首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
潮土长期施用生物炭提高小麦产量及氮素利用率   总被引:7,自引:1,他引:6  
该文于2011年起在黄淮海典型潮土区建立的秸秆炭化还田定位试验的基础上,系统观测了2011至2017年时间段秸秆生物炭连续施用下小麦生长及氮吸收情况,分析了产量构成因素,地上干物质及氮累积,关键生育期叶面积指数(LAI)、叶绿素相对含量(SPAD值)和群体数量等与小麦增产的关系,并监测了长期生物炭施用下土壤有机碳(SOC)与全氮(TN)含量的变化。该试验采用小麦/玉米周年轮作,设每季0、2.25、6.75和11.25 t/hm2四个秸秆生物炭处理(分别表示为BC0(对照)、BC2.25(低)、BC6.75(中)和BC11.25(高))。结果表明,与BC0相比,BC2.25仅在2015/2016季提高小麦产量,对其他5季无明显效果;BC6.75则在2014/2015、2015/2016和2016/2017的后3季显著提高小麦产量;而BC11.25提高了2014/2015和2015/2016季小麦产量。尽管生物炭处理对各季小麦产量影响各异,但6季各处理平均产量数据显示低、中、高量生物炭处理均可提高小麦产量7.0%~8.5%、生物量5.2%~10.8%和氮肥偏生产力6.8%~8.6%,且3个处理间并无差异;中、高量生物炭处理还可提高小麦秸秆产量11.4%~12.6%、穗数10.1%~11.2%、籽粒氮积累量9.4%~11.2%、秸秆氮积累量17.4%~23.8%、地上部氮积累量13.3%~20.9%。生物炭施用在促进小麦生长和氮吸收利用的作用方面与其增加小麦生育期LAI和SPAD值一致,具体表现为低、中、高量生物炭处理均可明显增加2015/2016和2016/2017两季小麦主要生育期群体数量以及增加两季拔节期、抽穗期SPAD值和LAI值。3个生物炭处理对提高2011/2012土壤SOC含量和2011—2014年土壤TN含量无明显效果,中、高量生物炭处理可增加2012—2017年土壤SOC含量32.6%~215.6%和2014—2017年土壤TN含量20.0%~36.8%。研究表明,合理施用生物炭能够促进黄淮区潮土农田冬小麦籽粒产量和氮肥偏生产力以及促进小麦生长和地上部氮素吸收,进而起到提高土壤肥力和增加土壤固碳的作用。  相似文献   

2.
风沙土是我国重要耕地之一,具有土质瘠薄、漏水漏肥等特点,易造成肥料利用率低、产量低等问题,急需对其改良,以提高其保水保肥能力。以风沙土为研究对象,采用玉米秸秆生物炭(BM)、水稻秸秆生物炭(BR)及花生壳生物炭(BP),设置生物炭两个不同施用量:0.5%土重和1%土重。采用盆栽试验,研究添加不同来源和数量生物炭对土壤养分和氮素利用率的影响。结果表明:不同种类生物炭均可以提高风沙土土壤pH、有机碳、速效钾含量。随着生物炭用量的增加,增加效果越明显;与未施生物炭处理(CK)相比,高量水稻秸秆生物炭处理对土壤有机碳、全氮、有效磷、速效钾含量提升效果最显著,分别提高了101.70%、20.30%、14.92%、88.36%;高量花生壳生物炭处理对土壤pH提升效果最显著,提高了0.46个单位。不同种类的生物炭均提高了土壤氮素残留率和利用率,随着生物炭用量的增加,土壤氮残留率提高,其中以高量水稻秸秆生物炭处理和高量花生壳生物炭处理提升幅度最大,与CK相比,分别提高了45.47%、36.10%。而氮素利用率随着生物炭用量的增加却出现降低趋势,低量玉米秸秆生物炭的处理氮素利用率最高,为51.32%。土壤氮残留率与花生籽粒产量、土壤pH、有机碳、有效磷、速效钾呈显著正相关关系,与氮肥利用率呈显著负相关关系。综上所述,施加生物炭能显著改变风沙土土壤有效养分含量。高量水稻秸秆生物炭和花生壳生物炭短期内可以显著提高氮残留率,而在氮肥利用率提升方面不如玉米秸秆生物炭,高量花生壳生物炭增产效果最好。  相似文献   

3.
【目的】本研究通过探讨小麦和玉米残体与其生物炭配施对土壤各组分有机碳及其自身有机碳矿化的影响,揭示其在土壤固碳和培肥方面的效应,为农田有机物资源合理利用提供理论支撑。【方法】采用室内恒温培养试验,共设置小麦或玉米残体(根茬、秸秆)和秸秆制成的生物炭单施(WS、WR、WB、MS、MR、MB),配施(WS+WB、WR+WB、MS+MB、MR+MB)以及对照(CK)构成的11个处理,培养期间测定土壤CO2释放量,培养结束后测定土壤总有机碳(TOC)、可溶性有机碳(DOC)、微生物量碳(MBC)、颗粒有机碳(POC)以及粗细颗粒有机碳含量(CPOC、FPOC)。【结果】添加玉米有机物料对土壤TOC、MBC、POC、CPOC和FPOC含量的增加作用普遍高于添加小麦有机物料。添加小麦或玉米秸秆对土壤TOC、POC、CPOC、FPOC含量的增加作用均高于添加根茬。单独添加生物炭,作物残体与生物炭配施和单独添加作物残体处理分别在培养的第4、8、21 d有机碳矿化速率最大,为有机碳矿化快速期,之后矿化速率减缓并逐渐趋于稳定。单独添加作物残体其有机碳累积矿化率最大,达到30%~46%;与对照相比,添加有机物料的各处理均显著增加了土壤TOC含量,其中添加生物炭处理土壤TOC含量增幅最大;单独添加小麦和玉米生物炭处理,土壤TOC含量分别显著增加34.4%和36.5%,但其有机碳累积矿化率仅为3%左右,土壤FPOC含量及敏感性指数在单独添加生物炭处理最高;小麦和玉米残体与其生物炭配施处理,土壤MBC和CPOC含量分别显著增加80.2%~199.2%,且其有机碳累积矿化率为12%~19%,介于生物炭和残体单施之间,土壤CPOC含量及敏感性指数均表现为配施处理最高。【结论】单独添加作物残体能够较好地补充土壤养分,但CO2释放量显著高于单施生物炭及配施处理;单独添加生物炭其有机碳累积矿化率较低,短期内对土壤养分的补充作用较小。作物残体与其生物炭配施可以较好地克服各自单独施用的弊端,尤其是玉米秸秆与其生物炭配施,在保证作物养分供应的同时能增加土壤碳库储量,对土壤肥力提升效果更好。  相似文献   

4.
为探究施用水稻秸秆生物炭对水稻产量、氮肥利用率、氮肥残留及损失的影响,采用盆栽试验结合15N示踪技术,分析了施用水稻秸秆生物炭对水稻生物量、氮素积累量、肥料氮去向以及氨氧化微生物的影响。研究共设置5个处理:不施氮肥(N0)、单施化肥(CF)、施化肥配施0.5%生物炭(BC1)、施化肥配施1%生物炭(BC2)和施化肥配施2%生物炭(BC3)。结果表明:与CF处理相比,BC2和BC3处理均显著提高水稻产量,增产率分别为19.3%和22.0%。施用生物炭显著增加水稻氮素积累量和表观利用率。施用生物炭的水稻籽粒肥料氮积累和总肥料氮积累量较CF处理分别提高18.6%~23.4%和18.5%~26.5%。然而,施用生物炭处理与CF处理之间的籽粒土壤氮吸收量没有显著差异。BC1、BC2和BC3处理的氮肥利用率分别为30.4%,28.5%和29.3%,均显著高于CF处理(24.1%)。施用生物炭有利于肥料氮在土壤中的 残留,从而减少损失。因此,施用生物炭的肥料氮损失率(25.7%~27.5%)显著低于单施化肥处理(38.4%)。与CF处理相比,高量施用生物炭(BC3)显著降低氨氧化细菌的amoA基因拷贝数,但施用生物炭对氨氧化古菌丰度没有显著影响。综上表明,施用水稻秸秆生物炭是提高水稻产量和氮肥利用率,同时还是有效减少氮素损失的一种有效措施。  相似文献   

5.
生物炭的10年土壤培肥效应   总被引:5,自引:5,他引:0       下载免费PDF全文
大量短期的室内试验和田间试验研究表明,施用生物炭可以增加土壤碳固定,提升土壤肥力和作物产量,然而关于生物炭的长期土壤肥力效应尚不明确。为此,依托持续10年的生物炭的田间定位试验[4个处理:对照(CK)、生物炭4. 5 t·hm-2·年-1(B4. 5)、生物炭9 t·hm-2·年-1(B9. 0)、秸秆还田(SR)],研究了长期施用生物炭对土壤肥力状况的影响。结果显示,与对照相比,长期施用生物炭和秸秆还田对土壤p H值没有显著影响,但容重降低了2. 2%~8. 2%,施用生物炭的土壤电导率降低了1. 5%~7. 8%,而秸秆还田处理土壤电导率提高了4. 7%~13. 4%。施炭和秸秆还田使土壤有机质(SOM)含量增加57. 7%~123. 1%,总氮含量提高11. 3%~21. 9%,总磷没有显著性变化。不同处理土壤NH+4-N含量的差异不显著,而施用生物炭和秸秆还田土壤NO-3-N含量增加3. 8%~67. 1%,且高炭处理的效果显著。土壤有效磷含量显著降低了23. 1%~42. 0%,速效钾含量上升了2. 0%~23. 1%。总体而言,长期施用生物炭提升了土壤肥力,尤其是对土壤有机质的提升有显著的效果。  相似文献   

6.
针对黄淮海平原广泛分布的砂姜黑土结构性差、有机质含量偏低的特征,通过中国科学院封丘农田生态系统国家试验站2年砂姜黑土不同外源有机物料施用处理盆栽试验[共设8个处理,分别为空白(CK)、施秸秆(S)、施有机肥(M)、施1/2秸秆+1/2有机肥(SM)、施生物炭(C)、施1/2生物炭+1/2秸秆(CS)、施1/2生物炭+1/2有机肥(CM)和施1/3生物炭+1/3有机肥+1/3秸秆(CSM)],研究了等C、N输入下不同稳定性有机物料(生物炭、秸秆、有机肥)对砂姜黑土理化性质及玉米产量的影响。结果表明,与CK处理相比,施用外源有机物料能显著降低土壤容重19.60%~32.23%,增加饱和含水量7.91%~28.99%、田间持水量10.47%~30.76%,提高耕层土壤总孔隙度10.36%~28.21%,提升全量有机质11.00%~37.00%;并对活性有机质组分(低活性有机质、中活性有机质、高活性有机质)产生显著影响,其中高活性有机质增加幅度高达39.22%~83.83%。从有机物料的配比效果来看,CSM处理土壤容重最低,为1.28 g?cm?1,C、S处理土壤容重分别为1.30 g?cm?1、1.36 g?cm?1。CSM处理土壤总孔隙度最大,为58.53%;S、CS、SM处理次之,分别为55.62%、56.90%、54.38%;C、M处理最小,分别为53.18%、50.38%。CS、CM、CSM处理土壤总有机质含量较高,分别为30.76 g?kg?1、32.99 g?kg?1、31.45 g?kg?1;C、S处理相对较低,分别为25.36 g?kg?1、26.16 g?kg?1。CS、SM、CSM处理玉米产量最高,分别为463.67 g?盆?1、376.31 g?盆?1、471.77 g?盆?1,且差异性显著。可见不同稳定性有机物料施入能够改善土壤理化性质,提高玉米产量,生物炭配合秸秆、有机肥还田处理改良土壤及增产效果最佳。  相似文献   

7.
生物炭添加对皖南旱地土壤物理性质及水分特征的影响   总被引:1,自引:0,他引:1  
《土壤通报》2016,(2):320-326
为明确生物炭添加对皖南旱地典型土壤供水能力的影响,采用室内模拟实验,研究了3种生物炭(竹炭、稻炭和烟炭)及3种添加比例(2%,5%,10%)对皖南旱地土壤物理性质及水分特征的影响。结果显示:土壤容重随生物炭添加量的增加而减小,土壤总孔隙度、毛管孔隙度、吸湿系数、凋萎湿度、饱和持水量及田间持水量随生物炭的添加而呈增加的趋势,竹炭2%、5%和10%添加处理及稻炭与烟炭5%和10%添加处理在降低土壤容重、增加孔隙度、吸湿系数、凋萎湿度、饱和持水量和田间持水量较对照有差异显著(P0.05)。随着生物炭添加量的增加,土壤有效水分范围进一步增大,速效水与中效水含量增加,提高了土壤对作物的供水能力;同时,生物炭在一定程度上减少了水分蒸发,提高了土壤的保水保湿能力。因此,合理施用生物炭对改善土壤供水能力有着重要作用,在我国南方红壤旱地中有很强的适用性。  相似文献   

8.
针对镉砷复合污染土壤中小麦籽粒重金属积累问题,采用生物模拟方法,以镉砷复合污染区土壤为研究对象,探究杏核生物炭(C1和C2分别表示3%和6%生物炭添加量)对复合污染土壤—小麦/玉米系统中镉砷累积和转运的影响。结果表明:添加生物炭(C1、C2)显著降低了小麦季根际/非根际土壤Cd、As有效性,并且小麦籽粒中Cd、As含量分别比CK平均降低19.25%和50.70%,但前者差异不显著。对玉米而言,生物炭C1、C2处理显著降低穗中Cd和As含量,降幅分别为85.67%,61.28%和98.36%,96.48%;此外,施用生物炭显著降低了小麦—玉米体系中镉砷的转运和累积,但对小麦镉由秸秆向籽粒转运及籽粒中镉累积的影响未达显著水平。总之,添加3%生物炭可降低小麦籽粒和玉米穗中镉、砷含量,且对玉米穗中重金属镉、砷降低效果更明显,综合分析生物炭对镉、砷在复合污染石灰性土壤—小麦/玉米体系中迁移和累积的阻控效应,推荐施用3%生物炭为宜。  相似文献   

9.
为探明控释氮肥、生物炭及秸秆还田对作物产量及土壤的作用,通过玉米盆栽试验研究不同施氮量普通尿素与控释肥、添加生物炭及秸秆还田对玉米产量及土壤性质的影响。研究结果表明:控释肥和秸秆还田能够显著提高玉米产量,推荐施氮量控释肥(100%CRF)、70%推荐施氮量控释肥(70%CRF)和推荐施氮量普通尿素+秸秆还田(100%Urea+S)处理玉米产量比推荐施氮量普通尿素(100%Urea)处理分别提高46.62%,22.12%和27.24%;70%CRF比70%推荐施氮量普通尿素(70%Urea)处理产量提高36.37%;添加生物炭增产不显著,但显著提高土壤pH;控释肥及添加生物炭处理提高土壤氮素有效性;生物炭和秸秆还田提高土壤中有机碳的含量;控释肥和秸秆还田提高土壤脱氢酶、脲酶、中性磷酸酶活性,添加生物炭提高土壤脲酶活性,抑制土壤脱氢酶和中性磷酸酶活性;所有不同处理间土壤过氧化氢酶活性差异不显著。  相似文献   

10.
秸秆还田提高水稻-油菜轮作土壤固氮能力及作物产量   总被引:8,自引:7,他引:8  
为探讨西南山区水稻-油菜轮作模式下秸秆还田对作物产量和土壤氮素固持能力的影响,于2013-2015年在洱海流域稻油轮作农田中设置空白处理(CK)、单施化肥(CF)、化肥+玉米秸秆(CFMS)以及化肥+蚕豆秸秆(CFBS)4个处理,测定分析了作物产量、土壤微生物量及土壤理化性质等关键指标。结果表明,与CF处理相比,秸秆还田提高水稻、油菜产量及其地上部含氮量,增加氮素有效输出。不同处理土壤微生物量碳、氮质量分数存在差异,其大小顺序为:CFMSCFBSCFCK。与土壤碳氮比相比,土壤微生物熵和微生物量C/N对秸秆还田做出快速响应,秸秆还田提高土壤微生物熵,降低微生物量C/N。此外,秸秆还田显著降低油菜收获后的土壤硝态氮残留(P0.05),与CF相比,玉米秸秆和蚕豆秸秆还田分别使土壤硝态氮残留量减少11.6%~55.0%和13.7%~52.3%。可见,中国西南山区稻油轮作模式下秸秆还田能提高作物产量和含氮量,增强土壤微生物氮素固持能力,有效降低土壤氮素流失风险,且玉米秸秆在增产、固氮方面的作用优于蚕豆秸秆。结果可为提高西南山区水稻、油菜产量,增强土壤氮素固持能力,降低土壤氮素流失风险提供参考。  相似文献   

11.
We conducted a pot experiment using a wheat‐millet rotation to examine the effects of two successive rice‐straw biochar applications on crop growth and soil properties in acidic oxisols and alkaline cambosols from China. Biochar was incorporated into soil at rates of 0, 2.25 or 22.5 Mg/ha at the beginning of each crop season with identical applications of NPK fertilizer. In the oxisols, the largest biochar treatment enhanced soil pH and cation exchange capacity, decreased soil bulk density, improved soil P, K, Ca and Mg availability and enhanced their uptake, and increased wheat and millet yields by 157 and 150% for wheat grain and straw, respectively, and 72.6% for millet straw. In the cambosols, biochar treatment decreased soil bulk density, improved P and K availability, increased N, P and K uptake by crops and increased wheat and millet straw yields by 19.6 and 60.6%, respectively. Total soil organic carbon increased in response to successive biochar applications over the rotation. No difference in water‐soluble organic carbon was recorded between biochar‐treated and control soils. Converting straw to biochar and treating soils with successive applications may be a viable option for improving soil quality, sequestering carbon and utilizing straw resources in China.  相似文献   

12.
生物炭添加对酸化土壤中小白菜氮素利用的影响   总被引:10,自引:0,他引:10  
针对菜地土壤酸化趋势显著、氮肥利用率低下等突出问题,以小白菜为供试作物,设置了前3季连续施用化肥氮及后2季不施化肥氮的5季盆栽试验,研究生物炭添加对酸化土壤上连续多季种植小白菜的产量、氮肥利用率以及土壤供氮能力的影响。结果表明:在连续添加化肥氮的条件下,生物炭添加显著增加了小白菜的产量及氮素累积量,有效降低了土壤速效氮含量,并提高了土壤速效氮中NO3--N含量比例,缓解了土壤酸化趋势,降低了小白菜中硝酸盐含量,增加了氨基酸含量,提高了氮肥利用率;在停止施用化肥后,生物炭添加处理仍能保持较高的土壤速效氮含量,提高土壤固持氮素的有效性,促进植株对氮素的吸收利用,从而使产量维持在施氮条件下的高水平。研究表明生物炭添加对土壤氮素具有"削峰填谷"的调节功能,能够有效促进氮素的吸收转化,从而有利于维持高产。  相似文献   

13.
刘杨  刘晓宇  石春林  宣守丽  孙彬 《土壤学报》2017,54(6):1518-1526
稻麦轮作是长江中下游地区最主要的粮食生产方式,然而在该地区季风气候的背景下,小麦生长季易发生渍害胁迫,导致小麦减产甚至绝收。施用生物炭是一种有效的土壤改良方式,目前,已在长江中下游稻麦轮作区开展应用研究,但定量评估施用生物炭对长江中下游地区小麦渍害的影响研究尚未见报道。开展土柱和小区试验,研究水稻秸秆生物炭对稻麦轮作土壤和小麦生长前期的影响。结果表明,施用生物炭能显著降低稻麦轮作土壤的容重。不同深度的土壤水分动态变化也表明,施用生物炭有利于土壤水分向下迁移,可改善稻麦轮作土壤排水不畅的特点。同时,与未施用生物炭的处理相比,施用10 t hm-2生物炭能加快小麦出苗,促进小麦生长。播种后90 d的采样结果显示,施用生物炭处理下小麦株高、主根长和最后一片完全叶的叶绿素相对含量(SPAD值)均显著高于对照(p0.05)。根系特征显示,施用生物炭处理下的小麦主根长虽然显著高于对照,但2个处理间的总根长和总根面积却无显著差异。综上,施用生物炭能显著改善稻麦轮作土壤的排水条件,促进小麦前期生长,将有助于小麦在关键生育期抵御渍害胁迫。  相似文献   

14.
生物质炭作为一种多功能的土壤培肥材料被广泛应用,但其与传统有机物料的对比及配施研究还比较少。通过盆栽试验,研究了生物质炭与秸秆、发酵鸡粪单施及配施对壤质潮土和砂土养分含量、酶活性及玉米生长的影响,并采用主成分分析方法对3种有机物料的培肥效果进行综合评价。试验设6个处理,分别为不添加有机物料(CK)、添加生物质炭(BC)、小麦秸秆(WS)、发酵鸡粪(CM)、秸秆和生物质炭(WS+BC)、鸡粪和生物质炭(CM+BC)。研究结果表明,各处理均增加了砂土玉米生物量和株高,3种有机物料的提升幅度排序为:鸡粪生物质炭秸秆,鸡粪还可增加壤质潮土玉米生物量和株高。添加生物质炭和有机物料还可提高土壤有机质含量,其中生物质炭的提升幅度最大。此外,3种有机物料对土壤养分和酶活性的影响各异,单施鸡粪分别增加壤质潮土和砂土的碱解氮22.08%和26.67%,速效磷91.92%和53.65%,脲酶活性40.54%和36.94%;单施生物质炭分别增加壤质潮土和砂土速效磷83.52%和89.91%,速效钾79.38%和127.02%,过氧化氢酶活性3.41%和11.22%,却降低了土壤碱解氮含量,且与鸡粪配施后会抑制鸡粪中氮的有效性;单施秸秆分别增加壤质潮土和砂土速效钾49.48%和63.02%,β-葡糖苷酶活性51.86%和59.09%;生物质炭与鸡粪或秸秆配施可以更均衡地提升土壤肥力。通过主成分分析和相关分析发现,玉米生物量和株高与土壤氮、磷供应正变化的第2主成分(PC2)得分呈极显著正相关关系。因此,3种有机物料中,鸡粪对土壤氮、磷含量及相关酶活性影响最大;秸秆对土壤钾以及纤维素分解相关酶影响较大,而生物质炭对土壤肥力的提升作用更均衡,且土壤肥力综合得分最高。秸秆或鸡粪配施生物质炭可以更全面地提高土壤肥力。  相似文献   

15.
通过在宁夏灌淤土区长达14年的连续施钾和小麦秸秆还田试验, 研究钾素投入对作物产量、养分和土壤钾素状况的影响.结果表明:小麦秸秆还田和长期施用钾肥均可不同程度提高小麦和玉米的经济产量, 其中施钾年平均增产小麦244 kg·hm-2, 玉米397 kg·hm-2, 处理之间产量表现为氮磷钾肥配合秸秆还田>施用氮磷钾肥>氮磷肥配合秸秆还田>只施用氮磷肥.定位后8~10年施钾肥开始显著有效, 玉米显效时间早于小麦;秸秆还田和钾肥的投入均可提高籽粒和秸秆的钾素吸收量, 秸秆含钾丰富, 籽粒钾含量仅占植株钾总量的13%~17%;施用钾肥可提高作物籽粒大中微量元素含量而降低秸秆中、微量元素含量, 促进籽粒对大部分元素的吸收;长期不施钾肥处理(NP和NP+St)0~20 cm土层土壤速效钾和缓效钾含量较定位开始时下降; 所有处理土壤全钾含量均表现下降, 下降幅度为0.8~1.2 g·kg-1.  相似文献   

16.
华北平原秸秆覆盖冬小麦减产原因分析   总被引:10,自引:2,他引:8  
秸秆覆盖是减少农田棵间蒸发和提高水分利用效率的措施之一。冬小麦/夏玉米一年两作种植中, 秸秆资源非常丰富, 随着机械化作业的发展, 小麦秸秆覆盖夏玉米技术在同类地区得到成功应用和推广。但夏玉米秸秆覆盖冬小麦后对冬小麦的生长发育产生了一些不利影响, 造成了冬小麦不增产或减产, 限制了该项技术的推广。秸秆覆盖造成冬小麦穗数的降低是冬小麦产量降低的主要原因, 其次是千粒重的降低。大部分研究表明秸秆覆盖小麦地表后, 使根区土壤温度白天最高温度低于不覆盖处理, 夜间的最低温度高于不覆盖处理, 土壤温度的日较差减小。秸秆覆盖下根区温度的变化可能是引起小麦生长发育滞后和产量降低的主导因素。本文综述了华北平原秸秆覆盖冬小麦减产原因, 为实现两熟区冬小麦秸秆覆盖提供理论依据。  相似文献   

17.
为寻求半干旱地区垄沟集雨环保的沟覆盖材料,改善土壤水分和温度状况,提高降雨资源利用效率,采用完全随机设计大田试验,以玉米和高粱作为供试作物,以沟无覆盖作为对照,研究垄沟集雨不同沟覆盖方式(无覆盖、液体地膜覆盖、秸秆覆盖和生物可降解地膜覆盖)对土壤温度、土壤水分、作物产量、水分利用效率等的影响。结果表明,与沟无覆盖相比,液体地膜和生物可降解地膜覆盖种植玉米的沟中作物全生育期表层(0~25 cm)土壤温度分别提高0.2℃和1.0℃,种植高粱的沟中表层土壤温度分别提高0.2℃和1.1℃,秸秆覆盖种植玉米和高粱的沟中表层土壤温度分别降低1.1℃和1.3℃;液体地膜覆盖、秸秆覆盖和生物可降解地膜覆盖0~140 cm土壤贮水量种植玉米分别提高0.4 mm、21.5 mm和8.6 mm,种植高粱分别提高2.3 mm、21.0 mm和10.9 mm。液体地膜覆盖和生物可降解地膜覆盖玉米青贮产量分别提高增加0.4%和10.4%,玉米籽粒产量分别增加1.6%和11.3%,玉米地上生物量分别增加0.7%和7.3%;高粱青贮产量分别增加0.2%和10.9%,高粱籽粒产量分别增加1.1%和11.8%,高粱地上生物量分别增加1.6%和9.4%;秸秆覆盖的玉米青贮产量、玉米籽粒产量、玉米地上生物量、高粱青贮产量、高粱籽粒产量和高粱地上生物量分别减少2.9%、2.2%、1.9%、0.7%、1.4%和1.0%。液体地膜覆盖、秸秆覆盖和生物可降解地膜覆盖种植玉米的水分利用效率分别提高0.9 kg·hm~(-2)·mm-1、0.5 kg·hm~(-2)·mm-1和4.9 kg·hm~(-2)·mm-1,种植高粱分别提高0.3 kg·hm~(-2)·mm-1、0.4 kg·hm~(-2)·mm-1和2.7 kg·hm~(-2)·mm-1。综合分析表明,生物可降解地膜适宜作为半干旱黄土高原区垄沟集雨沟覆盖材料。  相似文献   

18.
小麦秸秆全量还田对水稻生长及稻田氧化还原物质的影响   总被引:10,自引:1,他引:9  
以粳型水稻品系2645为材料,设小麦秸秆全量还田和不还田两个处理,研究小麦秸秆全量还田对水稻生长和稻田氧化还原物质的影响。结果表明,小麦秸秆全量还田提高了水稻穗粒数和产量,分别提高6.3%~6.9%和2.4%~10.0%,但使有效分蘖期(移栽后25 d)稻田水体含氧量降低了19.2%~68.4%,土壤还原物质总量和活性还原物质含量分别提高了6.2%~14.2%和15.1%~86.5%,水溶性Fe2+含量提高9.7%~30.1%,土壤氧化还原电位(Eh)和水稻根系活力分别下降3.6%~22.4%和13.5%~21.1%,拔节期分蘖数量和叶面积指数(LAI)分别减少9.5%和1.8%~4.3%。表明小麦秸秆全量还田增加了水稻生长前期稻田水体氧消耗量,促进了土壤还原物质积累,降低了土壤Eh和水稻根系活力,对水稻前期的群体发展有一定影响,但不影响最终产量。  相似文献   

19.
种植翻压紫云英配施化肥对稻田土壤活性有机碳氮的影响   总被引:24,自引:0,他引:24  
依托长期种植紫云英定位试验,以不施肥(CK)为对照,研究化肥(100%F)、紫云英配施100%、80%、60%和40%化肥(G+100%F、G+80%F、G+60%F、G+40%F)以及紫云英(G)对土壤活性有机碳氮、水稻产量、氮肥利用率及其他土壤养分的影响。结果表明,与对照不施肥相比,单施化肥对土壤水溶性有机碳(WSOC)的影响很小,土壤水溶性有机氮(WSON)和微生物生物量碳氮(SMBC、SMBN)含量分别增加了20.61%、10.49%和2.20%;单施紫云英处理土壤WSOC、WSON、SMBC和SMBN含量分别增加了25.52%、36.30%、19.16%和10.37%;紫云英配施化肥增加了土壤WSOC、WSON、SMBC和SMBN的含量,增幅分别为12.99%~22.80%、26.66%~56.61%、19.01%~29.56%和16.08%~32.90%。施肥提高了土壤活性有机碳氮占土壤有机碳(SOC)、全氮(TN)的比例,紫云英配施化肥和单施紫云英效果优于单施化肥。土壤活性有机碳氮与水稻产量、SOC、TN和铵态氮(NH_4~+-N)呈显著或极显著正相关。施肥增加水稻产量,G+80%F最高(10026kg hm~(-2))。与100%F相比,化肥减施20%~40%水稻不减产,同时氮肥农学效率和氮肥偏生产力提高,增幅分别为11.64%~149.65%和2.66%~149.92%,土壤SOC、TN和NH_4~+-N含量增加,土壤有效磷和速效钾降低。综合考虑水稻产量、氮肥利用率和土壤肥力,紫云英翻压22500 kg hm~(-2)、磷钾肥常规用量、氮肥减施20%时最优。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号