首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effect of ACTH (16 units) on plasma cortisol and corticosterone concentrations in healthy psittacine birds was evaluated. Plasma corticosterone significantly increased (P less than 0.01) from a mean (+/- SD) basal concentration of 3.25 +/ 3.6 ng/ml to 26.47 +/- 9.25 (one hour after ACTH administration) and 25.69 +/- 13.23 ng/ml (2 hours after ACTH administration). For maximal increase in plasma corticosterone as measured by radioimmunoassay (RIA), heat denaturation was necessary to release corticosteroids from steroid-binding proteins. As measured by RIA, plasma cortisol concentrations did not increase, whether or not the heat denaturation step was included. Addition of cortisol to avian plasma did not prevent accurate quantification of cortisol as measured by RIA. Plasma corticosterone concentrations in cockatoos, macaws, Amazon parrots, conures, and lorikeets before and after ACTH administration indicated that the ACTH stimulation test could be used to evaluate adrenal secretory capacity in psittacine birds.  相似文献   

2.
Four pigs were used in a 2 X 2 crossover study to determine plasma oxytetracycline (OTC) concentration and OTC pharmacokinetic variables after IM administration of 2 OTC preparations--long acting OTC and a 100-mg of OTC/ml solution (OTC-LA and OTC-100, respectively)--at a dosage of 20 mg/kg of body weight. In a second study, 3 additional pigs were given ad libitum access to feed containing pure OTC (0.55 g/kg of feed). The mean (+/- SD) peak plasma OTC concentration after OTC-LA administration was 6.0 +/- 2.2 micrograms/ml at 30 minutes; the mean peak plasma OTC concentration after OTC-100 administration was 6.7 +/- 3.4 micrograms/ml at 90 minutes. Mean plasma OTC concentration after oral OTC administration in feed peaked at 0.4 micrograms/ml 48 hours after access to OTC-medicated feed and decreased to 0.25 micrograms/ml by the end of that study. Mean plasma OTC concentration was maintained at greater than 0.5 micrograms/ml for less than 48 hours after OTC-LA administration and for less than 36 hours after OTC-100 administration. Mean plasma OTC concentration decreased to less than 0.2 micrograms/ml by 72 hours after IM administration of either product. Calculation of area under the plasma OTC concentration-time curve (AUC) did not reveal significant difference between the 2 OTC formulations. There also was not significant difference (between OTC-LA and OTC-100) in the value of the disappearance rate constant after administration of either OTC formulation. The data did not indicate significant pharmacologic advantage of OTC-LA, compared with OTC-100, when either formulation was administered IM at a dosage of 20 mg/kg.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Oxytetracycline (OTC) concentration in plasma and tissues, plasma pharmacokinetics, depletion from tissue, and toxicity were studied in 30 healthy calves after IM administration of a long-acting OTC preparation (40 mg/kg of body weight) at double the label dosage (20 mg/kg). Plasma OTC concentration increased rapidly after drug administration, and by 2 hours, mean (+/- SD) values were 7.4 +/- 2.6 micrograms/ml, Peak plasma OTC concentration was 9.6 +/- 2.6 micrograms/ml, and the time to peak plasma concentration was 7.6 +/- 4.0 hours. Plasma OTC concentration decreased slowly for 168 hours (elimination phase) after drug administration, and the elimination half-life was 23.9 hours. Plasma OTC concentration exceeded 3.8 micrograms/ml at 48 hours after drug administration. From 168 to 240 hours after drug administration, plasma OTC concentration decreased at a slower rate than that seen during the elimination phase. This slower phase was termed the depletion phase, and the depletion half-life was 280.7 hours. Tissue OTC concentration was highest in kidneys and liver. Lung OTC concentration exceeded 4.4 micrograms/g of tissue and 2.0 micrograms/g of tissue at 12 and 48 hours after drug administration, respectively. The drug persisted the longest in kidneys and liver. At 42 days after drug administration, 0.1 micrograms of OTC/g of kidney was detected. At 49 days after drug administration, all OTC tissue concentrations were below the detectable limit. Reactions and toxicosis after drug administration were limited to an anaphylaxis-like reaction (n = 1) and injection site swellings (n = 2).  相似文献   

4.
Adrenal and/or thyroid gland function tests were evaluated in horses at various times during short-term therapy with phenylbutazone, stanozolol, and boldenone undecylenate. There were no significant treatment or time effects on mean basal plasma cortisol concentrations in horses during treatment with the following: phenylbutazone, given twice daily (4 to 5 mg/kg, IV) for 5 days; stanozolol, given twice weekly (0.55 mg/kg, IM) for 12 days; boldenone undecylenate, given twice weekly (1.1 mg/kg, IM) for 12 days; or nothing. There was no significant effect of phenylbutazone treatment on the changes in plasma cortisol concentration during the combined dexamethasone-suppression adrenocorticotropic hormone (ACTH)-stimulation test. Plasma cortisol concentration was significantly decreased from base line at 3 hours after dexamethasone administration and was significantly increased from base line at 2 hours after ACTH in all horses (P less than 0.05). Likewise, the stimulation of basal plasma cortisol concentrations at 2 hours after administration of ACTH (P less than 0.05) was not affected by treatment with stanozolol or boldenone undecylenate. There were no significant treatment effects on mean basal plasma concentrations of thyroxine (T4) or triiodothyronine (T3) among horses during the following treatments: stanozolol, given twice weekly (0.55 mg/kg, IM) for 12 days; boldenone undecylenate, given twice weekly (1.1 mg/kg, IM) for 12 days; or nothing. There was a significant time effect on overall mean basal plasma T4 and T3 concentrations (P less than 0.05): plasma T4 was lower on day 8 than on days 1, 10, and 12; plasma T3 was higher on day 8 than on days 4 and 12.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
OBJECTIVE: To assess bioequivalence after oral, IM, and IV administration of racemic ketoprofen in pigs and to investigate the bioavailability after oral and IM administration. ANIMALS: 8 crossbred pigs. PROCEDURES: Each pig received 4 treatments in a randomized crossover design, with a 6-day washout period. Ketoprofen was administered at 3 and 6 mg/kg, PO; 3 mg/kg, IM; and 3 mg/kg, IV. Plasma ketoprofen concentrations were measured by use of high-performance liquid chromatography for up to 48 hours. To assess bioequivalence, a 90% confidence interval was calculated for the area under the time-concentration curve (AUC) and maximum plasma concentration (C(max)). RESULTS: Equivalence was not detected in the AUCs among the various routes of administration nor in C(max) between oral and IM administration of 3 mg/kg. The bioavailability of ketoprofen was almost complete after each oral or IM administration. Mean +/- SD C(max) was 5.09 +/- 1.41 microg/mL and 7.62 +/- 1.22 microg/mL after oral and IM doses of 3 mg/kg, respectively. Mean elimination half-life varied from 3.52 +/- 0.90 hours after oral administration of 3 mg/kg to 2.66 +/- 0.50 hours after IV administration. Time to peak C(max) after administration of all treatments was approximately 1 hour. Increases in AUC and C(max) were proportional when the orally administered dose was increased from 3 to 6 mg/kg. Conclusions and Clinical Relevance: Orally administered ketoprofen was absorbed well in pigs, although bioequivalence with IM administration of ketoprofen was not detected. Orally administered ketoprofen may have potential for use in treating pigs.  相似文献   

6.
Seven horses were given 0.5 mg of carbon tetrachloride/kg of body weight via a nasogastric tube. Subsequent hepatocellular damage was monitored by serum enzyme determinations of sorbitol dehydrogenase, isoenzyme 5 of lactate dehydrogenase, and aspartate transaminase activities. Creatinine kinase activity was evaluated as an indicator of muscle cell damage. Sorbitol dehydrogenase, isoenzyme 5 of lactate dehydrogenase, and aspartate transaminase activities were significantly (P less than 0.05) increased by 24 hours after carbon tetrachloride administration. Isoenzyme 5 of lactate dehydrogenase and sorbitol dehydrogenase activities returned to baseline several days before aspartate transaminase activity returned to baseline. Creatine kinase activity remained unchanged.  相似文献   

7.
Single and multiple dose gentamicin regimens were compared in sheep to determine the relevant pharmacokinetic differences. Seven mature sheep were given 10 mg/kg of gentamicin by IV bolus. Serum concentrations were monitored for 19 days. Four weeks after the initial bolus, gentamicin was administered IM (3 mg/kg every 8 hours) for 7 days. Ewes were euthanatized and necropsied at 1, 8, and 15 days after termination of the IM regimen and the tissues were assayed for gentamicin. Serum concentrations were analyzed using a triexponential equation. The IV kinetic studies revealed an alpha half-life (t1/2) of 0.31 +/- 0.14 hours, beta t1/2 of 2.4 +/- 0.5 hours, and gamma t1/2 of 30.4 +/- 18.9 hours. Multiple IM dose kinetic studies revealed a beta t1/2 of 2.8 +/- 0.6 hours and gamma t1/2 of 82.1 +/- 17.8 hours. After multiple dosing, gamma t1/2 was significantly longer than after the single IV bolus (P less than 0.05). Twenty-four hour urine collection accounted for 75% to 80% of the total IV dose. Renal cortical gentamicin concentration reached 224 micrograms/g of tissue and then decreased, with a 90-hour t1/2. Renal medullary gentamicin concentration reached 18 micrograms/g with a 42-day t1/2. After multiple dosing, liver gentamicin concentration reached 11 micrograms/g and skeletal muscle concentrations were less than or equal to 0.6 micrograms/g. Route or duration of administration significantly affected the gamma-phase serum concentrations, which may influence gentamicin nephrotoxicosis. The present study also illustrated the complexities in predicting aminoglycoside withdrawal times for food-producing animals before slaughter.  相似文献   

8.
Serum concentrations of cefepime (BMY-28142) were determined for four dosing regimes, 10 mg/kg or 20 mg/kg, given as single subcutaneous (SC) or intramuscular injections (IM) to dogs. Serial serum samples were analyzed for the presence of cefepime by high-performance liquid chromatography. In experiment 1, the overall mean (+/- SEM) serum concentration (for a 12-hour period) after a dose of 20 mg/kg for SC and IM routes (4.9 +/- 0.74 micrograms/ml and 5.5 +/- 0.63 micrograms/ml, respectively) was twice that for the 10 mg/kg dose given either SC or IM (2.2 +/- 0.31 micrograms/ml and 2.8 +/- 0.47 micrograms/ml, respectively). There was no significant difference (p greater than 0.05) in mean serum concentrations for SC and IM routes of administration at the same dosage. In subsequent experiments, 5 doses of cefepime (20 mg/kg) were administered IM at 12-hour (experiment 2) or 24-hour (experiment 3) intervals. The mean (+/- SEM) peak serum concentration was 12.1 +/- 1.59 micrograms/ml, 2 hours after the 2nd injection in experiment 2. In experiment 3, the mean (+/- SEM) peak serum concentration was 10.9 +/- 1.34 micrograms/ml, 4 hours after the 1st injection. Mean trough concentrations in experiment 2 were greater than or equal to 0.5 microgram/ml and less than or equal to 0.5 in experiment 3. Multiple IM doses produced transient edema at the injection site and mild lameness in all dogs. Cefepime was highly active against single canine isolates of Staphylococcus intermedius, Pseudomonas aeruginosa and Escherichia coli, with minimum inhibitory concentrations of 0.125 microgram/ml, 1 microgram/ml and 0.3 microgram/ml, respectively.  相似文献   

9.
This study establishes preliminary pharmacokinetic data on the use of gentamicin sulfate administered IM to baboons. Serum concentrations greater than or equal to 12 micrograms/ml are generally agreed to cause toxicosis in human beings. On the basis of preliminary test results suggesting that the manufacturer's recommended dosage for dogs of 4.4 mg/kg of body weight caused potentially toxic serum concentrations, a dosage of 3 mg/kg was chosen to conduct a single-dose kinetic study in 6 baboons. Using a single-compartment model, the gentamicin serum half-life for IM administration of 3 mg of gentamicin/kg was 1.58 hours, and serum concentrations remained below the potentially toxic concentrations reported for human beings. We suggest that a dosage of 3 mg/kg is safer than a dosage of 4.4 mg/kg administered IM to baboons. Minimal inhibitory concentrations for 2 Pseudomonas aeruginosa isolates were less than or equal to 1 micrograms/ml. On the basis of our measured elimination half-life of 1.58 hours, it is reasonable to suppose that dosing q24 h will be inadequate to maintain therapeutic serum concentrations. We calculate that serum concentrations will remain at or above our measured minimal inhibitory concentration for P aeruginosa (1 micrograms/ml) for 100% of the treatment time if the animal is dosed q 6h, 78% for dosing q 8h, and 52% for dosing q 12h. Therefore, we suggest 3 mg/kg, q 8h or q 6h as appropriate dosing schedules for the use of gentamicin sulfate administered IM to baboons.  相似文献   

10.
OBJECTIVE: To study the pharmacokinetics of difloxacin (5 mg/kg) following IV, IM, and intragastric (IG) administration to healthy horses. ANIMALS: 6 healthy mature horses. PROCEDURES: A crossover study design with 3 phases was used (15-day washout periods between treatments). An injectable formulation of difloxacin (5%) was administered IV and IM in single doses (5 mg/kg); for IG administration, an oral solution was prepared and administered via nasogastric tube. Blood samples were collected before and at intervals after each administration. A high-performance liquid chromatography assay with fluorescence detection was used to determine plasma difloxacin concentrations. Pharmacokinetic parameters of difloxacin were analyzed. Plasma creatine kinase activity was monitored to assess tissue damage. RESULTS: Difloxacin plasma concentration versus time data after IV administration were best described by a 2-compartment open model. The disposition of difloxacin following IM or IG administration was best described by a 1-compartment model. Mean half-life for difloxacin administered IV, IM, and IG was 2.66, 5.72, and 10.75 hours, respectively. Clearance after IV administration was 0.28 L/kg.h. After IM administration, the absolute mean +/- SD bioavailability was 95.81 +/- 3.11% and maximum plasma concentration (Cmax) was 1.48 +/- 0.12 mg/L. After IG administration, the absolute bioavailability was 68.62 +/- 10.60% and Cmax was 0.732 +/- 0.05 mg/L. At 12 hours after IM administration, plasma creatine kinase activity had increased 7-fold, compared with the preinjection value. CONCLUSIONS AND CLINICAL RELEVANCE: Data suggest that difloxacin is likely to be effective for treating susceptible bacterial infections in horses.  相似文献   

11.
OBJECTIVE: To investigate the disposition kinetics of ampicillin and sulbactam after IV and IM administration of an ampicillin-sulbactam (2:1) preparation and determine the bioavailability of the combined preparation after IM administration in turkeys. ANIMALS: 10 healthy large white turkeys. PROCEDURE: In a crossover study, turkeys were administered the combined preparation IV (20 mg/kg) and IM (30 mg/kg). Blood samples were collected before and at intervals after drug administrations. Plasma ampicillin and sulbactam concentrations were measured by use of high-performance liquid chromatography; plasma concentration-time curves were analyzed via compartmental pharmacokinetics and noncompartmental methods. RESULTS: The drugs were distributed according to an open 2-compartment model after IV administration and a 1-compartment model (first-order absorption) after IM administration. For ampicillin and sulbactam, the apparent volumes of distribution were 0.75+/-0.11 L/kg and 0.74+/-0.10 L/kg, respectively, and the total body clearances were 0.67+/-0.07 L x kg(-1) x h(-1) and 0.56+/-0.06 L x kg(-1) x h(-), respectively. The elimination half-lives of ampicillin after IV and IM administration were 0.78+/-0.12 hours and 0.89+/-0.17 hours, respectively, whereas the corresponding half-lives of sulbactam were 0.91+/-0.12 hours and 0.99+/-0.16 hours, respectively. Bioavailability after IM injection was 58.87+/-765% for ampicillin and 53.75+/-5.35% for sulbactam. CONCLUSIONS AND CLINICAL RELEVANCE: Results indicated that a regimen of loading and maintenance doses of 300 mg of the ampicillin-sulbactam (2:1) combination/kg every 8 hours could be clinically useful in turkeys. This dosage regimen maintained plasma concentrations of ampicillin > 0.45 microg/mL in turkeys.  相似文献   

12.
The concentration of gentamicin in plasma and synovial fluid of normal adult horses was measured periodically for 24 hours after IV (2.2 mg/kg of body weight), intra-articular (IA; 150 mg), and simultaneous IV and IA administrations. Gentamicin also was buffered with sodium bicarbonate (3 mEq) and then was administered IA and simultaneously IV and IA. Synovial fluid specimens were obtained via an indwelling catheter placed into the antebrachiocarpal joint. The peak mean plasma gentamicin concentration (8.30 micrograms/ml) after IV administration was significantly (P less than 0.05) greater than that (0.69 microgram/ml) after IA administration of gentamicin and that (0.55 microgram/ml) after administration of gentamicin buffered with sodium bicarbonate. Gentamicin concentration greater than a therapeutic concentration was not attained in the plasma after IA administration of buffered or unbuffered gentamicin. The peak mean synovial fluid concentration (1,828 micrograms/ml) after IA administration of unbuffered gentamicin was significantly (P less than 0.05) greater than that (2.53 micrograms/ml) after IV administration and significantly (P less than 0.05) less than that (5,720 micrograms/ml) after simultaneous IV and IA administration. The peak mean synovial fluid concentration after IA administration of buffered gentamicin, with and without simultaneous IV administration (2,128 and 2,680 micrograms/ml, respectively), was not significantly different than that after IA treatment with unbuffered gentamicin. Mean synovial fluid concentration did not differ significantly between groups after IA administration of gentamicin in any combination at postinjection hours 8, 12, and 24, but remained significantly (P less than 0.05) greater than that at the same times after IV administration.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
OBJECTIVE: To determine the pharmacokinetics of marbofloxacin after single IV and orally administered doses in blue and gold macaws. ANIMALS: 10 healthy blue and gold macaws. PROCEDURES: In a crossover study, marbofloxacin (2.5 mg/kg) was administered orally (via crop gavage) to 5 birds and IV to 5 birds. Blood samples were obtained at 0, 0.5, 1, 3, 6, 12, 24, 48, 72, and 96 hours after marbofloxacin administration. After a 4-week washout period, the study was repeated, with the first 5 birds receiving the dose IV and the second 5 birds receiving the dose orally. Serum marbofloxacin concentrations were quantitated by use of a validated liquid chromatography-mass spectrometry assay. RESULTS: After oral administration, mean +/- SD area under the curve was 7.94 +/- 2.08 microg.h/mL, maximum plasma concentration was 1.08 +/- 0.316 microg/mL, and bioavailability was 90.0 +/- 31%. After IV administration of marbofloxacin, the apparent volume of distribution was 1.3 +/- 0.32 L/kg, plasma clearance was 0.29 +/- 0.078 L/h/kg, area under the curve was 9.41 +/- 2.84 microg.h/mL, and the harmonic mean terminal half-life was 4.3 hours. CONCLUSIONS AND CLINICAL RELEVANCE: Single IV and orally administered doses of marbofloxacin were well tolerated by blue and gold macaws. The orally administered dose was well absorbed. Administration of marbofloxacin at a dosage of 2.5 mg/kg, PO, every 24 hours may be appropriate to control bacterial infections susceptible to marbofloxacin in this species.  相似文献   

14.
Progesterone was administered IM to 6 adult anestrous bitches at a dosage of 2 mg/kg of body weight. Serum progesterone concentrations were measured prior to progesterone administration and for 72 hours thereafter. The serum progesterone concentration time data were analyzed by use of a pharmacokinetics modeling computer program. The mean (+/- SD) peak serum progesterone concentration (34.3 +/- 7.8 ng/ml) was reached at 1.8 +/- 0.2 hours after progesterone administration. The mean serum progesterone concentration was 6.9 +/- 1.4 ng/ml at 24 hours and 2.0 +/- 0.4 ng/ml at 48 hours after progesterone administration. By 72 hours after administration, mean serum progesterone concentration was 0.9 +/- 0.2 ng/ml, which was comparable to serum progesterone concentrations prior to injection. The mean half-life of the absorption phase was 0.5 hours (range, 0.3 to 0.7 hours). The mean half-life of elimination was 12.1 hours (range, 9.5 to 13.8 hours). By analysis of the data, it was established that a dosage of 3 mg/kg, when the hormone was given IM to dogs once a day, would maintain serum progesterone concentration greater than 10 ng/ml.  相似文献   

15.
The absorption kinetics of porcine regular insulin following IV, IM, and SC administration were evaluated in 10 dogs with alloxan-induced diabetes mellitus. Plasma immunoreactive insulin (IRI) concentrations were evaluated immediately prior to and at 10, 20, 30, 45, 60, 90, 120, 180, and 240 minutes following IV administration; and immediately prior to and every 30 minutes for 2 hours and then every hour for 6 hours following IM and SC administration of 0.55 U of porcine regular insulin/kg of body weight. Model-independent pharmacokinetic analysis was performed on each data set. Plasma IRI concentration declined rapidly after IV administration of regular insulin and then returned to baseline IRI concentration by 3.2 +/- 0.8 hours. The absorption kinetics following IV administration of regular insulin were similar to those found in earlier studies in healthy dogs and human beings. The IM and SC routes of regular insulin administration resulted in a pharmacologic concentration of IRI at 30 minutes. The peak mean (+/- SD) plasma IRI concentration was significantly (P less than 0.05) greater following SC administration than it was following IM administration of regular insulin (263 +/- 185 and 151 +/- 71 I microU/ml, respectively). The time of the peak plasma IRI concentration (68 +/- 31 minutes and 60 +/- 30 minutes) and the time to return to baseline plasma IRI concentration (5.8 +/- 1.2 hours and 5.8 +/- 1.3 hours) were not significantly different following SC and IM administration of regular insulin, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
BACKGROUND: Commonly used dosage protocols for antimicrobial agents may alter the rate of gastric emptying. HYPOTHESIS: Parenteral administration of erythromycin increases and gentamicin decreases the rate of abomasal emptying. ANIMALS: Five male Holstein-Friesian calves (8-15 days of age). METHODS: Calves received each of the following 4 IM treatments in random order: control, 2 mL of 0.9% NaCl; erythromycin, 8.8 mg/kg; low-dose gentamicin, 4.4 mg/kg; high-dose gentamicin, 6.6 mg/kg. Abomasal emptying rate was assessed by acetaminophen and glucose absorption. Calves were fed 2 L of cow's milk containing acetaminophen (50 mg/kg body weight) 30 minutes after each treatment was administered, and jugular venous blood samples were obtained periodically after suckling. The maximum observed plasma acetaminophen concentration (actual C(max)) and time of actual C(max) (actual T(max)) were determined, and pharmacokinetic modeling was used to calculate model C(max) and model T(max). RESULTS: Erythromycin increased abomasal emptying rate, as indicated by a shorter time to actual T(max) and model T(max) (P < .05). Abomasal emptying rate after injection of low-dose gentamicin was similar to that of control. Administration of high-dose gentamicin resulted in a longer time to actual T(max) (P= .021) but did not change model T(max) (P= .62). CONCLUSIONS AND CLINICAL RELEVANCE: IM injection of erythromycin increased abomasal emptying rate in dairy calves, whereas low-dose and high-dose gentamicin did not alter the rate of abomasal emptying as measured by acetaminophen kinetics and glucose absorption. The clinical relevance of these findings remains to be determined.  相似文献   

17.
Procaine penicillin is a commonly used antibiotic in equine medicine but its use is associated with a substantial incidence of adverse reactions. Soluble procaine concentrations were determined by HPLC in several commercially available procaine penicillin preparations, including some that were involved in adverse reactions. The mean (+/- SEM) soluble procaine concentrations in the veterinary preparations was 20.18 +/- 5.07 mg/ml, which was higher than the concentration in the only procaine penicillin preparation for use in humans in Australia of 7.3 mg/ml. Heating the veterinary procaine penicillin preparations to 50 degrees C for 1 day led to a significant (P less than 0.01) increase in the amount of soluble procaine. Heating to 50 degrees C for 7 days also produced a significant (P less than 0.02) increase. Soluble procaine tended to return to baseline concentrations when veterinary procaine penicillin preparations were heated to 50 degrees C for 2 days then stored for 7 days at room temperature. Administration of procaine HCl intravenously (IV) at 2, 5, and 10 mg/kg produced behavioural, locomotor and vascular reactions, which were clinically similar to those reported in adverse reactions to procaine penicillin. The more severe reactions occurred at higher doses, although different horses responded variably at the same dose. Some adverse reactions lead to recumbency but none were fatal. The blood procaine concentrations 1 min after IV administration averaged 19.0 +/- 12.6 and 25.3 +/- 16 micrograms/ml at 2.5 mg/kg and 5 mg/kg, respectively. Ten min after administration, blood procaine concentrations were significantly higher (P less than 0.001) in the 5 mg/kg group than in the 2.5 mg/kg group. Intramuscular (IM) procaine HCl at 5 mg/kg produced significantly lower (P less than 0.001) blood concentrations than similar IV doses, and, in contrast to the IV doses, the amount of procaine in the blood was significantly higher 5 and 10 min after administration than it was after 1 min. Mild excitatory reactions in 4/5 horses were noted 5 to 10 min after IM administration. Administration of diazepam 20 s before procaine HCl prevented the excitatory adverse reaction in 2/2 horses, but administration after the procaine did not influence the outcome.  相似文献   

18.
The pharmacokinetics of flunixin were studied in 6 adult lactating cattle after administration of single IV and IM doses at 1.1 mg/kg of body weight. A crossover design was used, with route of first administration in each cow determined randomly. Plasma and milk concentrations of total flunixin were determined by use of high-pressure liquid chromatography, using an assay with a lower limit of detection of 50 ng of flunixin/ml. The pharmacokinetics of flunixin were best described by a 2-compartment, open model. After IV administration, mean plasma flunixin concentrations rapidly decreased from initial concentrations of greater than 10 micrograms/ml to nondetectable concentrations at 12 hours after administration. The distribution phase was short (t1/2 alpha, harmonic mean = 0.16 hours) and the elimination phase was more prolonged (t1/2 beta, harmonic mean = 3.14 hours). Mean +/- SD clearance after IV administration was 2.51 +/- 0.96 ml/kg/min. After IM administration, the harmonic mean for the elimination phase (t1/2 beta) was prolonged at 5.20 hours. Bioavailability after IM dosing gave a mean +/- SD (n = 5) of 76.0 +/- 28.0%. Adult, lactating cows (n = 6) were challenge inoculated with endotoxin as a model of acute coliform mastitis. After multiple administration (total of 7 doses; first IV, remainder IM) of 1.1 mg/kg doses of flunixin at 8-hour intervals, plasma flunixin concentrations were approximately 1 microgram/ml at 2 hours after each dosing and 0.5 micrograms/ml just prior to each dosing. Flunixin was not detected in milk at any sampling during the study.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Healthy mature roosters (n = 10) were given gentamicin (5 mg/kg of body weight, IV) and, 30 days later, another dose IM. Serum concentrations of gentamicin were determined over 60 hours after each drug dosing, using a radioimmunoassay. Using nonlinear least-square regression methods, the combined data of IV and IM treatments were best fitted by a 2-compartment open model. The mean distribution phase half-life was 0.203 +/- 0.075 hours (mean +/- SD) and the terminal half-life was 3.38 +/- 0.62 hours. The volume of the central compartment was 0.0993 +/- 0.0097 L/kg, volume of distribution at steady state was 0.209 +/- 0.013 L/kg, and the total body clearance was 46.5 +/- 7.9 ml/h/kg. Intramuscular absorption was rapid, with a half-life for absorption of 0.281 +/- 0.081 hours. The extent of IM absorption was 95 +/- 18%. Maximal serum concentration of 20.68 +/- 2.10 micrograms/ml was detected at 0.62 +/- 0.18 hours after the dose. Kinetic calculations predicted that IM injection of gentamicin at a dosage of 4 mg/kg, q 12 h, and 1.5 mg/kg, q 8 h, would provide average steady-state serum concentrations of 6.82 and 3.83 micrograms/ml, with minimal steady-state serum concentrations of 1.54 and 1.50 micrograms/ml and maximal steady-state serum concentrations of 18.34 and 7.70 micrograms/ml, respectively.  相似文献   

20.
Rate of appearance, peak concentration, and the biological half-life of gentamicin in the plasma of quail (Coturnix coturnix), pheasants (Phasianus colchicus), and cranes (Grus canadensis tabida) were studied. Gentamicin was given IM in doses of 5, 10, and 20 mg/kg of body weight. Peak plasma concentrations occurred earliest in the quail, latest in the cranes. The peak concentrations varied directly with the administered doses in all species. The biological half-life of gentamicin was 42 +/- 12 minutes in the quail, 75 +/- 15 minutes in the pheasants, and 165 +/- 37 minutes in the cranes. On the basis of the present data, dosage regimens for gentaminic of 5 mg/kg every 8 hours in pheasants and cranes, and 10 mg/kg every 6 hours in quail, would be expected to give constant plasma concentrations greater than 4.0 micrograms/ml.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号