首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A field trial was conducted to compare the serological responses in calves to eight commercial vaccines against infectious bovine rhinotracheitis virus (IBRV), parainfluenza-3 virus (PI3V), bovine respiratory syncytial virus (BRSV), and/or bovine viral diarrhea virus (BVDV). Calves given IBRV, P13V, BRSV, and BVDV vaccines had significantly higher antibodies to these viruses than unvaccinated controls; however, serological responses to killed BVDV vaccines were low. Calves with preexisting antibodies to IBRV, PI3V, BRSV, and the Singer strain of BVDV had lower seroconversion rates following vaccination than calves that were seronegative initially.

Serological responses in calves to IBRV, PI3V, BRSV, and BVDV differed among various commercial vaccines. Antibody titers to IBRV were higher in calves vaccinated with modified-live IBRV vaccines than in those vaccinated with killed IBRV vaccines. Following double vaccination with modified-live IBRV and PI3V vaccines, seroconversion rates and antibody titers to IBRV and PI3V were higher in calves vaccinated intramuscularly than in those vaccinated intranasally. Calves given Cattlemaster 4 had significantly higher titers to BRSV and PI3V, and lower titers to BVDV, than calves given Cattlemaster 3, suggesting that the addition of BRSV to Cattlemaster 4 caused some interaction among antigens.

  相似文献   

2.
3.
A combination vaccine (Bovi-Shield FP4 + L5, Pfizer Animal Health) containing modified-live virus (MLV) components against bovine herpesvirus-1 (BHV-1), bovine viral diarrhea virus BVDV), parainfluenza virus-3 (PI3), bovine respiratory syncytial virus (BRSV), and inactivated cultures of Leptospira canicola, grippotyphosa, hardjo, icterohaemorrhagiae, and pomona was evaluated for safety in pregnant beef and dairy animals. Heifers vaccinated prebreeding with the minimum immunizing dose (lowest antigen level initiating immunizing effects) of the vaccine's MLV BHV-1 or BVDV components and during pregnancy (approximately 200 days of gestation) with vaccine containing 10x doses of the same BHV-1 and BVDV components delivered live, healthy calves that were determined to be serologically negative (titer less than 1:2) for neutralizing antibodies to BHV-1 and BVDV prior to nursing. Additionally, in three field safety studies, previously vaccinated cows and heifers that received a field dose (vaccine containing antigen levels required for commercial sale of the MLV combination vaccine during either the first, second, or third trimester of pregnancy had abortion rates similar to those of pregnant cows and heifers vaccinated during the same stage of pregnancy with sterile water diluent.  相似文献   

4.
Bovine viral diarrhea virus (BVDV) persistently infected (PI) calves represent significant sources of infection to susceptible cattle. The objectives of this study were to determine if PI calves transmitted infection to vaccinated and unvaccinated calves, to determine if BVDV vaccine strains could be differentiated from the PI field strains by subtyping molecular techniques, and if there were different rates of recovery from peripheral blood leukocytes (PBL) versus serums for acutely infected calves. Calves PI with BVDV1b were placed in pens with nonvaccinated and vaccinated calves for 35 d. Peripheral blood leukocytes, serums, and nasal swabs were collected for viral isolation and serology. In addition, transmission of Bovine herpes virus 1 (BHV-1), Parainfluenza-3 virus (PI-3V), and Bovine respiratory syncytial virus (BRSV) was monitored during the 35 d observation period. Bovine viral diarrhea virus subtype 1b was transmitted to both vaccinated and nonvaccinated calves, including BVDV1b seronegative and seropositive calves, after exposure to PI calves. There was evidence of transmission by viral isolation from PBL, nasal swabs, or both, and seroconversions to BVDV1b. For the unvaccinated calves, 83.2% seroconverted to BVDV1b. The high level of transmission by PI calves is illustrated by seroconversion rates of nonvaccinated calves in individual pens: 70% to 100% seroconversion to the BVDV1b. Bovine viral diarrhea virus was isolated from 45 out of 202 calves in this study. These included BVDV1b in ranch and order buyer (OB) calves, plus BVDV strains identified as vaccinal strains that were in modified live virus (MLV) vaccines given to half the OB calves 3 d prior to the study. The BVDV1b isolates in exposed calves were detected between collection days 7 and 21 after exposure to PI calves. Bovine viral diarrhea virus was recovered more frequently from PBL than serum in acutely infected calves. Bovine viral diarrhea virus was also isolated from the lungs of 2 of 7 calves that were dying with pulmonary lesions. Two of the calves dying with pneumonic lesions in the study had been BVDV1b viremic prior to death. Bovine viral diarrhea virus 1b was isolated from both calves that received the killed or MLV vaccines. There were cytopathic (CP) strains isolated from MLV vaccinated calves during the same time frame as the BVDV1b isolations. These viruses were typed by polymerase chain reaction (PCR) and genetic sequencing, and most CP were confirmed as vaccinal origin. A BVDV2 NCP strain was found in only 1 OB calf, on multiple collections, and the calf seroconverted to BVDV2. This virus was not identical to the BVDV2 CP 296 vaccine strain. The use of subtyping is required to differentiate vaccinal strains from the field strains. This study detected 2 different vaccine strains, the BVDV1b in PI calves and infected contact calves, and a heterologous BVDV2 subtype brought in as an acutely infected calf. The MLV vaccination, with BVDV1a and BVDV2 components, administered 3 d prior to exposure to PI calves did not protect 100% against BVDV1b viremias or nasal shedding. There were other agents associated with the bovine respiratory disease signs and lesions in this study including Mannheimia haemolytica, Mycoplasma spp., PI-3V, BRSV, and BHV-1.  相似文献   

5.
Objective-To determine whether administration of 2 doses of a multivalent, modified-live virus vaccine prior to breeding of heifers would provide protection against abortion and fetal infection following exposure of pregnant heifers to cattle persistently infected (PI) with bovine viral diarrhea virus (BVDV) and cattle with acute bovine herpesvirus 1 (BHV1) infection. Design-Randomized controlled clinical trial. Animals-33 crossbred beef heifers, 3 steers, 6 bulls, and 25 calves. Procedures-20 of 22 vaccinated and 10 of 11 unvaccinated heifers became pregnant and were commingled with 3 steers PI with BVDV type 1a, 1b, or 2 for 56 days beginning 102 days after the second vaccination (administered 30 days after the first vaccination). Eighty days following removal of BVDV-PI steers, heifers were commingled with 3 bulls with acute BHV1 infection for 14 days. Results-After BVDV exposure, 1 fetus (not evaluated) was aborted by a vaccinated heifer; BVDV was detected in 0 of 19 calves from vaccinated heifers and in all 4 fetuses (aborted after BHV1 exposure) and 6 calves from unvaccinated heifers. Bovine herpesvirus 1 was not detected in any fetus or calf and associated fetal membranes in either treatment group. Vaccinated heifers had longer gestation periods and calves with greater birth weights, weaning weights, average daily gains, and market value at weaning, compared with those for calves born to unvaccinated heifers. Conclusions and Clinical Relevance-Prebreeding administration of a modified-live virus vaccine to heifers resulted in fewer abortions and BVDV-PI offspring and improved growth and increased market value of weaned calves.  相似文献   

6.
This study demonstrated that the modified-live bovine viral diarrhea virus (BVDV) type 1 and 2 fractions of a multivalent vaccine protected pregnant heifers and their fetuses against virulent BVDV types 1 and 2 challenge exposures at 370 days after vaccination. All BVDV vaccinated heifers inoculated with either BVDV type 1 or 2 at approximately 62 to 94 days of gestation delivered fetuses or calves that were negative for BVDV by ear-notch immunohistochemistry and virus isolation and serum neutralization on a prenursing serum sample. In comparison, eight of nine and 10 of 10 fetuses or calves from non-BVDV-vaccinated heifers were considered persistently infected following exposure to BVDV type 1 and type 2, respectively.  相似文献   

7.
OBJECTIVE: To examine the role of bovine viral diarrhea virus (BVDV) biotype on the establishment of fetal infection in cattle. ANIMALS: 30 mixed-breed pregnant cows. PROCEDURE: Pregnant cows were inoculated oronasally with either i-WNADL, originating from an infectious BVDV cDNA clone of the National Animal Disease Laboratory (NADL) isolate, or the parental virus stock, termed NADL-A. RESULTS: All cows developed neutralizing antibodies to BVDV, and virus was commonly isolated from peripheral blood mononuclear cells or nasal swab specimens of NADL-A inoculated cows; however, virus was rarely isolated from specimens of i-WNADL inoculated cows. i-WNADL did not cause fetal infection, whereas all fetuses harvested from NADL-A inoculated cows at 6 weeks after inoculation had evidence of infection. Immunoblot analysis of fetal virus isolates revealed the absence of NS3, confirming a noncytopathic (NCP) biotype BVDV in the NADL-A stock. The sequence of the NCP contaminant (termed NADL-1102) and the i-WNADL genome were virtually identical, with the exception of a 270 nucleotide-long insert in the i-WNADL genome. Phylogenetic analyses revealed that NADL-1102 forms a monophyletic group with 6 other NADL genomes. CONCLUSIONS AND CLINICAL RELEVANCE: These data suggest that the contaminating NCP virus in the NADL-A stock was the ancestral NADL virus, which originally infected a bovine fetus and recombined to produce a cytopathic (CP) variant. Following oronasal infection of pregnant cows, viremia and transplacental transmission of CP BVDV to the fetus is rare, compared with the high occurrence of maternal viremia and fetal infection observed with NCP BVDV.  相似文献   

8.
OBJECTIVE: To evaluate the efficacy of a commercially available killed bovine viral diarrhea virus (BVDV) vaccine to protect against fetal infection in pregnant cattle continually exposed to cattle persistently infected with the BVDV. ANIMALS: 60 crossbred beef heifers and 4 cows persistently infected with BVDV. PROCEDURES: Beef heifers were allocated to 2 groups. One group was vaccinated twice (21-day interval between the initial and booster vaccinations) with a commercially available vaccine against BVDV, and the other group served as nonvaccinated control cattle. Estrus was induced, and the heifers were bred. Pregnancy was confirmed by transrectal palpation. Four cows persistently infected with BVDV were housed with 30 pregnant heifers (15 each from the vaccinated and nonvaccinated groups) from day 52 to 150 of gestation. Fetuses were then harvested by cesarean section and tested for evidence of BVDV infection. RESULTS: 1 control heifer aborted after introduction of the persistently infected cows. Bovine viral diarrhea virus was isolated from 14 of 14 fetuses obtained via cesarean section from control heifers but from only 4 of 15 fetuses obtained via cesarean section from vaccinated heifers; these proportions differed significantly. CONCLUSIONS AND CLINICAL RELEVANCE: A commercially available multivalent vaccine containing an inactivated BVDV fraction significantly reduced the risk of fetal infection with BVDV in heifers continually exposed to cattle persistently infected with BVDV. However, not all vaccinated cattle were protected, which emphasizes the need for biosecurity measures and elimination of cattle persistently infected with BVDV in addition to vaccination within a herd.  相似文献   

9.
Thirty-three colostrum-deprived Holstein bull calves (initial BW of 131 ± 4 kg) were used to determine the effect of timing of anthelmintic administration relative to vaccination on antibody titer response to vaccine component antigens. When calves were at least 3 mo of age, they were sorted randomly into individual pens and assigned to 1 of 3 treatment groups, treatments consisted of 1) dewormed 2 wk before vaccination (DPV), 2) dewormed at the time of vaccination (DV), or 3) control, vaccinated but not dewormed (CONT). All calves were inoculated with infective larvae of brown stomach worms (Ostertagia ostertagi) and intestinal worms (Cooperia spp.) on d 1, 7, 10, 14, and 18 for a total dose of 235,710 infective larvae per calf. Calves (DPV and DV) were dewormed on d 21 or 35 with a 10% fenbendazole suspension at 5 mg/kg of BW. On d 35, all calves were vaccinated with a modified-live virus respiratory vaccine containing IBRV (infectious bovine rhinotracheitis virus), BVDV-1 (bovine viral diarrhea virus genotype 1), BVDV-2 (BVDV genotype 2), PI-3 (parainfluenza-3), and BRSV (bovine respiratory syncytial virus). During the 103-d experiment, weekly fecal egg counts, blood, and rectal temperatures were collected and health status was recorded daily. Blood samples were obtained weekly to determine serum neutralizing (SN) antibody titers to IBRV, BVDV-1, BVDV-2, and PI-3 and cytokine levels for IL-4, IL-6, TNF-α (tumor necrosis factor-α), and IFN-γ (interferon-gamma). There was a tendency (P < 0.09) for CONT calves to have greater IL-4 concentrations. By design, control calves had greater (P < 0.01) fecal egg counts during the experiment. All calves developed antibody titers to IBRV, BVDV-1, BVDV-2, and PI-3 by d 15 postvaccination. On d 88, all calves were challenged with IBRV and blood samples were obtained on d 88, 89, 90, 93, 95, 98, 99, and 103. All calves had increased rectal temperatures during the final 7 d of the IBRV challenge. However, the CONT group had greater (P < 0.01) rectal temperatures on each sampling day except d 90 compared with the DPV and DV treatments. Therefore, deworming before or at vaccination reduced parasite burden and decreased rectal temperature increase after an IBRV challenge. Deworming strategy had no effect on antibody response to vaccination or IBRV challenge.  相似文献   

10.
Production of cattle immunotolerant to bovine viral diarrhea virus.   总被引:3,自引:2,他引:1       下载免费PDF全文
Inoculation of bovine virus diarrhea virus into 58 to 125 day old fetuses of bovine virus diarrhea virus seropositive pregnant cows, or inoculation of bovine virus diarrhea virus into seronegative cows 42 to 114 days pregnant, may produce clinically normal calves which are persistently infected with the specific isolate of bovine virus diarrhea virus yet seronegative to the homologous and heterologous isolates. Reinoculation of these persistently infected cattle with their homologous isolate produced no neutralizing antibody response to bovine virus diarrhea virus. These persistently infected cattle were immunocompetent as they developed neutralizing serotiters to infectious bovine rhinotracheitis, parainfluenza-3 viruses and agglutinating serotiters to Pasteurella hemolytica .  相似文献   

11.
To determine the teratogenic potential of Aino virus (AINOV) in cattle, pregnant cows and fetal cattle were infected with a fresh isolate of AINOV. Five pregnant cows were inoculated intravenously with the virus at 122 to 162 days of gestation and allowed to give birth. All of the cows developed neutralizing antibodies to the virus, indicating that the cows had been infected with the virus; however, no clinical abnormalities were seen in their six newborn calves, and no specific antibodies to the virus were detected in the precolostral serum of calves. Five fetuses with fetal ages ranging from 132 to 156 days were inoculated in utero with the virus. One weak newborn and four stillborn calves were delivered at gestation days 256 to 263, i.e., less than the standard gestation term; they had congenital abnormalities including arthrogryposis, hydranencephaly and cerebellar hypoplasia. Antibodies specific to AINOV were detected in their precolostral serum. These results demonstrate that AINOV is a potential etiological agent of congenital malformation of cattle.  相似文献   

12.
During 1983-85, 279 calves requiring treatment for bovine respiratory disease and 290 comparison (control) animals from 15 different groups of feedlot calves were bled on arrival and again at 28 days postarrival. Their sera were then analyzed for antibodies to seven putative respiratory pathogens. On arrival, the prevalences of indirect agglutination titers to Pasteurella haemolytica, P. haemolytica cytotoxin, Mycoplasma bovis and M. dispar were greater than 50%, the prevalence of titers to bovine virus diarrhea virus (BVDV) was approximately 40%, and the prevalences of titers to infectious bovine rhinotracheitis virus (IBRV), bovine respiratory syncytial virus (RSV) and parainfluenza virus type 3 (PIV3) were all below 25%. Seroconversion during the first month after arrival occurred in more than half the calves to P. haemolytica cytotoxin, PIV3 and RSV. Seroconversion of agglutination titers to P. haemolytica, Mycoplasma and BVDV occurred in about 40% of calves, and seroconversion to IBRV was infrequent (less than 5%). Initial titers were negatively correlated to subsequent titer changes within organism. Initial titers, and titer changes between organisms were essentially independent. Light calves had an increased risk of being selected for treatment for respiratory disease. Seroconversion to P. haemolytica cytotoxin, RSV and BVDV were predictive of respiratory disease cases, explaining approximately 69% of all respiratory disease cases in the feedlots. It was not possible to accurately predict weight gain or relapse from the serological data.  相似文献   

13.
OBJECTIVE: To compare antibody responses, feedlot morbidity and mortality rates, feedlot performance, and carcass value for calves vaccinated with 1 of 2 vaccination strategies and for unvaccinated control calves. DESIGN: Randomized controlled clinical trial. ANIMALS: 451 beef steers and heifers. PROCEDURES: Calves were vaccinated with a modified-live infectious bovine rhinotracheitis virus (IBRV), bovine viral diarrhea virus types 1 (BVDV1) and 2 (BVDV2), parainfluenza type 3 virus, and bovine respiratory syncytial virus vaccine and Mannheimia haemolytica and Pasteurella multocida bacterin-toxoid at approximately 67 and 190 days of age (group 1; n = 151) or at approximately 167 and 190 days of age (group 2; 150) or were not vaccinated (control; 150). Serum antibody titers were measured at approximately 2, 67, 167, 190, and 232 days of age. Morbidity and mortality rates, feedlot performance, and carcass value were recorded for 361 calves shipped to feedlots. RESULTS: Percentages of calves seroconverting to IBRV, BVDV1, and BVDV2 were significantly higher for groups 1 and 2 than for the control group. Mean treatment costs were significantly lower for vaccinated than for control calves, and mean mortality rate was significantly higher for control calves than for group 1 calves. Feedlot performance and carcass value did not vary significantly among groups. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggested that vaccination of beef calves with a 5-antigen modified-live virus vaccine at 67 and 190 days of age was as effective in terms of immunologic responses as was vaccination at 167 and 190 days of age.  相似文献   

14.
OBJECTIVE: To determine the comparative virulence of 5 isolates of bovine viral diarrhea virus (BVDV) type II by inoculating 6- to 9-month-old beef calves with isolates originating from the tissues of cattle affected with naturally occurring, transient, acute, nonfatal infections or naturally occurring, peracute, fatal infections. ANIMALS: 22 calves that were 6 to 9 months old. PROCEDURE: The study used BVDV isolates 17011, 713, and 5521 that originated from fetuses aborted from cows with transient, nonfatal, acute BVDV infections and isolates 23025 and 17583 that originated from the tissues of cattle with peracute, fatal BVDV infections. Calves were allotted to 6 groups (1, mock-infected control calves [n = 2]; 2, inoculated with BVDV 17011 [4]; 3, inoculated with BVDV 713 [4]; 4, inoculated with BVDV 5521 [4]; 5, inoculated with BVDV 23025 [4]; and 6, inoculated with BVDV 17583 [41]. Rectal temperatures and clinical signs of disease were recorded daily. Total and differential WBC and platelet counts were performed. Histologic examination and immunohistochemical analysis were conducted to detect lesions and distribution of viral antigens, respectively. RESULTS: Calves inoculated with BVDV 23025 or 17583 developed more severe clinical signs of disease (fever and diarrhea), more severe lymphopenia, and more severe lesions (alimentary epithelial necrosis, lymphoid depletion, and BVDV antigen deposition in lymphatic tissues), compared with calves inoculated with BVDV 713, 5521, or 17011. CONCLUSIONS AND CLINICAL RELEVANCE: Relative severity of experimentally induced infections corresponded to severity of clinical signs of naturally occurring infections with respective BVDV isolates.  相似文献   

15.
Viral DNA was extracted from each of 14 modified-live (ML) bovine herpesvirus 1 vaccines, representing all of the ML infectious bovine rhinotracheitis virus (IBRV) vaccines licensed by the US Department of Agriculture for use in cattle. Restriction endonucleases Pst I and Bgl II were used to establish restriction enzyme patterns for the vaccinal viruses. Viral DNA from isolates obtained from 6 field samples of IBRV (1 from Colorado, 1 from West Virginia, 3 from Wisconsin, 1 from South Dakota) were digested with restriction endonucleases, and patterns were compared to evaluate the role of vaccinal virus in these field epizootics of infectious bovine rhinotracheitis. Animals from which field samples were obtained had been vaccinated with ML IBRV vaccine before the epizootic of infectious bovine rhinotracheitis occurred in the herds. In 2 of the 6 field samples, DNA restriction endonuclease analyses patterns from the isolates were indistinguishable from the pattern for the vaccinal viruses used. In the remaining 4 field samples, DNA restriction endonuclease analyses patterns of the IBRV from isolates were different from those of the vaccinal viruses.  相似文献   

16.
Neutralising serum antibodies against bovine virus diarrhoea virus (BVDV) were monitored for three years in 35 cattle that were infected with the virus as calves; 24 of the calves were inoculated intramuscularly or intranasally, and 11 contracted the infection naturally. All the experimentally infected calves seroconverted within 14 to 28 days after inoculation, and all the animals still had high serum levels of antibodies to BVDV three years after infection. Determinations of antibody levels in milk and blood samples excluded the possibility that the calves had been reinfected with BVDV during the study.  相似文献   

17.
The genetic and antigenic diversity observed in field isolates of bovine viral diarrhoea virus (BVDV) is thought to occur during acute infection because of the genetic stability observed in BVDV throughout the lifetime of persistently infected (PI) cattle. In this study, 15 cows in early pregnancy were inoculated with identical challenge doses obtained from a single infectious inoculum of the virologically cloned isolate Pe515nc. In order to examine the diversity that may develop in utero in the PI foetus, the variable E2 sequence of the virus isolated directly from the serum of each PI calf was compared. A high degree of sequence similarity was demonstrated, with 0-4 nucleotide differences out of 608 bases compared. Thus, the virus showed relatively few genomic changes in any of the PI calves, although we observed that the in utero environment did provide some opportunity for genetic variation to become established.  相似文献   

18.
An epizootic characterized by birth of calves severly ataxic and blind were encountered in 3 herds 7–8 months after outbreaks of bovine virus diarrhoea. Serological and virological investigations indicated introduction of bovine viral diarrhoea virus (BVDV) into previously virus-free herds, followed by transplacental virus infection of the fetuses of cows in the first trimester. Clinical, pathological, serological, and microbiological examinations were performed on 10 calves. Pathological findings included microcephaly and cerebellar hypoplasia, ocular malformations, and thymic hypoplasia. BVDV was isolated from tissue and blood of 7 calves, and 4 calves, 1 of which had not received colostrum, had virus-specific neutralizing antibodies.This is the first report on natural occurrence of congenital bovine infection with BVDV among Danish cattle herds resulting in abortion and birth of calves with severe debilitating congenital anomalies. It draws attention to the importance of this virus for bovines of all age groups.  相似文献   

19.
Calves not vaccinated with infectious bovine rhinotracheitis virus (IBRV) became latently infected when challenge exposed and treated with dexamethasone (DM). Calves that shed IBRV after DM treatment were considered to be latently infected. Vaccination with a temperature-sensitive intranasal vaccine or with formalinized IBRV in Freund's complete adjuvant (IBRV-FCA) protected some, but not all, calves against latent infection--indicating a role for the immune response in preventing latent infection. That all latently infected calves were not detected after DM treatment was indicated by the fact that after a 2nd DM treatment of 3 calves treated 6 months previously and not found to shed virus, 1 of the calves was latently infected. Latently infected calves were inoculated with successive doses of IBRV-FCA and treated with DM. Nonvaccinated calves shed virus, whereas vaccinated calves similarly treated did not shed virus. Because both groups had a comparable cell-mediated immune response, as determined by blastogenic response to IBRV, but the vaccinated group had significantly higher virus-neutralizing antibody titers, a role for humoral antibody in preventing viral shedding was indicated.  相似文献   

20.
本试验使用3~6月龄健康易感牛9头(牛传染性鼻气管炎病毒(IBRV)和牛病毒性腹泻病毒(BVDV)抗原、抗体均阴性),共分3组,每组3头犊牛。第1组首免肌肉注射IBRV-LNM弱毒疫苗株种毒,接种1周后,每头牛接种BVDV-SM弱毒疫苗株;第2组只接种BVDV-SM弱毒疫苗株种毒,接种时间同第1组;第3组为对照组,接种MDBK细胞培养液。接种BVDV-SM疫苗毒后每周采血至疫苗毒接种后28 d,测定接种后BVDV抗体效价,并采用BVDV-JL检验用强毒进行攻毒试验。结果表明,第1组与第2组试验动物血清中牛病毒性腹泻病毒抗体水平无明显差异,能够抵抗BVDV-JL强毒攻击达到免疫保护的效果,说明牛传染性鼻气管炎病毒IBRV-LNM弱毒疫苗株接种后在牛体内对牛病毒性腹泻病毒BVDV-SM疫苗毒不产生免疫干扰作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号