA production was also noted in the plants treated with these substances. Drought tolerance was sturdily associated with the greater tissue water potential, increased synthesis of metabolites and enhanced capacity of antioxidant system. Of all the chemicals, foliar spray with Spm was the most effective followed by BR.  相似文献   

20.
A major factor affecting spring canola (Brassica napus) production in Canada is killing frosts during seedling development in the spring and seed maturation in the fall. The objective of this study was to explore the possibility of producing spring canola lines with mutations that have altered biochemical pathways that increase cold tolerance. The approach was to generate UV point mutations in cultured microspores followed by chemical in vitro selection of individual mutant microspores or embryos resulting in measurable alterations to various biochemical pathways with elevated levels of key defense signaling molecules such as, salicylic acid (SA), p-Fluoro-d,l-Phenyl Alanine (FPA), and jasmonic acid (JA). In addition, since proline (Pro) is known to protect plant tissues in the cold-induced osmotic stress pathway, mutants that overproduce Pro were selected in vitro by using three Pro analogues: hydroxyproline (HP), azetidine-2-carboxylate (A2C); and, 3,4-dehydro-d,l-proline (DP). Of the 329 in vitro selected mutant embryos produced, 74 were identified with significant cold tolerance compared to their donor parents through indoor freezer tests at −6°C, and 19 had better winter field survival than winter canola checks. All chemically selected mutant doubled haploids with increased cold tolerance compared well with parent lines for all seed quality and agronomic parameters. Development of increased frost tolerant cultivars should allow for spring canola to be produced in western Canada without compromising seed quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号