首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 390 毫秒
1.
地下滴灌灌水器水力要素试验研究   总被引:2,自引:4,他引:2  
为了研究灌水器流量变化规律,该文以灌水器工作压力、土壤容重和土壤初始含水率为试验因素,用混合水平均匀设计安排试验方案。应用研制的地下滴灌灌水器流量测试系统,用称重法来获得不同试验方案灌水器流量。根据试验数据,建立了地下滴灌灌水器流量计算经验公式。分析表明:在工作压力不变时,灌水器流量在灌水初期略大,而后减小并趋于恒定,这个变化过程仅1~2 min左右,可认为灌水器流量是不变的;在同一压力下,地下滴灌灌水器流量比地表滴灌减小5%~20%,压力越大,二者值越接近;影响地下滴灌灌水器流量的主要因素是灌水器工作压力,而土壤容重和土壤初始含水率对灌水器流量影响较小。  相似文献   

2.
层状土壤质地对地下滴灌水氮分布的影响   总被引:12,自引:4,他引:8  
以均质砂土(S)、均质壤土(L)和上砂下壤层状土壤(SL)为对象,采用室内土箱试验,研究了土壤质地及其层状结构和地下滴灌灌水器流量对水分、硝态氮和铵态氮分布的影响。结果表明,SL层状土壤中,砂-壤界面增加了水分的横向扩散而限制了水分的垂向运动,致使界面下部形成水分和硝态氮积聚区。土壤硝态氮分布还受肥料溶液浓度和土壤初始硝态氮浓度影响,对试验采用的土壤初始硝态氮浓度较低而肥料溶液硝态氮浓度较高的情况而言,灌水器周围的硝态氮浓度与肥料溶液的硝态氮浓度相近,随着离开灌水器距离的增加,土壤硝态氮浓度减小。灌水器周围的土壤含水率和硝态氮浓度随灌水器流量的增大而增大。施肥灌溉使灌水器周围5~10 cm范围内的铵态氮浓度出现峰值,而土壤质地和灌水器流量对铵态氮浓度分布没有明显影响。因此地下滴灌水氮管理措施的制定应综合考虑土壤质地及其结构、初始土壤水氮状况、灌水器埋深及流量、灌水量、肥液浓度等因素。  相似文献   

3.
地下滴灌灌水器水力性能试验研究   总被引:13,自引:12,他引:13       下载免费PDF全文
地下滴灌与地表滴灌的最大差异在于地下滴灌的灌水器出水口被土壤包围,其出流受到土壤的限制。在室内将灌水器埋入土槽中,模拟研究了灌水器类型、自由出流时的流量、工作压力、土壤初始含水率等因素,对地下滴灌条件下灌水器水力性能的影响。试验结果表明:灌水器埋入土壤后,流量是其自由出流时流量的1/2~1/4。方差分析表明,影响地下滴灌灌水器水力性能的主要因素是自由出流时的水力特性和土壤特性。针对测试土壤,建立了地下滴灌灌水器流量计算的修正关系式。  相似文献   

4.
开沟播种是一种可显著提高地下滴灌春玉米出苗率的新型播种方式,为了优化该技术模式,该文通过两年田间试验分析了地下滴灌玉米出苗率与灌水后种子处土壤有效饱和度(effective saturation)的关系,并基于HYDRUS-2D构建了地下滴灌开沟播种土壤水分运动模型,以90%玉米出苗率为前提,研究了不同土质和土壤初始含水率条件下3个技术参数——开沟深度、滴灌带埋深和灌水量对种子处土壤有效饱和度的影响.结果表明:1)出苗率随土壤有效饱和度线性递增,土壤有效饱和度不小于0.77时,出苗率超过90%;2)地下滴灌开沟播种HYDRUS-2D模型模拟精度较高,模拟得到的土壤有效饱和度随开沟深度增大而增大,随滴灌带埋深增大而减小;3)满足土壤有效饱和度为0.77所需的出苗水灌水量随土壤黏粒含量、土壤初始含水率和开沟深度增大而减小,随滴灌带埋深增大而增大.当表层土壤初始含水率为40%田持~60%田持时,开沟深度每增加5cm,砂壤土的出苗水灌水量减小15~20mm,粉壤和粉黏土的出苗水灌水量减小6~18mm;滴灌带埋深由30cm增大到35cm时,砂壤土的出苗水灌水量增大16~21mm,粉壤和粉黏土的出苗水灌水量增大4~14mm.不同埋深和开沟深度下,当表层土壤初始含水率由40%田持增大到60%田持时,砂壤土的出苗水灌水量减小9~14mm,粉壤和粉黏土的出苗水灌水量减小9~19mm;4)综合考虑土壤质地、玉米根系分布、机械作业、耗能、耕作深度和土壤水深层渗漏以及土壤初始含水率,玉米地下滴灌适宜的滴灌带埋深为30~35cm,开沟深度为10~15cm,灌水量范围为25~67mm.农业生产者可以根据当地实际情况对以上3个技术参数进行合理配置.  相似文献   

5.
不同根部微灌水器对云南红壤和黄沙土水分分布的影响   总被引:1,自引:3,他引:1  
探索根部微灌水器类型对土壤水分分布的影响和作用规律,是提高根部微灌水效率的有效途径。该文研究了根部微灌水器类型对土壤水分分布的影响。试验采用2种灌溉方式(地上滴灌和根部微灌)、2种灌水器(流量可调式灌水器和内镶贴片式滴灌带),测定各处理在3种灌水时长(5、15和30 min),在2种土壤(云南红壤土和黄沙土)时的土壤水分含量。结果表明:1)灌水器种类与土壤类型、灌水器种类与灌水时长对土壤水分有极显著的交互作用(P0.01),但三者之间没有显著交互作用(P0.05);2)流量可调式灌水器四周配有8个水平出水孔,其灌溉水在2种土壤中向四周渗出的水平宽度都较宽(25 cm左右),而内镶贴片式滴灌带只有1个向下单孔,灌溉水向四周渗出的水平宽度均较窄(16 cm左右);3)在红壤土中,根部微灌内镶贴片式滴灌带的高含水率区域更接近于作物根部区域,而地上滴灌的高含水率区域基本上集中在花盆土壤的上部区域;4)在红壤土中,基质势对灌溉水的运移起主要作用,而在黄沙土中重力势起主要作用;5)在红壤土中,灌水时间越短,土壤面积百分比为70%时对应的区域越集中在较窄的和较低的土壤含水率区段,且各区段是连续的,灌水30 min时,它所对应的土壤含水率区段最宽,土壤水分分布均匀性也最高;在黄沙土中,随着灌水时间的增加,土壤面积百分比为70%时所对应的土壤含水率区段范围大,且黄沙土所对应的分布区段大于红壤土,表明红壤土水分分布不均,而黄沙土水分分布较均匀。该文为提高根部微灌系统使用效率提供理论依据。  相似文献   

6.
土壤层状质地对小流量地下滴灌灌水器特性的影响   总被引:1,自引:4,他引:1  
以均质壤土(L)、均质砂土(S)、上砂下壤(SL)和壤土中有砂土夹层(LSL)4种土壤质地结构为对象,利用室内土箱试验,研究了土壤质地及其层状结构对灌水器流量的影响,估算了灌水器出口正压值。试验选用10 m水头压力下额定流量为1.1 L/h的地下滴灌专用灌水器。土壤为层状结构时,上层土壤厚度为20 cm,砂土夹层的厚度为10 cm。L、S、SL试验的灌水器埋深为15 cm;为了探讨灌水器埋深与土壤质地变化相对位置对灌水器性能的影响,LSL的灌水器埋深设计为15、25和35 cm。试验采用的工作压力为2、3、6和10 m水头。结果表明:灌水开始后,出口正压的迅速增大致使灌水器流量迅速减少,而后逐渐趋于稳定。灌水器流量随时间的变化可近似用幂函数表示。灌水器在土壤中的流量比在空气中的自由出流流量有所减小,灌水器自由出流流量越小,减小幅度越大。土壤层状质地对灌水器流量影响明显,一定压力下,灌水器在层状土壤中的流量小于在均质土壤中的流量,尤其当灌水器位于LSL的砂土夹层中时,流量比在均质壤土中减少13%,比自由出流流量减少20%。利用试验结果建立了地下滴灌灌水器流量与土壤饱和导水率、层状土壤结构、灌水器工作压力的经验关系,对各影响因子的敏感性分析结果表明,对地下滴灌灌水器流量影响最明显的是灌水器工作压力,其次是层状土壤结构,饱和导水率的影响较小。  相似文献   

7.
土壤物理特性对地下滴灌毛管灌水质量的影响   总被引:1,自引:1,他引:0  
压力水头偏差率和滴头流量偏差率是评价微灌灌水质量的重要指标。该文建立了地下滴灌毛管水力计算数学模型,利用该模型,分析了土壤物理特性对地下滴灌毛管水力特性分布规律和灌水质量的影响。结果表明,由于土壤物理特性对地下滴灌毛管滴头流量的制约作用,致使地下滴灌毛管压力水头与滴头流量偏差率比地表滴灌的要小;土壤物理特性对毛管灌水质量指标的影响不显著,但土质较重、土壤体积质量和初始含水率较大时,毛管压力水头与滴头流量偏差率较小,灌水质量较好。说明地下滴灌毛管灌水质量优于地表滴灌,土壤物理特性有利于毛管灌水质量的提高。计算与分析结果可为进一步研究地下滴灌田间管网水力特性及地下滴灌技术应用提供参考。  相似文献   

8.
滴灌湿润体交汇情况下土壤水分运移特征的研究   总被引:5,自引:2,他引:5  
以室内试验为基础,测定了重壤土、中壤土、砂壤土在不同滴头流量、不同灌水量下的滴灌交汇土壤水分入渗运动过程。研究结果显示了滴头流量、灌水量和土壤质地对交汇入渗湿润体形状的影响规律。滴灌入渗交汇界面的湿润锋水平和垂直距离与入渗时间之间符合良好的线性关系,湿润锋水平和垂直速度随着交汇时间的延长而增大。随着距滴头距离的增加,滴灌交汇入渗湿润体内的土壤含水率降低,湿润锋交汇界面处的土壤含水率一般均大于同等土壤深度的含水率。研究结果对滴灌系统设计理论具有一定的指导作用。  相似文献   

9.
设计流量和土壤质地对微孔陶瓷灌水器入渗特性的影响   总被引:1,自引:1,他引:0  
为探明微孔陶瓷灌水器土壤中入渗流量变化的原因,明确微孔陶瓷灌水器的出流原理,该研究基于土桶模拟试验,研究3种设计流量(0.72、1.87和4.40 L/h)的微孔陶瓷灌水器下2种土壤(黄绵土、塿土)的渗流特性。结果表明,使用不同灌水器灌溉后,短时间内入渗流量均迅速减小,而后缓慢减小趋于稳定。设计流量与土壤质地均影响灌水器的出流。灌水器周围土壤水势的变化是造成入渗流量变化的直接原因,土壤含水率的变化是入渗流量变化的根本原因。在没有淹没出流的情况下,土壤含水率越高,入渗流量越小。设计流量为1.87 L/h灌水器应用于塿土中,当土壤含水率由13%增大至40%时,入渗流量由1.4 L/h下降至0.3 L/h左右。灌水器周围土壤含水率对入渗流量具有反馈调节作用。采用微孔陶瓷灌水器作为灌溉系统的核心部件,在内部水头适宜(微压或零压)的情况下,通过灌水器入渗流量与土壤含水率的耦合作用,可实现土壤水分的自动调控,达到主动灌溉的目的。该文可为微孔陶瓷灌水器的推广应用提供参考。  相似文献   

10.
地下滴灌影响要素及其敏感性分析   总被引:1,自引:0,他引:1  
地下滴灌是一项具有广阔应用前景的高效节水灌溉技术之一。为分析不同影响因素对地下滴灌滴头流量的影响机制,以PLASSIM滴头、和平滴头2种滴头为研究对象,利用有机玻璃桶(直径40cm,高40cm)内埋设滴头(表层20cm下)系统分析了滴头工作压力(60,100,150,200,250,300,370kPa)、土壤初始含水量(12%,18%)及土壤容重(1.25,1.40g/cm~3)对地下滴灌滴头流量的影响及其敏感性。结果表明:工作压力是地下滴灌滴头流量的主要影响因素,且随工作压力增大,滴头流量增大;土壤初始含水率和容重对供试的滴头流量均起制约作用,其中对轻砂土的制约作用更为明显;土壤质地对各影响因素的敏感性存在差异,其中轻砂土最敏感,粉壤土居中,轻粘土最弱。PLASSIM滴头、和平滴头的敏感性指标均随工作压力、土壤初始含水率、容重的增加而降低。通过系统分析多种土壤物理特性对地下滴灌滴头流量的影响及其敏感性分析,将为设计经济、高效而又节水的地下滴灌系统,制定合理的地下滴灌制度提供理论依据。  相似文献   

11.
基于非饱和土壤水动力学理论,建立了重力式地下滴灌条件下土壤水分运动轴对称三维数值模拟模型,利用Galerkin有限元法进行了数值模拟。通过试验对比验证,表明所建模型可以用于分析地下滴灌土壤水分人渗规律,具有较高的精度。对不同灌水技术要素条件下的地下滴灌湿润特征及入渗规律进行了数值模拟。结果表明,在相同灌水量下,供水压力与滴孔孔径对湿润圈影响微弱,重力式地下滴灌管道设计时可以不考虑其影响,但它对滴孔出流量影响较大,而其它因素对滴孔出流量的影响微弱。因此在地下滴灌管道设计时,只需根据田块长度和渗水管损失设计孔径和供水压力,并可选择较小的供水压力;在相同灌水量情况下,管道埋深对湿润圈具有较明显的影响,应按田间实际进行合理选择,这些结论可为地下滴灌合理的设计及运行提供理论依据。  相似文献   

12.
为了探究涌泉根灌水肥一体化灌溉在不同土壤初始含水率下水氮运移特性,通过室内肥液入渗试验,研究了不同土壤初始含水率(4.13%,7.21%,8.77%,11.06%,14.01%)条件下入渗特性、湿润锋运移、土壤水分以及铵态氮和硝态氮的运移特性,建立了涌泉根灌累积入渗量、各向湿润锋运移距离与不同土壤初始含水率之间的关系,提出了不同初始含水率下涌泉根灌累积入渗量、各向湿润锋运移距离的经验模型。结果表明:累积入渗量、各向湿润锋运移距离以及湿润体内水分和氮素的分布、转化等均不同程度地受到土壤初始含水率的影响。同一时刻条件下,累积入渗量随着土壤初始含水率的增大而减小,而湿润锋运移距离却呈现出增大的趋势;土壤初始含水率越大,湿润体体积越大,湿润体内水分、铵态氮和硝态氮的分布范围越广泛;距离灌水器出水孔越近,土壤中的铵态氮和硝态氮含量越高。入渗系数K随着土壤初始含水率的增大而减小,入渗指数α随着土壤初始含水率的增大而增大;水平湿润锋拟合参数a、b均随土壤初始含水率的增大而增大,竖直向下湿润锋运移指数c随着土壤初始含水率的增大而增大,入渗指数d随着土壤初始含水率的增大而减小。随着土壤水分再分布的持续进行,湿润体内水分分布越加均匀,采用克里斯琴森均匀系数Cu评价灌水结束、再分布1,3天条件下湿润体内水分分布均匀度依次为61.99%,74.27%和83.60%;湿润体内铵态氮含量逐渐减小,但铵态氮的分布区域基本无变化;湿润体内硝态氮分布区域变大,平均值呈增大,最值区域有下移趋势。研究成果为进一步研究涌泉根灌水氮高效利用技术奠定了基础。  相似文献   

13.
涌泉根灌不同浓度肥液入渗特性及土壤湿润体模型研究   总被引:6,自引:2,他引:4  
为了研究涌泉根灌肥液入渗特性及湿润体水氮运移的变化规律,在陕北米脂山地微灌枣树示范基地原状土上进行了涌泉根灌肥液入渗试验。结果表明:累积入渗量与入渗时间之间符合Kostiakov幂函数关系(R20.9,P0.01);涌泉根灌入渗能力与增渗效果均随肥液浓度增大而增大;水平湿润锋与竖直湿润锋运移距离均随肥液浓度增大而增大,且均与入渗时间呈显著的幂函数关系,水平方向和竖直方向的湿润锋运移距离的拟合值与实测值的相对误差在–3.84%~5.20%以内。肥液浓度的不同对于湿润体大小略有影响。提出了涌泉根灌肥液入渗湿润体内土壤含水率和NH_4~+-N浓度分布的数学模型,即在一定浓度范围内,单位含水率的变化可引起的肥液浓度变化,且模型的计算精度较高(模拟值与实测值相对误差在10%以内),并符合湿润体内土壤含水率和NH_4~+-N分布规律,可对不同位置处土壤含水率及NH_4~+-N含量进行估算。水分分布情况对肥液浓度条件敏感性较低,NH_4~+-N分布情况对肥液浓度条件敏感性较高。研究可为涌泉根灌水肥高效利用提供参考。  相似文献   

14.
为探究竖管地表滴灌和普通地表滴灌土壤水分运动规律及区别,在室外同步进行2种滴灌模式下风沙土入渗和蒸发试验,对比分析了土壤水分分布、蒸发规律和土壤湿润锋运移特性。结果表明:(1)灌水量为2 L,2种滴灌模式下,随着滴头流量的增大,湿润体体积和灌水均匀度逐渐减小,湿润体含水率平均值逐渐增大,当滴头流量一定,竖管地表滴灌的湿润体体积大于普通地表滴灌,而灌水均匀系数小于普通地表滴灌;(2)不同滴头流量处理(0.3,0.4,0.6 L/h)蒸发7天结束后,普通地表滴灌土壤蒸发量分别占灌水量的32.5%,35.0%和40.0%,而竖管地表滴灌土壤蒸发量仅占灌水量的22.5%,说明竖管地表滴灌对土壤蒸发有明显的抑制作用;(3)相同灌水量(2 L)时,普通地表滴灌水平和垂直湿润锋运移距离均随滴头流量的增大而略有减小,竖管地表滴灌垂直向下湿润锋运移规律与普通地表滴灌相同,而水平和垂直向上方向运移规律相反;随着时间的延长,普通地表滴灌与竖管地表滴灌水平和垂直方向湿润锋比值均呈不断减小趋势,最后趋于稳定;(4)构建了包括滴头流量和灌水时间在内的普通地表滴灌湿润锋运移距离经验公式,验证所建经验公式的可靠性,均方根误差介于0.24~0.27 cm,纳什效率系数均大于0.985。研究结果可为竖管地表滴灌技术应用提供理论参考。  相似文献   

15.
晋南半干旱地区果树渗灌补水效应研究   总被引:11,自引:3,他引:11       下载免费PDF全文
为了提高旱地果园水分利用效率,研究了渗灌和渗水管道埋深对旱地土壤含水率和苹果树生长发育的影响。在需水关键期渗水300 m3/hm2,垂直下渗深度为130 cm,水平渗幅可达160 cm,其中20~80 cm土层含水率比对照高6.0~7.3个百分点。渗水管道埋深不同,水分在土壤中的分配模式不同,在30~40 cm较合适。渗灌能明显促进果树生长发育,提高苹果产量和果品品质,而且比漫灌省水。渗灌比未渗对照增产45.7%~99.1%,漫灌比对照增产26.6%~101.6%。渗灌效应优于漫灌。  相似文献   

16.
竖管地下灌溉粉质壤土入渗湿润体的试验研究   总被引:1,自引:0,他引:1  
竖管灌水器是一种在低压(0.6~2.0 m)状况下对作物进行根部地下灌溉的新型灌水技术的核心部件。为了研究该灌水器在不同影响因素不同组合情况下湿润体特征参数值的变化,为竖管灌水器的进一步研究提供借鉴。试验采用正交试验设计安排了9组试验对压力水头、土壤初始含水率、竖管灌水器的竖管直径和土壤容重(每个因素取3个水平)4个因素进行了室内试验研究。入渗试验7 h之后获得的结果表明:湿润体的湿润半径大小排序为YXY,湿润体的含水率分布在水平方向呈现为圆形扩散,而竖直方向呈现为椭圆形扩散,表明重力对水分入渗有一定的影响。竖管地下灌溉湿润体平均含水率变化范围为7.5%~33.3%,能够更好地满足不同作物的需水要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号