首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
A field survey and a laboratory experiment were conducted to examine ontogenetic shifts in habitat and diet of the turban snail Turbo cornutus. The main habitat of turban snail juveniles smaller than 10 mm shell height (SH) was turfs of articulated coralline algae, and that of adults larger than 50 mm SH was kelp beds of Ecklonia bicyclis and Ecklonia cava. However, the ontogenetic habitat shift during the juvenile stage of 20–50 mm SH was unclear. From the results of a long-term feeding experiment and stable isotope analysis, the gelidiacean alga Gelidium elegans was assumed to be more important as a food source for juvenile turban snail than E. cava in the field. However, the frequency of individuals inhabiting gelidiacean algal turfs was low in both juvenile and adult stages. Thus, the ontogenetic shifts in habitat and diet did not coincide and other factors, i.e., daytime refuge, are important. As the growth rate was higher in the juveniles fed on the two algal species than those fed on single algal species, co-occurrence of various algal habitats in rocky shore ecosystems as a coastal ecosystem complex may enhance growth of turban snail juveniles feeding on a combination of different algal species.  相似文献   

2.
Ecological literature on abalone Haliotis discus hannai populations is reviewed to identify processes and factors driving ontogenetic shifts in habitat. Abalone recruitment is related to the algal community type, with abalone shifting with growth from deeper crustose coralline algal (CCA) habitats to shallower kelp bed habitats via algal turfs. Timing of the habitat shifts is linked to ontogenetic changes in diet, from benthic diatoms to a diet dominated by macroalgae. Susceptibility to predation appears to change, concomitant with the shift from cryptic microhabitats during early-life stages to more exposed habitats during latter-life stages. Interstitial spaces between cobbles and boulders in the CCA habitat are considered to be important for reducing predation risk. The loss of CCA nursery habitat through sedimentation and macroalgal overgrowth likely negatively affects abalone recruitment. Preservation of diverse algal communities, including suitable habitats for the different abalone growth stages, is critical for successful abalone recruitment.  相似文献   

3.
The effect of a short-term feeding and starvation experiment on juvenile abalone (Haliotis rubra × H. laevigata) was investigated (average length = 67 mm; average weight = 48 g). All aquaculture experiments were conducted at The University of Melbourne, Australia. Artificial feed was supplied ad libitum to the fed group, and no feed was supplied to the starved group. A modified metabolite extraction protocol using deuterated solvents was developed for 1H-NMR-based metabolite profiling of digestive gland in response to the short-term feeding/starvation experiment, to avoid lyophilisation prior to biochemical analysis. PLS-DA revealed that fed and starved abalone are metabolically distinct from each other after 28 and 56 days. After 28 days, the fed group was defined by an increase in arginine, glucose, glutamate, glycine, inosine and uracil (P < 0.05), and the starved group was defined by an increase in N,N-dimethylglycine. After 56 days, the fed group still displayed increased glucose (P < 0.05), while N,N-dimethylglycine remained elevated in the starved group (P < 0.05). Arginine and glycogen were all higher at 28 days compared to 56 days, suggesting decreased anaerobic energy production at the later time point. Only glucose and N,N-dimethylglycine were significantly different between the fed and starved groups after 56 days, suggesting that abalone had not acclimatised to the starvation treatment after 28 days. These results infer N,N-dimethylglycine is a robust marker for short-term starvation in abalone. 1H-NMR was also conducted on the artificial feed and starved abalone faecal matter, revealing the biochemical differences between them and digestive gland tissue. These methodology and results will facilitate a deeper understanding of the nutritional and physiological requirements of abalone in an aquaculture setting.  相似文献   

4.
Fairy shrimp is known as a nutritional food for fish and crustaceans in aquaculture. In most hatcheries, the microalga Chlorella sp. appears to be the most common, suitable, and nutritious food to feed fairy shrimp. In this study, we attempted to determine other alternative algal diets for cultivation of fairy shrimp Branchinella thailandensis. Seven experimental diets including three treatments of dried Spirulina sp. at 0.75 (S1), 1.5 (S2), and 3.0 mg dry weight individual?1 (S3); three treatments of Chlorococcum humicola at 5 × 105 (Ch1), 1 × 106 (Ch2), and 2 × 106 cells mL?1 (Ch3); and a control diet (Chlorella vulgaris at 1 × 106 cells mL?1) were fed to 5-day-old shrimp for 15 days. Evaluation of growth performance, egg production, survival percentage, and nutritional and carotenoid content of the experimental fairy shrimp revealed that Ch3 is the most suitable algal diet. Our results suggest that C. humicola is the best alternative food source for the cultivation of B. thailandensis. In addition, dried Spirulina powder is also a good choice when live algae are not available and can be used as an alternative feed in fairy shrimp cultures.  相似文献   

5.
The effects of using thraustochytrid Schizochytrium sp. as source of lipid and fatty acids in a formulated diet on growth, survival, body composition, and salinity tolerance of juvenile donkey’s ear abalone, Haliotis asinina, were investigated. Treatments consisted of diets either containing a 1:1 ratio of cod liver oil (CLO) and soybean oil (SBO) (Diet 1) or thraustochytrid (Diet 2) as source of lipid and fatty acids at 2 % level. Natural diet Gracilariopsis heteroclada (Diet 3) served as the control. No significant difference in growth was observed in abalone fed Diet 3 (SGR: 5.3 % BW day?1; DISL: 265 μm day?1) and Diet 2 (SGR: 5.2 % BW day?1; DISL: 255 μm day?1). Survival ranged from 78 to 85 % for all treatments and was not significantly different from each other. A 96-h salinity stress test showed highest survival of 84 % in abalone fed Diet 2 compared with those fed diets 1 and 3 (42 %). The high growth rate of abalone fed Diet 2 and high tolerance to low salinity could be attributed to its high DHA content (8.9 %), which resulted to its high DHA/EPA ratio of 10.5 %. These fatty acids play a significant role in abalone nutrition. The fatty acid profile of abalone meat is a reflective of the fatty acid profile of the oil sources in the diet. The present study suggests that the use of Schizochytrium oil in lieu of CLO and SBO can support good growth of abalone which is comparable with abalone fed the natural seaweeds diet.  相似文献   

6.
This study examined the effects of two probiotics (Virgibacillus proomii and Bacillus mojavensis) on the digestive enzyme activity, survival and growth of Dicentrarchus labrax at various ontogenetic stages in three separate experiments. These probiotics were incorporated as single or mixed into fish feed for a period of 60 days. The growth parameters, proximate composition of whole body, digestive enzymes and gut microbiology were monitored at regular. The increments in length and weight and the survival were significantly higher (P < 0.05), and the values of food conversions were significantly lower (P < 0.05) in fishes fed the probiotic. The administration of V. proomii and B. mojavensis in diet resulted in an increase (P > 0.05) in body ash and protein content and in the specific activity of phosphatase alkaline and amylase in the digestive tract of all the fishes. V. proomii and B. mojavensis persisted in the fish intestine and in the feed in high numbers during the feeding period (group 1: 5.8 × 104 CFU/ml, group 2: 9.6 × 104 CFU/ml, and group 3: 9.8 × 104 CFU/ml day 60). The two probiotics V. proomii and B. mojavensis were adequate for improved growth performance and survival and for healthy gut microenvironment of the host.  相似文献   

7.
To investigate the effects of starvation and acclimation temperature on the escape ability of juvenile rose bitterling (Rhodeus ocellatus), we measured the fast-start escape and constant acceleration swimming performance of fish fasted for 0 (control), 1 and 2 weeks and half-lethal periods (6 or 4 weeks) at two temperatures (15 and 25 °C). Fish acclimated at a high temperature exhibited shorter response latency (R), higher maximum linear velocity (V max) and longer escape distance during escape movement (D 120ms) than those at the low temperature. Starvation resulted in a significant decrease in V max and D 120ms at either low or high temperature and a significant increase in R at only the high temperature in the half-lethal period groups (P < 0.05). The relationship between V max (Y, m s?1) and starvation time (X, week) was Y 15 = ?0.062X + 1.568 (r = ?0.665, n = 36, P < 0.001) at low temperature and Y 25 = ?0.091X + 1.755 (r = ?0.391, n = 40, P = 0.013) at high temperature. The relationship between U cat (Y, cm s?1) and starvation time (X, week) was Y 15 = ?1.649X + 55.418 (r = ?0.398, n = 34, P = 0.020) at low temperature and Y 25 = ?4.917X + 62.916 (r = ?0.793, n = 33, P < 0.001) at high temperature. The slopes of equations showed a significant difference between low and high temperature (F 1,63 = 9.688, P = 0.003), which may be due to the different energy substrate utilization when faced with food deprivation at different temperatures.  相似文献   

8.
Heat stress is one of the major environmental concerns in global warming regime and rising temperature has resulted in mass mortalities of animals including fishes. Therefore, strategies for high temperature stress tolerance and ameliorating the effects of heat stress are being looked for. In an earlier study, we reported that Nrf-2 (nuclear factor E2-related factor 2) mediated upregulation of antioxidative enzymes and heat shock proteins (Hsps) provide survivability to fish under heat stress. In this study, we have evaluated the ameliorative potential of dietary curcumin, a potential Nrf-2 inducer in heat stressed cyprinid Puntius sophore. Fishes were fed with diet supplemented with 0.5, 1.0, and 1.5% curcumin at the rate 2% of body weight daily in three separate groups (n = 40 in each group) for 60 days. Fishes fed with basal diet (without curcumin) served as the control (n = 40). Critical thermal maxima (CTmax) was determined for all the groups (n = 10, in duplicates) after the feeding trial. Significant increase in the CTmax was observed in the group fed with 1.5% curcumin- supplemented fishes whereas it remained similar in groups fed with 0.5%, and 1% curcumin-supplemented diet, as compared to control. To understand the molecular mechanism of elevated thermotolerance in the 1.5% curcumin supplemented group, fishes were given a sub-lethal heat shock treatment (36 °C) for 6 h and expression analysis of nrf-2, keap-1, sod, catalase, gpx, and hsp27, hsp60, hsp70, hsp90, and hsp110 was carried out using RT-PCR. In the gill, expression of nrf-2, sod, catalase, gpx, and hsp60, hsp70, hsp90, and hsp110 was found to be elevated in the 1.5% curcumin-fed heat-shocked group compared to control and the basal diet-fed, heat-shocked fishes. Similarly, in the liver, upregulation in expression of nrf-2, sod, catalase, and hsp70 and hsp110 was observed in 1.5% curcumin supplemented and heat shocked group. Thus, this study showed that supplementation of curcumin augments tolerance to high temperature stress in P. sophore that could be attributed to nrf-2-induced upregulation of antioxidative enzymes sod, catalase, gpx, and the hsps.  相似文献   

9.
Counting of the growth layers in the earplugs is the most accepted technique for determining chronological age of Antarctic minke whales; however, unreadable growth layers form in some individuals, especially in young animals. In this study, aspartic acid racemization (AAR) technique was developed for estimating ages in this species with the aim of complementing the age estimated using earplugs. To validate the technique and to determine the specific coefficients for age estimation, the ratio of d and l-enantiomers of aspartic acid (Asp D/L) in lens of 18 whales and 20 fetuses were analyzed and compared with earplug-based age estimates. The equation for age estimation by AAR in this species was as follows: Loge{[1 + (Asp D/L)act]/[1 ? (Asp D/L)act]} = 2.30 × 10?3 × earplug age (year) + 0.0201 (p < 0.001, r 2  = 0.918). There is a strong correlation between the age estimates by AAR and earplugs. This study was successful in developing the AAR technique for the Antarctic minke whale, and the application of this technique can complement the age estimation of this species based on earplug readings, especially for young animals with unreadable earplugs.  相似文献   

10.
The present study was designed to investigate the immunomodulatory effects of Aloe vera, Curcuma longa, Echinacea purpurea, Lavandula officinalis, Origanum vulgare, Panax ginseng, and Rheum officinale extracts on leukocytes purified from rainbow trout (Oncorhynchus mykiss) head kidney. The cells were cultured in a medium containing increasing doses of extracts; afterwards, they were tested for reactive oxygen species production after stimulation with phorbol myristate acetate (PMA) and proliferation in the presence or absence of phytohemagglutinin from Phaseolus vulgaris (PHA-P). After a 2-h exposure, the extracts of L. officinalis, O. vulgare, and R. officinale strongly reduced the oxidative burst activity of PMA-stimulated leukocytes, in a dose-dependent manner (P ≤ 0.05). A. vera, C. longa, E. purpurea, and P. ginseng extracts reduced this response with lower efficacy and especially at lower concentrations. On the contrary, the highest concentration of ginseng extract stimulated the respiratory burst of leukocytes compared to untreated control cells. After a 72-h exposure, the extracts of L. officinalis, R. officinale, C. longa, E. purpurea, and P. ginseng had a clear dose-dependent stimulatory effect on leukocyte proliferation (P ≤ 0.05). The results suggest that these medicinal plants can be considered as reliable sources of new antioxidants or immunostimulants to be used in aquaculture.  相似文献   

11.
To determine the optimal salinity, stocking density, and algal density for hatchery culture of the Iwagaki oyster Crassostrea nippona larvae, three experiments with salinities of 14, 18, 22, 26, 30, and 34 practical salinity unit (PSU); stocking densities of 0.5, 1, 2, 4, 8, and 12 larvae ml?1; and algal densities of 10, 20, 40, and 100?×?103 cells ml?1 were designed, which included the developmental stages from newly hatched D-larvae to pediveligers. Results showed that larval growth of C. nippona was the fastest at a salinity of 26 PSU, and when salinity was adjusted to a level that was lower or higher than this salinity, survival and growth rate of larvae declined (P <?0.05), resulting both in a decreased mean shell length and a high mortality. Larval growth decreased significantly with increasing stocking density. Larvae reared at 4 larvae ml?1 had the smallest shell length (198.9 μm) and lowest survival rate (7.9%), whereas larvae reared at 0.5 larvae ml?1 had the largest shell length (245 μm) and highest survival rate (66.3%) on day 13. And the shell length of larvae reared at 0.5 and 1 larvae ml?1 was significantly (P?<?0.05) larger than the values in other treatments, except those reared at 2 larvae ml?1 (P?>?0.05). When feeding the single-algal diet of Isochrysis galbana (clone T-ISO), the shell length of larvae increased markedly as the algal density was increased. Larvae reared at the highest algal density (100?×?103 cells ml?1) had the largest mean shell length; however, under the conditions of our experiment, there was no significant difference (P?>?0.05) in growth and survival rates between the treatments at algal densities of 40?×?103 and 100?×?103 cells ml?1. For a large-scale culture, based on the results of this study, a salinity of 26 PSU, stocking density of 0.5–1 larvae ml?1, and algal density of 40?×?103 cells ml?1 are recommended for an early development of C. nippona.  相似文献   

12.
We isolated the rotifers Brachionus ibericus and Proales similis from the sediment of shrimp tanks and studied their individual demographic characters and competition between them at two food levels (0.25?×?106, 1.00?×?106 cells ml?1 of Nannochloropsis oculata at 25 °C) and salinities ranging from 10 to 30‰. Our hypothesis was that growth rates would be higher with increasing food levels and salinities. Observations were taken twice a day for life table studies and daily once for population growth experiments. Using survivorship and fecundity data, we derived various life history variables. Although the average life span (7.6?±?0.4 days) and gross reproductive rate (33.8?±?2.9 neonate female?1 day?1) of B. ibericus were higher than those of P. similis (average life span 5.4?±?0.6 days and gross reproductive rate 13.0?±?0.6 neonate female?1 day?1), the population growth experiments showed that P. similis had higher r values (0.32?±?0.005 day?1) than B. ibericus (0.23?±?0.002 day?1) at 1.0?×?106 cells ml?1 of N. oculata. The rotifer P. similis was more adversely affected due to the presence of B. ibericus than vice versa. The data are important for developing techniques for a large-scale culture of these rotifers as food in aquaculture.  相似文献   

13.
The influence of acclimation of the euryhaline gilthead sea bream (Sparus aurata) larvae/post-larvae to brackish water on growth, energetic contents, and mRNA levels of selected hormones and growth-regulating hypothalamic neurohormones was assessed. Specimens from 49 days post-hatching were acclimated during 28 days to two different environmental salinities: 38 and 20 psu (as brackish water). Both groups were then transferred to 38 psu and acclimated for an additional week. Early juveniles were sampled after 28 days of acclimation to both salinities and one week after transfer to 38 psu. Pituitary adenylate cyclase-activating peptide (adcyap1; pacap), somatostatin-I (sst1), growth hormone (gh1), insulin-like growth factor-I (igf1), and prolactin (prl) mRNA expression were all studied by QPCR. Post-larvae acclimated to 20 psu showed better growth performance and body energetic content than post-larvae maintained at 38 psu. prl, adcyap1, and igf1 mRNA expression levels increased in 20-psu-acclimated post-larvae but decreased upon transfer to 38 psu. GH1 expression did not show significant changes under both experimental conditions. Our results suggested an enhanced general performance for post-larvae in brackish water, supported by the actions of adcyap1, igf1, and prl.  相似文献   

14.
To clarify the recruitment process of sand lance Ammodytes sp., we investigated larval condition factor, relative gut fullness (%GF), prey abundance and oceanographic structure in Mutsu Bay, Japan, during 1999–2001. Ammodytes sp. larvae, which were collected by horizontal hauls of Motoda nets and a ring net at depths of 1, 10, 20, 30 and 40 m, were mainly distributed at 10–30 m. Larvae at the first feeding time until 12 mm in body length (BL) fed predominantly on copepod nauplii, whereas large larvae with BL of 12.1–14.0 mm fed on a mixture of copepod nauplii, copepodites and appendicularians from late February to April. A path analysis showed that difference in water density between 35- and 5-m depths negatively affected naupliar abundance at 10–30-m depth (standardised path coefficient β = ?0.71, p = 0.005 for 3.3–8.0-mm BL larvae and β = ?0.78, p < 0.001 for 8.1–12.0-mm BL larvae). Naupliar abundance positively affected the %GF of Ammodytes sp. larvae (β = 0.75, p < 0.001 for 3.3–8.0-mm BL larvae and β = 0.66, p < 0.001 for 8.1–12.0-mm BL larvae), whereas it was negatively affected by water temperature (β = ?0.45, p = 0.008 for 3.3–8.0-mm BL larvae and β = ?0.56, p = 0.002 for 8.1–12.0-mm BL larvae), and the temperature effect was weak compared with that of naupliar abundance. In turn, %GF positively affected larval somatic weight (β = 0.91, p < 0.001 for 6.0-mm BL larvae and β = 0.70, p = 0.005 for 10.0-mm BL larvae). The recruitment failure in 1999 was likely caused by a reduced condition factor, which resulted from low naupliar abundance. In contrast, the abundance of nauplii and Oithona similis copepodites was high in 2000 and 2001. It is possible that the higher recruitment success in 2001 was because of the higher water temperatures in Mutsu Bay, sustaining faster growth of the larvae than in 2000 under the high-prey abundance conditions.  相似文献   

15.
Transferrin (Tf) plays an important function in iron homeostasis and metabolism of organisms. In this study, we identified and characterized the Tf gene in Megalobrama amblycephala and evaluated its expression in basal conditions as well as after iron overload and experimental infection with Aeromonas hydrophila. Furthermore, we studied the iron binding properties of recombinant Tf. The full-length M. amblycephala Tf complementary DNA (cDNA) (GenBank accession no.: KX698308) of 2245 bp was cloned and contained a 1953 bp open reading frame (ORF) encoding 650 amino acid residues and flanked by a 68 bp 5′ and a 204 bp 3′ untranslated regions (UTR). Predicted conservative structure illustrated that M. amblycephala Tf consisted of two conservative Tf domains. Amino acid sequence alignment revealed that M. amblycephala Tf had high similarity with that of cyprinids deposited in Genbank, and phylogenetic analysis showed that M. amblycephala Tf clustered with Ctenopharyngodon idella and Hypophthalmichthys molitrix. Tissue expression pattern analyses demonstrated that the liver was the main Tf mRNA expressing organ, being significantly higher than other tissues (p < 0.05). In the liver, Tf mRNA expression in fish artificially injected with the pathogenic bacteria A. hydrophila was significantly upregulated, reaching a peak at 12 h post injection (hpi) and then decreasing afterward. The expression in FeCl3-injected fish showed a similar tendency, but reached a peak at 8 hpi. Meanwhile, fish serum iron significantly decreased following A. hydrophila injection, but increased to peak at 4 hpi and then decreased in FeCl3-injected fish. The recombinant M. amblycephala Tf showed iron binding capacity using CAS analysis. These results are helpful to understand the structure and regulation of expression of Tf, as well as the specific function of Tf for both immune responses and iron homeostasis.  相似文献   

16.
17.
Turbot specimens were kept at three temperatures (T s ): warm (W) (21–22 °C), ambient (A) (17–18 °C) and cold (C) (13–14 °C) during the larval and early postlarval stages. At 90 days posthatching (dph), all of them were transferred to ambient T until 190 dph. At 2–3 dph, the specimens showed a monolayer of red muscle and immature white fibres; external or dermomyotome cells (presumptive myogenic cells) were observed on the surface of the red muscle. In the following stages, many myogenic cells and presumptive myogenic precursors were observed within the myotome, presumably derived of the dermomyotome. When comparing the growth at the same age (2, 10, 25, 37 dph), the body length and the muscle growth were positively influenced by the warm T, being the hyperplasia the muscle parameter more significantly influenced. The development rate was also positively correlated with the high T: the beginning of the metamorphosis took place at 15, 23 and 25 dph at W, A and C temperatures, respectively, with the highest body length values at ambient temperature. The metamorphosis finished at 25, 30 and 37 dph at W, A and C temperatures, respectively, with the highest body length values at warm temperature. However, the muscle cellularity was similar in all the groups at the end of the metamorphosis. At 90 and 190 dph, the largest body length was observed at W temperature. However, the muscle cellularity was similar between A and W; the number of fibres was similar in all the groups at 190 dph, which shows the beginning of a compensatory muscle growth in A and C, mainly in A.  相似文献   

18.
We evaluated the effects of diets incorporating the red algae Pyropia yezoensis, prepared by several different extraction methods, on the growth of juvenile Japanese flounder Paralichthys olivaceus. We assessed growth performance, as well as the levels of amino acids, fatty acids, insulin-like growth factor I (IGF-I) and interleukins (ILs). Four experimental diets were developed based on different methods of processing P. yezoensis. A commercial feed, laver powder (P), high-pressure heat extraction of laver (HPHE) and acid hydrolysis extraction of laver were used as the experimental diets. Three experimental replicates were established for each diet (40 fish/group, body weight 123.7 ± 1.1 g), and the fish were fed for 6 weeks. We found no significant differences in weight gain, specific growth rate or feeding efficiency among the groups (P > 0.05); however, the fish fed HPHE had the greatest growth performance. Fish fed the laver extracts exhibited the highest protein efficiency ratio compared with the control and P groups. The experimental groups fed P. yezoensis extracts had significantly higher levels of IGF-I (P < 0.05) than those of the control group. High levels of IL-2 were found in the P and HPHE groups, IL-12 in the HPHE group, and IL-6 in all experimental groups. Therefore, these results suggest that a P. yezoensis extract improved the growth performance and immunity of Japanese flounder. In particular, the high-pressure heating process was a useful extraction method for preparing a P. yezoensis extract, which had beneficial effects as a dietary supplement in Japanese flounder.  相似文献   

19.
We investigated the effects of starvation and re-feeding on growth and swimming performance and their relationship in juvenile black carp (Mylopharyngodon piceus). We measured the specific growth rate (SGR), resting metabolic rate (RMR) and constant acceleration test speed (U CAT, the maximum swimming speed at exhaustion by constant acceleration test with 0.1667 cm s?2 rate) in a treatment group (21 days of starvation then 21 days of re-feeding) and control group (routine feeding) (n = 20). Starvation resulted in a 17 % decrease in body mass of black carp (P < 0.05). After 21 days of re-feeding, body mass was greater than that of pre-starvation but still less than that of the control group at 42 days. During the re-feeding phase, the SGR of the treatment group was higher than that of the control group (P < 0.05). Starvation resulted in a significant decrease in the RMR and U CAT. After 21 days of re-feeding, both the RMR and U CAT recovered to the pre-starvation levels. In the control group, individual juvenile black carp displayed strong repeatability of the RMR and U CAT across the measurement periods (P ≤ 0.002). In the treatment group, RMR showed significant repeatability between pre-starvation and re-feeding (P = 0.007), but not between pre-starvation and starvation or between starvation and re-feeding. U CAT showed significant repeatability between pre-starvation and starvation (P = 0.006) and between pre-starvation and re-feeding (P = 0.001), but not between starvation and re-feeding. No correlation or only a weak correlation was found between any two variables of RMR, U CAT and SGR, whereas the increment of the U CATU CAT) was negatively correlated with that of SGR during the starvation phase (r = ?0.581, n = 20, P = 0.007) and re-feeding phase (r = ?0.568, n = 20, P = 0.009). This suggested that within individual black carp, there is a trade-off between growth and maintenance (or development) of swimming performance under food-limited conditions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号