首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
J. O. AZEEZ 《土壤圈》2009,19(5):654-662
Low soil nitrogen (N) and weed infestations are some of the major constraints to maize production in Nigeria.A split-split plot experiment in a randomized complete block design with three replicates was established at two sites with different agroecological zones,Ikenne (Typic Paleudalf) and Shika (Typic Tropaquept),in Nigeria in 2002 and 2003 rainy seasons to investigate the responses of four maize genotypes (Oba super II,Low N pool C2,TZB-SR,and ACR 8328 BN C7) to N fertilizer applied at four rates,0,30,60,and 90 kg N ha-1,and three weed pressure treatments,no weed pressure (weekly weeding),low weed pressure (inter-row weekly weeding),and high weed pressure (no weeding throughout the growing season).Growth and yield parameters of maize and weeds were taken at flwering and harvest.The results indicated that there was a significant reduction in maize leaf area,leaf area index,and photosynthetically active radiation due to weed interference at both sites.The application of nitrogen at 90 kg N ha-1 significantly increased maize leaf area.Reductions in maize growth and yield at flowering and harvest were significant due to weed interference at both Ikenne and Shika,thus showing that the reductions in maize growth and yield due to weed interference were not ecological zone specific even though weed species and their seed banks may differ.Ameliorative management options could thus be the same in the two agroecological zones.Application of 90 kg N ha-1 led to a significant increase in maize grain yield at Shika while there was no fertilizer effect at Ikenne on grain yield.There was no significant difference between 60 and 90 kg N ha-1,suggesting that 60 kg N ha-1 could be a possible replacement for the higher fertilizer rate at least for the identified maize genotypes.Low weed pressure treatment led to 26% and 35% reductions in maize grain yield at Ikenne and Shika,respectively,while 22% and 51 % reductions,respectively,were observed due to high weed pressure.Generally,maize grain yield was higher at Ikenne than Shika.The maize genotypes Low N pool C2 and ACR 8328 BN C7 performed better than the other genotypes at Ikenne while the maize genotype Oba super II had the best performance at harvest at Shika.Application of nitrogen increased weed biomass at flowering at Ikenne.The maize grain yield was highest in the N-efficient genotypes,Oba super II and Low N pool C2;the susceptible genotype TZB-SR had the least yield at Shika.There existed a negative and significant correlation between maize grain yield and weed biomass at both sites.  相似文献   

2.
Soil water and nutrients play an important role in increasing sorghum (Sorghum bicolor L. Moench) yields in the Vertisols of semi-arid tropics during post-rainy season. The effects of tillage practices, organic materials and nitrogen fertilizer on soil properties, water conservation and yield of sorghum were evaluated during winter seasons of 1994–1995 and 1995–1996 on deep Vertisols at Bijapur in the semi-arid tropics of Karnataka State (Zone 3) of south India. Conservation and availability of water and nutrients during different stages of crop growth were increased by deeper tillage resulting in increased grain yield of winter sorghum. Medium and deep tillage increased the grain yield by 23% (1509 kg ha−1) and 57% (1919 kg ha−1) during 1994–1995 and 14% (1562 kg ha−1) and 34% (1835 kg ha−1) during 1995–1996, respectively, over shallow tillage. Water use efficiency increased from shallow (4.90 kg ha−1 mm−1) to deep tillage (7.30 kg ha−1 mm−1). Greater water use efficiency during 1994–1995 as compared to 1995–1996 was attributed to lower consumptive use of water during 1994–1995. Among organic materials, application of Leucaena loppings conserved larger amounts of water and increased winter sorghum yield and water use efficiency. Application of Leucaena loppings increased the winter sorghum grain yield by 9% (mean of 1994–1995 and 1995–1996) as compared to vermicompost. Significantly (P < 0.05) higher water use efficiency of 6.32 kg ha−1 mm−1 was observed in Leucaena loppings incorporated plots compared to 5.72 kg ha−1 mm−1 from vermicompost. Grain yield increased by 245 kg ha−1 with application of 25 kg N ha−1 in 1994–1995, and a further increase in N application to 50 kg ha−1 increased the grain yield by about 349 kg ha−1 in 1995–1996. Deep tillage with application of 25 kg N ha−1 resulted in significantly higher sorghum yield (2047 kg ha−1) than control during 1994–1995. Deep tillage with integrated nutrient management (organic and inorganic N sources) conserved higher amount of soil water and resulted in increased sorghum yields especially during drought years.  相似文献   

3.
Management of N is the key for sustainable and profitable wheat production in a low N soil. We report results of irrigated crop rotation experiment, conducted in the North West Frontier Province (NWFP), Pakistan, during 1999–2002 to evaluate effects of residue retention, fertilizer N application and mung bean (Vigna radiata) on crop and N yields of wheat and soil organic fertility in a mung bean–wheat sequence. Treatments were (a) crop residue retained (+residue) or (b) removed (−residue), (c) 120 kg N ha−1 applied to wheat, (d) 160 kg N ha−1 to maize or (e) no nitrogen applied. The cropping system was rotation of wheat with maize or wheat with mung bean. The experiment was laid out in a spit plot design. Postharvest incorporation of crop residues significantly (p < 0.05) increased the grain and straw yields of wheat during both years. On average, crop residues incorporation increased the wheat grain yield by 1.31 times and straw yield by 1.39 times. The wheat crop also responded strongly to the previous legume (mung bean) in terms of enhanced grain yield by 2.09 times and straw yield by 2.16 times over the previous cereal (maize) treatment. Application of fertilizer N to previous maize exerted strong carry over effect on grain (1.32 times) and straw yield (1.38 times) of the following wheat. Application of N fertilizer to current wheat produced on average 1.59 times more grain and 1.77 times more straw yield over the 0 N kg ha−1 treatment. The N uptake in wheat grain and straw was increased 1.31 and 1.64 times by residues treatment, 2.08 and 2.49 times by mung bean and 1.71 and 1.86 times by fertilizer N applied to wheat, respectively. The soil mineral N was increased 1.23 times by residues, 1.34 times by mung bean and 2.49 times by the application of fertilizer N to wheat. Similarly, the soil organic C was increased 1.04-fold by residues, 1.08 times by mung bean and 1.00 times by the application of fertilizer N. We concluded that retention of residues, application of fertilizer N and involvement of legumes in crop rotation greatly improves the N economy of the cropping system and enhances crop productivity in low N soils.  相似文献   

4.
ABSTRACT

Grain protein content is one of the most important quality constraints for bread wheat (Triticum aestivum L.) production in eastern Canada. A field experiment was conducted for two years (1999 and 2000) on the Central Experimental Farm, Ottawa, Canada, to study whether split application of nitrogen (N) fertilizer improved grain protein content and nitrogen-use efficiency (NUE). Two cultivars (‘Celtic,’ as N-responsive and ‘Grandin’, as N-non-responsive) were grown using three different N doses and application methods: (1) 100 kg N ha?1 as NH4NO3, soil-applied at seeding with 15N2-labeled NH4NO3 to microplots, (2) 60 kg N ha?1 soil-applied at seeding plus 40 kg N ha?1 foliar-applied at the boot stage with 15N2-labeled urea to microplots, and (3) 90 kg N ha?1 as soil-applied at seeding plus 10 kg N ha?1 foliar-applied at the boot stage with 15N2-labeled urea to microplots. Plants were sampled at heading and maturity. While dry-matter production and grain yields were not affected by the treatments in either year, N application methods influenced tissue N concentration and NUE. In 1999, extended drought stress led to significant yield reduction; in 2000, foliar application of 10 kg N ha?1 at the boot stage significantly increased grain N concentration when grain protein was under the limit for bread quality, suggesting that later-applied N can contribute to grain protein content. At maturity, the average NUE was 22.3% in 1999 and 34.5% in 2000, but was always greater when all N was applied at seeding (42.5%) than when N was foliar-applied at the boot stage (18.5% to 24.5%). We conclude that application of a small amount of fertilizer N at the boot stage can improve the bread-making quality of spring wheat by increasing grain protein concentration.  相似文献   

5.
Efforts to restore productivity of pastures often employ agricultural management regimes involving either tillage or no-tillage options combined with various combinations of fertilizer application, herbicide use and the planting of a cash crop prior to the planting of forage grasses. Here we report on the emissions of CO2, N2O and NO from the initial phases (first 6 months) of three treatments in central Rondônia. The treatments were (1) control; (2) conventional tillage followed by planting of forage grass (Brachiaria brizantha) and fertilizer additions; (3) no-tillage/herbicide treatment followed by two plantings, the first being a cash crop of rice followed by forage grass. In treatment 3, the rice was fertilized. Relative to the control, tillage increased CO2 emission by 37% over the first 2 months, while the no-tillage/herbicide regime decreased CO2 emissions by 7% over the same period. The cumulative N2O emissions over the first 2 months from the tillage regime (0.94 kg N ha–1) were much higher than the N2O releases from either the no-tillage/herbicide regime (0.64 kg N ha–1) or the control treatment (0.04 kg N ha–1). The highest levels of N2O fluxes from both management regimes were observed following N fertilizations. The cumulative NO releases over the first 2 months were largest in the tillage treatment (0.98 kg N ha–1), intermediate in the no-tillage treatment (0.72 kg N ha–1), and smallest in the control treatment (0.12 kg N ha–1). For the first week following fertilization the percentage of fertilizer N lost as N2O plus NO was 1.0% for the tillage treatment and 3.0% for the no-tillage treatment.  相似文献   

6.
Summary A field study was undertaken to examine the effects of various management strategies on wheat (Triticum aestivum L.) performance and N cycling in an intensively cropped soil. Microplots receiving 100 kg N ha–1 as15NH4 + 15NO3 at sowing, tillering or stem elongation were compared with unfertilized microplots. Stubble from the previous rice crop was either incorporated, burnt without tillage, burnt then tilled or retained on the surface of untilled soil. Wheat grain yield ranged from 1.5 to 5.1 t ha and was closely related to N uptake. Plant accumulation of soil N averaged 36 kg N ha–1 (LSD 5% = 10) on stubble-incorporation plots and 54 kg N ha–1 on stubble-retention plots. Fertilizer N accumulation averaged 18 kg N ha–1 (LSD 51% = 6) on stubble-incorporation plots and 50 kg N ha–1 on stubble-retention plots. Tillage had little effect on burnt plots. Delaying N application from sowing until stem elongation increased average fertilizer N uptake from 26 to 39 kg N ha–1 (LSD 5% = 6), but reduced soil N uptake from 50 to 37 kg N ha (LSD 5% = 10).Immobilization and leaching did not vary greatly between treatments and approximately one-third of the fertilizer was immobilized. Less than 1% of the fertilizer was found below a depth of 300 mm. Incorporating 9 t ha–1 of rice stubble 13 days before wheat sowing reduced net apparent mineralization of native soil N from 37 to 3 kg ha–1 between tillering and maturity. It also increased apparent denitrification of fertilizer N from an average 34 to 53 kg N ha–1 (LSD 5% = 6). N loss occurred over several months, suggesting that denitrification was maintained by continued release of metabolizable carbohydrate from the decaying rice stubble. The results demonstrate that no-till systems increase crop yield and use of both fertilizer and soil N in intensive rice-based rotations.  相似文献   

7.
Broiler chicken (Gallus gallus) manure, a rich source of plant nutrients, is generated in large quantities in southeastern USA where many row crops, such as corn (Zea mays L.), are also extensively grown. However, the use of broiler manure as an economical alternative source of nutrients for corn production has not been extensively explored in this region. This study was conducted to examine the use of broiler litter as a source of nutrients for corn production, as influenced by tillage and litter rate, and any residual effects following application. In addition, the consequence of litter application to soil test nutrient levels, particularly P, Zn and Cu, was explored. The treatments consisted of two rates of broiler litter application, 11 and 22 Mg ha−1 on a wet weight basis, and one rate of chemical fertilizer applied under no-till and conventional tillage systems. Treatments were replicated three times in a randomized complete block design. Corn was grown with broiler litter and inorganic fertilizer applied to the same plots each year from 1998 to 2001. In 2002 and 2003, corn was planted no-till, but only N fertilizer was applied in order to make use of other residual litter nutrients. Soil samples were taken yearly in the spring prior to litter application and 4 years after the cessation of litter application to evaluate the status of the residual nutrients in soil. Two years out of the 4-year experiment, broiler litter application produced significantly greater corn grain yield than equivalent chemical fertilizer application and produced similar grain yield in the other 2 years. Corn grain yield was significantly greater under no-till in 1999, but significantly greater under conventional-till in 2000, and no difference between the two tillage systems were observed in 1998 and 2001. With 4 years of litter application, Mehlich-3 P increased from an initial 18 mg kg−1 to 156 mg kg−1 with 11 Mg ha−1 litter and to 257 mg kg−1 with 22 Mg ha−1 litter. For every 6 kg ha−1 of P applied in poultry litter Mehlich-3 P was increased by 1 mg kg−1. Modest increases in Mehlich-3 Cu and Zn did not result in phytotoxic levels. This study indicated that an optimum rate of broiler litter as a primary fertilizer at 11 Mg ha−1 applied in 4 consecutive years on a silt loam soil produced corn grain yields similar to chemical fertilizer under both no-till and conventional tillage systems and kept soil test P, Cu and Zn levels below values considered to be harmful to surface water quality or the crop.  相似文献   

8.
Field experiments were conducted at Fort Vermilion (58°23′N 116°02′W), Alberta, to determine phosphorus (P) release patterns from red clover (Trifolium pratense) green manure (GM), field pea (Pisum sativum), canola (Brassica rapa) and monoculture wheat (Triticum aestivum) residues in the 7th and 8th years of conventional and zero tillage. Phosphorus contained in crop residues ranged from 1.5 kg ha−1 in pea to 9.2 kg ha−1 in clover GM, both under zero tillage. The patterns of P release over a 52-week period sometimes varied with tillage, i.e., a greater percentage of GM residue P was released under conventional tillage than under zero tillage in the first 2–10 weeks of residue placement. Wheat residues resulted in net P immobilization under zero tillage, but the amounts immobilized were less than 1 kg ha−1. When net P mineralization occurred, the percentage of P released ranged from 24% of wheat P under conventional tillage to 74% of GM P under conventional tillage. The amounts of P released were 0.4 kg ha−1 from wheat, 0.8 kg ha−1 from canola, 0.4 kg ha−1 from pea and 5.1–5.6 kg ha−1 from clover GM residues. Therefore, only GM residues recycled agronomically significant amounts of P for use by subsequent crops in rotation. Phosphorus release was positively correlated with residue P concentration and negatively correlated with C/P and lignin/P ratios.  相似文献   

9.
Organic-N fertilizers in the form of flood-tolerant, leguminous, stem-nodulating Sesbania rostrata and Aeschynomene afraspera may be useful alternatives to resource-poor rice farmers if applied as green manure. Therefore, the accumulation of N by these green manure species and their effect on the performance and yield of wetland rice (IR 64) was examined at four different sites in Luzon, Philippines. Soils deficient in N, P, and K were selected and compared with the fertile Maahas clay of the International Rice Research Institute (IRRI) at Los Baños. The green manure plants were grown under flooded conditions for 49 days in the wet season of 1987, chopped, and then ploughed in before transplanting rice seedlings. In a second experiment, the effect of S. rostrata green manure was studied under rainfed conditions. All green manure treatments were compared to an urea treatment (60 kg N ha–1) and an untreated control. Both legumes developed well, even on the marginally productive soils. S. rostrata accumulated up to 190 kg N ha–1 and A. afraspera even accumulated 196 kg N ha–1 in the shoots. In all treatments, green manure increased grain yield significantly (P=0.05) over the untreated control, by 1.3–1.7 Mg ha–1. The yields were comparable to those obtained with 60 kg N ha–1 of urea fertilizer. S. rostrata caused the highest grain yield, of 6.5 Mg ha–1 on the Maahas clay soil of IRRI. The apparent release of exchangeable NH 4 + -N in the soils after green manuring and the rice grain yield response showed that both green manure species may provide sufficient available N throughout the development of IR 64 in the wet season. In the rainfed marginal soil site, green manure with S. rostrata produced even higher rice grain yields than urea. Green manure therefore seems particularly attractive for poor farmers on marginally productive soils, at least as a temporary strategy to improve yield and yield sustainability.  相似文献   

10.
Dry bean (Phaseolus vulgaris L.) is an important legume worldwide and nitrogen (N) is most yield limiting nutrients. A field experiment was conducted for two consecutive years to evaluate response of 15 dry bean genotypes to nitrogen and rhizobial inoculation. The N and rhizobia treatments were (i) control (0 kg N ha?1), (ii) seed inoculation with rhizobia strains, (iii) seed inoculation with rhizobia strains + 50 kg N ha?1, and (iv) 120 kg N ha?1. Straw yield, grain yield, and yield components were significantly influenced by N and rhizobial treatments. Grain yield, straw yield, number of pods m?2, and grain harvest index were significantly influenced by year, nitrogen + rhizobium, and genotype treatments. Year × Nitrogen + rhizobium × genotype interactions were also significant for these traits. Hence, these traits varied among genotypes with the variation in year and nitrogen + rhizobium treatments. Inoculation with rhizobium alone did not produce maximum yield and fertilizer N is required in combination with inoculation. Based on grain yield efficiency index, genotypes were classified as efficient, moderately efficient, and inefficient in nitrogen use efficiency (NUE). NUE defined as grain produced per unit N applied decreased with increasing N rate. Overall, NUE was 23.17 kg grain yield kg?1 N applied at 50 kg N ha?1 and 13.33 kg grain per kg N applied at 120 kg N ha?1.  相似文献   

11.
Soybean (Glycine max (L.) Merr.) is an important crop in the southeastern United States, and thus there is a need for additional information on the effects of tillage, weed control methods and row spacing on soybean yields, weed populations and soil properties. The objective of this study was to determine the effects of three weed control methods (none, cultivation, and herbicide) and three row spacings (45, 60 and 90 cm) on soybeans planted in a conventionally prepared seedbed or planted in wheat stubble (no-till (NT)) on a Decatur silty clay loam (Rhodic Paleudult) soil during the 1987 and 1988 growing seasons. Following NT planting, soybean plots produced a seed yield of 3102 kg ha−1 with herbicide, 2911 kg ha−1 with cultivation and 2216 kg ha−1 with no weed control. On a conventionally prepared seedbed, herbicide and cultivation resulted in almost equal seed yields (3898 kg ha−1 and 3954 kg ha−1 respectively) which were significantly higher than those from the no weed control plots (3151 kg ha−1). Soybeans in narrow (45 cm) rows (3997 kg ha−1) consistently out-yielded those in the wider 60 cm rows (3130 kg ha−1) and 90 cm rows (2490 kg ha−1) in both growing seasons, results averaged across years showed that conventionally planted soybeans produced higher yields (3668 kg ha−1) than NT planted soybeans (2743 kg ha−1). The weed infestation was significantly less with herbicide or cultivation than with no weed control and also less in narrow rows (45 cm) than in wider rows (60 and 90 cm). Data on the soil properties (from a depth of 0–15 cm) showed that moisture content, organic matter content and total soil nitrogen were higher in NT plots than in conventional plots. Similarly, disease ratings and infestation of bacterial blight of soybean were significantly higher in NT than in conventional tillage systems.  相似文献   

12.
Crop rotations and tillage practices influence the quantity and quality of soil organic N (SON). We evaluated the impact of crop rotations and tillage practices on SON and mineralizable N at a depth of 0–15 cm in six field experiments, varying in duration over 8–25 years, that were being conducted in three Chernozemic soil zones in Saskatchewan, Canada. In a Brown Chernozem, continuous wheat increased SON at 0–15 cm by 7–17 kg N ha–1year–1 more than fallow/wheat. In a Dark Brown Chernozem, continuous cropping increased SON by 30 kg N ha–1year–1, compared with cropping systems containing fallow once every 3 years; and, in a Rego Black Chernozem, the increase in SON was 29 kg N ha–1 year–1, compared with cropping systems containing fallow once every 4 years. The increase in SON due to increased cropping frequency was accompanied by an increase in the proportion of mineralizable SON in the Brown Chernozem, but not in the Dark Brown and Black Chernozems. In the Brown Chernozemic soil zone, no-tillage management increased SON, compared with conventional tillage, varying from 16 kg N ha–1year–1 to 28 kg N ha–1year–1. In the Dark Brown Chernozemic soil zone, it increased SON by 35 kg N ha–1year–1 and, in the Black Chernozemic soil zone, by about 40 kg N ha–1year–1. Increases in SON at a depth of 0–7.5 cm due to no-tillage management was accompanied by a greater increase in the mineralizable N for Hatton fine sandy loam, Melfort silty clay and Indian Head clay than for other soils, indicating that the material responsible for the increased SON due to no-tillage was more labile than the soil humus N. However, the increased SON under no-till in Swinton loam, Sceptre clay and Elstow clay loam was not associated with an increase in the mineralizable N, indicating that this increased SON was no more susceptible to decomposition than the soil humus N. Therefore, increases in SON under improved management practices, such as conservation tillage and extended crop rotations, do not necessarily increase the potential soil N availability.  相似文献   

13.
Information on N cycling in dryland crops and soils as influenced by long-term tillage and cropping sequence is needed to quantify soil N sequestration, mineralization, and N balance to reduce N fertilization rate and N losses through soil processes. The 21-yr effects of the combinations of tillage and cropping sequences was evaluated on dryland crop grain and biomass (stems + leaves) N, soil surface residue N, soil N fractions, and N balance at the 0–20 cm depth in Dooley sandy loam (fine-loamy, mixed, frigid, Typic Argiboroll) in eastern Montana, USA. Treatments were no-tilled continuous spring wheat (Triticum aestivum L.) (NTCW), spring-tilled continuous spring wheat (STCW), fall- and spring-tilled continuous spring wheat (FSTCW), fall- and spring-tilled spring wheat–barley (Hordeum vulgare L.) (1984–1999) followed by spring wheat–pea (Pisum sativum L.) (2000–2004) (FSTW-B/P), and spring-tilled spring wheat–fallow (STW-F). Nitrogen fractions were soil total N (STN), particulate organic N (PON), microbial biomass N (MBN), potential N mineralization (PNM), NH4-N, and NO3-N. Annualized crop grain and biomass N varied with treatments and years and mean grain and biomass N from 1984 to 2004 were 14.3–21.2 kg N ha−1 greater in NTCW, STCW, FSTCW, and FSTW-B/P than in STW-F. Soil surface residue N was 9.1–15.2 kg N ha−1 greater in other treatments than in STW-F in 2004. The STN at 0–20 cm was 0.39–0.96 Mg N ha−1, PON 0.10–0.30 Mg N ha−1, and PNM 4.6–9.4 kg N ha−1 greater in other treatments than in STW-F. At 0–5 cm, STN, PON, and MBN were greater in STCW than in FSTW-B/P and STW-F. At 5–20 cm, STN and PON were greater in NTCW and STCW than in STW-F, PNM and MBN were greater in STCW than in NTCW and STW-F, and NO3-N was greater in FSTW-B/P than in NTCW and FSTCW. Estimated N loss through leaching, volatilization, or denitrification at 0–20 cm depth increased with increasing tillage frequency or greater with fallow than with continuous cropping and ranged from 9 kg N ha−1 yr−1 in NTCW to 46 kg N ha−1 yr−1 in STW-F. Long-term no-till or spring till with continuous cropping increased dryland crop grain and biomass N, soil surface residue N, N storage, and potential N mineralization, and reduced N loss compared with the conventional system, such as STW-F, at the surface 20 cm layer. Greater tillage frequency, followed by pea inclusion in the last 5 out of 21 yr in FSTW-B/P, however, increased N availability at the subsurface layer in 2004.  相似文献   

14.
ABSTRACT

Identification of the combination of tillage and N fertilization practices that reduce agricultural Nitrous oxide (N2O) emissions while maintaining productivity is strongly required in the Indian subcontinent. This study investigated the effects of tillage in combination with different levels of nitrogen fertilizer on N2O emissions from a rice paddy for two consecutive seasons (2013–2014 and 2014–2015). The experiment consisted of two tillage practices, i.e., conventional (CT) and reduced tillage (RT), and four levels of nitrogen fertilizer, i.e., 0 kg N ha–1 (F1), 45 kg N ha–1 (F2), 60 kg N ha–1 (F3) and 75 kg N ha–1 (F4). Both tillage and fertilizer rate significantly affected cumulative N2O emissions (p < 0.05). Fertilizer at 45 and 60 kg N ha–1 in RT resulted in higher N2O emissions over than did the CT. Compared with the recommended level of 60 kg N ha?1, a 25% reduction in the fertilizer to 45 kg N ha?1 in both CT and RT increased nitrogen use efficiency (NUE) and maintained grain yield, resulting in the lowest yield-scaled N2O-N emission. The application of 45 kg N ha?1 reduced the cumulative emission by 6.08% and 6% in CT and RT practices, respectively, without compromising productivity.  相似文献   

15.
ABSTRACT

Nutrient uptake and grain and straw yield of Egyptian winter wheat (Triticum aestivum L. Merr.) were evaluated for two site-years after the seed inoculation with two biofertilizer products, Phosphorien, containing the phosphorus (P)-solubilizing bacteria Bacillus megatherium, and Nitrobien, containing a combination of nitrogen (N)-fixing bacteria Azotobacter chroococcum and Azospirillum liposerum. Ammonium nitrate and polymer-coated urea fertilizers were applied to plots alone and together with the biofertilizers at rates of either 83 kg N ha?1 or 186 kg N ha?1 for comparison. The highest grain yield (5.76–6.74 Mg ha?1) and straw yield (11.49–13.32 Mg ha?1) occurred at the highest fertilizer rates with N fertilizer. There was a slight additional increase in grain and straw yields when a biofertilizer was applied along with N fertilizer. A slightly higher grain and straw yield was measured with the polymer-coated urea treatment than with the ammonium nitrate treatment. The biofertilizer materials were not as effective as N fertilizers in producing grain (4.02–4.09 Mg ha?1) or straw (7.71–8.11 Mg ha?1) for either year, although the Nitrobien + Phosphorien combination increased these parameters over the N-fertilizer control. The effect of the Nitrobien biofertilizer in increasing grain yields was equivalent to a urea application rate of about 13 kg N ha?1. Biofertilizer inoculations increased iron (Fe), manganese (Mn), zinc (Zn), and copper (Cu) concentrations in wheat tissue (at boot stage), but these higher levels did not influence grain or straw yield.  相似文献   

16.
Abstract

Excessive use of nitrogen (N) fertilizers in wheat fields has led to elevated NO3-N concentrations in groundwater and reduced N use efficiency. Three-year field and 15N tracing experiments were conducted to investigate the effects of N application rates on N uptake from basal and topdressing 15N, N use efficiency, and grain yield in winter wheat plants; and determine the dynamics of N derived from both basal and topdressing 15N in soil in high-yielding fields. The results showed that 69.5–84.5% of N accumulated in wheat plants derived from soil, while 6.0–12.5%and 9.2–18.1% derived from basal 15N and top 15N fertilizer, respectively. The basal N fertilizer recovery averaged 33.9% in plants, residual averaged 59.2% in 0–200 cm depth soil; the topdressing N fertilizer recovery averaged 50.5% in plants, residual averaged 48.2% in 0–200 cm soil. More top 15N was accumulated in plants and more remained in 0–100 cm soil rather than in 100–200 cm soil at maturity, compared with the basal 15N. However, during the period from pre-sowing to pre-wintering, the soil nitrate moved down to deeper layers, and most accumulated in the layers below 140 cm. With an increase of N fertilizer rate, the proportion of the N derived from soil in plants decreased, but that derived from basal and topdressing fertilizer increased; the proportion of basal and top 15N recovery in plants decreased, and that of residual in soil increased. A moderate application rate of 96–168 kg N ha?1 led to increases in nitrate content in 0–60 cm soil layer, N uptake amount, grain yield and apparent recovery fraction of applied fertilizer N in wheat. Applying above 240 kg N ha?1 promoted the downward movement of basal and top 15N and soil nitrate, but had no significant effect on N uptake amount; the excessive N application also obviously decreased the grain yield, N uptake efficiency, apparent recovery fraction of applied fertilizer N, physiological efficiency and internal N use efficiency. It is suggested that the appropriate application rate of nitrogen on a high-yielding wheat field was 96–168 kg N ha?1.  相似文献   

17.
Studies were conducted on paddy soils to ascertain N2 fixation, growth, and N supplying ability of some green-manure crops and grain legumes. In a 60-day pot trial, sunhemp (Crotalaria juncia) produced a significantly higher dry matter content and N yield than Sesbania sesban, S. rostrata, cowpeas (Vigna unguiculata), and blackgram (V. mungo), deriving 91% of its N content from the atmosphere. Dry matter production and N yield by the legumes were significantly correlated with the quantity of N2 fixed. In a lowland field study involving sunhemp, blackgram, cowpeas, and mungbean, the former produced the highest stover yield and the stover N content, accumulating 160–250 kg N ha-1 in 60 days, and showed great promise as a biofertilizer for rice. The grain legumes showed good adaptability to rice-based cropping systems and produced a seed yield of 1125–2080 kg ha-1, depending on the location, species, and cultivar. Significant inter- and intraspecific differences in the stover N content were evident among the grain legumes, with blackgram having the highest N (104–155 kg N ha-1). In a trial on sequential cropping, the groundnut (Arachis hypogaea) showed a significantly higher N2 fixation and residual N effect on the succeeding rice crop than cowpeas, blackgram, mungbeans (V. radiata), and pigeonpeas (Cajanus cajan). The growth and N yield of the rice crop were positively correlated with the quantity of N2 fixed by the preceding legume crop.  相似文献   

18.
Previous studies have demonstrated inconsistent results on the impact of tillage systems on nitrogen (N) losses from field-applied manure. This study assessed the impact of no-tillage (NT) and conventional tillage (CT) systems on gaseous N losses, N2O:N2O + N2 ratios and NO3-N leaching following surface application of cattle manure. The study was undertaken during the 2003/2004 and 2004/2005 seasons at two field sites in Nova Scotia namely, Streets Ridge (SR) in Cumberland County and the Bio-environmental Engineering Centre (BEEC) in Truro. Results showed that the NT system had higher (p < 0.05) NH3 losses than CT. Over the two seasons, manure incorporation in CT reduced NH3 losses on average by 86% at SR and 78% at BEEC relative to NT. At both sites and during both seasons, denitrification rates and N2O fluxes in NT were generally higher than in CT plots, presumably due to higher soil water and organic matter content in NT. Over the two seasons, mean denitrification rates at SR were 239 and 119 g N ha−1 d−1, while N2O fluxes were 120 and 64 g N ha−1 d−1 under NT and CT, respectively. At BEEC mean denitrification rates were 114 and 71 g N ha−1 d−1, while N2O fluxes were 52 and 27 g N ha−1 d−1 under NT and CT, respectively. Conversely, N2O:N2O + N2 ratios were lower in NT than CT suggesting more complete reduction of N2O to N2 under NT. When averaged across all soil depths, NO3-N was higher (p < 0.05) in CT than NT. Nitrate-N decreased with depth at both sites regardless of tillage. In most cases, NO3-N was higher under CT than NT at all soil depths. Similarly, flow-weighted average NO3-N concentrations in drainage water were generally higher under CT. This may be partly attributed to higher denitrification rates under NT. Therefore, NT may be a viable strategy to remove NO3-N from the soil, and thus, reduce NO3-N contamination of groundwater. However, it should be noted that while the use of NT reduces NO3-N leaching it may come with unintended environmental tradeoffs, including increased NH3 and N2O emissions.  相似文献   

19.
Abstract

Results of 240 annual N fertilizer trials in 1991–2007 in spring and winter cereals are presented. On average, spring barley and oat yields increased little beyond 120 kg N ha?1 in fertilizer. Somewhat higher figures were found for spring and winter wheat. Regression equations for yield and N uptakes in grain and straw were derived, related to N fertilizer input and the yield level in individual trials (indicator of yield expectancy). These equations accounted for 90% of the variation in yield and 80% of that in N uptake. Quadratic N responses were significant in all cases, as were interactions between N responses and yield level. They were verified with data from 27 separate trials performed in 2008–2010. The yield equations were used to calculate economically optimum N fertilizer levels with varying ratios of product price to fertilizer cost at contrasting levels of yield. The optimum N fertilizer level for barley and oats was found to increase by 8.3 kg N ha?1 per Mg increase in expected yield. The equivalent figure in wheat was 16.3 kg N ha?1. Optimum N fertilizer levels decreased by 4.1 and 6.7 kg N ha?1, for barley/oats and wheat respectively, per unit increase in the cost/price ratio. The equations for N uptake were used to calculate simple N balances between fertilizer input and removal in crop products. Large N surpluses were indicated at low levels of yield expectancy, but the surplus declined markedly with increasing yield level, despite greater N fertilizer inputs at high yield. Calculations made for national average yield levels in recent years showed N surpluses of 50–60 kg N ha?1 when only grain is removed and 25–40 kg N ha?1 when straw is removed also. Limiting N input to obtain zero balance reduces yields considerably at average levels of yield expectancy.  相似文献   

20.
ABSTRACT

Conservation tillage practices have gained interests. A 2-year field study (2014–2015) was conducted to evaluate four N rates (0, 69, 138, and 207 kg N ha?1) effects on irrigated sweet corn (Zea mays L.) grown with or without wheat (Triticum aestivum L.) residue removal and conventional (CT), reduced (RT), or no-tillage (NT) practices near Shiraz, Iran. After 2 years, maximum marketable yield occurred at 156 and 159 kg N ha?1 under CT and NT, respectively, while yield was tended to be increased with increasing N rates under RT. Increasing N rate increased total plant N uptake, shoot, and grain N accumulation. The lowest nitrogen use efficiency (NUE) was obtained under NT, while RT and CT either showed similar effects or RT was superior over CT. Soil total N was greater under CT and residue retention showed 18% and 14% higher N concentration than residue removal in 2014 and 2015, respectively. Soil organic matter was the highest (2.59%) under RT with residue retention and 138 kg N ha?1. Conservation tillage needs more N rather than CT during transition from conventional to conservation agriculture practices, but it is based on the short-term results and evaluation of long-term experiment is highly recommended.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号