首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 218 毫秒
1.
针对点云配准算法易受噪声、体外孤点以及采样率影响的问题,采用形状指数关键点检测方法、最近邻距离比法和迭代最近点算法,基于三维点云对羊体点云配准方法进行研究。结果表明:1)使用协方差矩阵特征描述子能对形状指数方法检测的关键点进行描述;2)基于特征匹配的配准方法能对不同视角的羊体点云进行配准,最大均方根误差为0.024 1;3)对于含有噪声、体外孤点或较低采样率的不同类型的羊体点云模型,配准的最大均方根误差为0.023 8。试验证明基于特征匹配的配准方法能准确地对羊体点云进行配准,并且不受噪声、体外孤点以及采样率的影响。  相似文献   

2.
为了提高海量林地三维点云数据配准的效率和精度,提出了一种基于快速点特征直方图(fast point feature histograms,FPFH)初始匹配与正态分布变换(normal distributions transform,NDT)精确配准相结合的配准算法。首先计算2个待配准点云的法向量,再使用k-d树结构对点云的FPFH特征进行加速计算。然后,根据2个点云相似的FPFH特征,使用采样一致性初始配准算法(sample consensus initial alignment,SAC-IA)求解初始变换矩阵、完成初始配准。最后,用DNT算法对点云体素化,并使用点云密度概率分布函数进行点云数据的精确配准。结果表明,FPFH-NDT算法的平均配准误差(相应点对的平均距离)为0.032 3 m,运行时间为256.376 s;在0.05~0.1 m的点云采样阈值范围内,FPFH-NDT算法的配准误差基本不受采样阈值变化的影响,其值稳定在0.03 m左右;当采样阈值>0.1 m时,配准误差随采样阈值的增大而增大;算法的配准时间整体上随点云采样阈值增大而减少。传统ICP算法的平均配准误差和时间分别为 0.526 3 m 和14.5 s;FPFH-ICP算法的平均配准误差和时间分别为0.042 5 m和289.346 s。FPFH-NDT算法与传统ICP算法相比在配准精度上有了很大的提高,与FPFH-ICP算法相比,在保证点云的配准精度的基础上,FPFH-NDT算法降低了算法的运行时间,提高了点云配准效率。  相似文献   

3.
【目的】准确获取温室番茄作物行中单株冠层数据,为分析作物生长状态和为对靶喷药提供冠层数据支持。【方法】采用三维激光雷达(LiDAR)搭建番茄植株冠层检测平台,使用导轨以0.05 m/s的速度移动三维激光雷达,利用雷达上位机软件Ctrlview保存双侧扫描的A、B 2组共40株番茄植株点云。双侧点云使用ICP(迭代最近点)算法进行配准,利用基于特征值的平面拟合法去除地面,使用均值漂移算法(Meanshift)分割番茄行中的单株点云,获取冠层参数,与人工测量值比较验证精度,将单株点云在MATLAB中使用alpha shape算法进行重建并进行体积的获取,使用凸包算法作物参考值对比。【结果】该检测平台在激光雷达前进方向与垂直前进方向的测量误差分别为-2.65%、-3.95%;获取到的单株番茄植株高度与人工测量值相比,平均绝对误差分别为0.025和0.031 m;重建后求取的体积与凸包算法相比平均误差下降了约15.3%,与人工获取相比相差不大,各指标良好。【结论】番茄行点云分割结果与人工测量相比A、B 2组的均方根误差RMSE分别为0.039和0.043,冠层体积获取与参考值对比VRMSE为0.011 3,激光雷达在获取作物外形轮廓信息中具有一定的准确性和可靠性,该方法用于温室环境下单株作物冠层数据的获取。  相似文献   

4.
【目的】利用具有高扫描频率的线阵激光雷达辅助地面验证过程进行单木定位,快速、准确地对应样地观测结果与地面验证数据,为精准林业调查提供技术支持。【方法】以中山大学珠海校区内的人工林为研究对象,在地面验证每木调查过程中,借助线阵扫描激光雷达(本文中将其定义为监测激光雷达)辅助单木定位,首先解决背包式与监测激光雷达点云配准的问题,获取样地单木位置基准底图;然后基于背景差法,利用监测激光雷达实时追踪样地动态目标,获取地面调查人员的位置信息,并结合背包式激光雷达获取的单木位置底图,间接判断地面验证人员所测单木的位置,进而实现样地观测结果与地面验证每木调查数据的对应。【结果】对于两块不同条件的样地数据,背包式激光雷达与监测激光雷达点云粗配准均方根误差均小于0.2 m,远小于样地立木间最小间距,满足对应的要求;利用本研究的动态目标追踪和对应方法,以追踪到的地面调查人员位置点为种子点,通过最邻近搜索获取基准底图中与种子点最邻近的单木位置,实现样地观测数据与地面验证每木调查数据对应,对应准确率高于95%,平均每帧序列点云处理时间小于0.1 s,可以达到实时性的要求。【结论】本研究提出的方法-利用激光雷达...  相似文献   

5.
提高植物三维点云模型重建时的准确性与完整性,是精准获取植物表型参数的关键所在。目前大多数三维重建方法只能从某一方向对目标物体进行重建,缺乏完整的三维重建过程。为了解决此问题,本研究提出了一种基于多视角图像序列的玉米双面配准的三维重建方法,通过安装在图像采集平台上下侧的RGB相机来获取玉米不同视角的图像序列,基于SfM算法获取玉米的三维点云模型后使用点云颜色滤波算法进行预处理。通过交互式选点测量方法得到玉米点云的空间坐标后基于欧式距离算法计算20组玉米的株高、叶长、叶宽等表型参数,与对应的手动测量结果相比,决定系数r2依次为0.973 6、0.969 1、0.915 0,结果表明两者间显著相关。之后对标记物使用4PCS和PCA算法进行粗配准,结果表明采用4PCS具有更好的粗配准效果。最后采用ICP算法进行标记物的精配准,得到变换矩阵后将其应用于玉米点云,即完成了玉米点云的双面配准。由玉米点云的配准精度均方根值(RMS)可知,当点云重叠度设置为90%时,RMS值较小,玉米点云配准的精度更高,可达到较好的配准效果。总之,本研究所提的配准方法可以拼接和重建出结构更加完整的...  相似文献   

6.
【目的】为测定温室中番茄不同成熟阶段的果实数量,提出一种基于彩色点云图像的测定方法。【方法】在移动平台上搭载KinectV2.0采集温室中行栽番茄的图像信息合成番茄植株点云,再将二视角的番茄植株点云合成1个点云,并通过深度信息截取得到近处番茄植株点云,将标注的点云数据输入到PointRCNN目标检测网络训练预测模型,并识别番茄植株点云中的番茄果实,最后利用基于特征矩阵训练的支持向量机(Support vector machine, SVM)分类器对已经识别出来的果实进行成熟阶段分类,获得不同成熟阶段番茄果实的数量。【结果】基于PointRCNN目标检测网络的方法识别番茄果实数量的精确率为86.19%,召回率为83.39%;基于特征矩阵训练的SVM分类器,针对番茄果实成熟阶段的预测结果在训练集上准确率为94.27%,测试集上准确率为96.09%。【结论】基于彩色点云图像的测定方法能够较为准确地识别不同成熟阶段的番茄果实,可以为评估温室番茄产量提供数据支撑。  相似文献   

7.
针对传统的三维重建方法既费时又费力、准确性低等,只能获取一些特征点和线性数据。本文在三维激光扫描点云的基础上,提出了一种结合ISS算法和CPD算法用于建筑物LiDAR点云配准。通过ISS算法提取点云数据的特征点,并通过CPD算法对这些特征点进行配准。并通过实验对该算法的有效性进行验证。结果表明,改进算法简单有效,提高了运算效率。该研究为我国三维激光点云数据的三维重建技术发展提供了参考和借鉴。  相似文献   

8.
为了更好地建立单木三维彩色模型,获得准确表型参数,提出了一种基于Kinect v2相机和激光雷达的单木点云信息融合检测方法。首先由激光雷达采集樱树单木所在区域的完整环境点云,生成点云地图;由Kinect相机采集樱树单木多视角点云得到完整的三维彩色点云;然后以激光雷达点云位置为基准,通过选取对应同名点的方式对2种点云进行初始配准,使点云之间具有良好的初始位置关系,再使用最近点迭代(iterative closest point, ICP)算法对点云进行精配准;最后使用彩色点云对雷达点云进行点云着色融合处理,实现樱树单木的三维重建。结果显示:与只使用Kinect v2相机生成的樱树单木表型参数对比,融合后的樱树单木的株高、冠幅和胸径的平均相对误差分别降低了1.52、6.46和18.17个百分点。研究结果表明,Kinect v2深度彩色相机和激光雷达在单木三维重建上能实现优势互补,提升点云配准精度,同时,既能降低光照气候条件的影响,又能增加测量距离,单木表型参数更准确。  相似文献   

9.
烤烟油菜轮作与施肥对植烟土壤磷素含量及有效性的影响   总被引:1,自引:0,他引:1  
【目的】探究烤烟油菜轮作与施肥对土壤磷素含量及有效性的影响,以期为优化种植制度,提高土壤磷素有效性提供科学依据。【方法】通过大田试验,采用双因素裂区设计,测定各处理下烤烟不同生长时期土壤全磷、有效磷及酸性磷酸酶活性。【结果】相比烤烟连作,烤烟油菜轮作能显著提高土壤中全磷、有效磷含量及酸性磷酸酶活性,以重蓉油1号(A2)效果最显著。此外,单施化肥(NPK)、有机肥化肥配施(NPKM)处理土壤全磷含量在整个烤烟季均显著高于不施肥(CK),有效磷含量均表现为NPKM NPK CK。而土壤酸性磷酸酶活性在烤烟生长前期表现为NPKM、NPK处理显著高于CK,但到成熟期时NPK较CK的差异减弱,未达到显著水平。相关性分析表明,酸性磷酸酶与有效磷和磷素活化系数(PAC)呈极显著正相关关系。【结论】重蓉油1号油菜与烤烟轮作和有机肥化肥配施时土壤磷素含量和有效性较高,是当地较优的种植模式。  相似文献   

10.
【目的】使用R-Fans-32三维激光雷达(LiDAR)研究植株三维激光点云与植株叶面积之间的关系,为变量喷雾系统提供数据支撑。【方法】假设植株激光点云数量与叶面积之间存在线性关系。搭建基于三维激光点云的靶标探测的试验系统,先测量靶标植株的高度来探究该探测系统的精度,激光雷达以10Hz的扫描频率和1m的探测距离实现对10株番茄的三维点云数据的获取,激光雷达上位机软件Ctrlview实现对三维激光点云数据的储存。利用Cloud Compare软件对储存的点云数据进行处理,利用LiDAR360软件对植株进行高度测量和点云数量的获取。对采集的植株点云进行数量统计,利用CL-202植物叶面积测量仪对采摘的靶标植株叶片测量叶面积,验证植株点云与叶面积之间的关系。【结果】激光雷达探测所得到的番茄植株的高度与手工测量值的最大相对误差为7.92%。利用线性函数拟合植株点云数量与叶面积,拟合度为0.7805,最大相对误差为5.64%。【结论】设计了一种用于探究基于激光点云的变量喷雾系统可行性的试验系统,依据三维激光点云计算植株的叶面积精度良好,R-Fans-32三维激光雷达可作为变量喷雾系统的探测部件。  相似文献   

11.
为实现油菜作物模型的可视化研究,给油菜作物的数字化管理提供数据基础,以感染虫害的苗期油菜为研究对象,采用MVS序列图像技术,搭建MVS技术的序列图像采集平台。根据SFM和PMVS算法获得虫害油菜的稀疏点云数据和稠密点云数据,同时,探索序列图像数量对于特征点匹配的影响。对MVS序列图像技术获得的虫害油菜三维点云数据,采用滤波、精简、Alpha-Shape曲面重建等处理,得到虫害油菜的三维形态曲面模型。结果显示,使用图像数目多和8邻域匹配两者相结合的方法可以又快又好地匹配图像特征点;在获得合适的Alpha值情况下,Alpha-Shape算法可以真实形象地表现出虫害油菜的生长状态。  相似文献   

12.
目的 针对使用深度相机的鸡只体尺估测中,鸡只点云边缘抖动、羽毛冗余、特征点提取难的问题,本文提出一种结合点云边缘平滑和基于生物特征的特征点提取方法用于鸡只多部位体尺估测。方法 首先,通过直通滤波、统计滤波等方法对点云进行预处理,减少背景和噪点对目标的影响;其次,通过点云的空间变化约束边缘,采用连续多帧序列变化平滑边缘,减少边缘抖动对体尺测点提取的干扰;再次,对处理后的点云进行生物特征分析,结合基于邻域分析的边缘算法,融合RGB图像采用Canny边缘检测、霍夫变换等方法提取特征点;最后,依据特征点估测胸宽、半潜水长和胫长体尺。结果 试验结果表明,估测的胸宽平均误差为6.64%,胫长平均误差为5.93%,半潜水长平均误差为3.34%,平均每帧图像计算体尺耗时8.8 s。结论 本文算法可为鸡只体尺测量提供技术参考。  相似文献   

13.
目的 针对玉米田间路径边界模糊和形状不规则特点,普通的田间导航线提取算法在农业机器人实际应用中会出现偏差过大的问题,本文针对3~5叶期玉米田提出了基于离散因子的相机与三维激光雷达融合的导航线提取算法。方法 首先利用三维激光雷达获取玉米植株点云数据,同时将相机采集的图像利用超绿化算法和最大类间方差法自动获得绿色特征二值图像,然后将聚类分析后的点云数据投影到图像中的目标边框上,构建多传感器数据融合支持度模型进行特征识别,最后拟合所获取特征中心点即为导航基准线。结果 该算法能够很好地适应复杂环境,具有很强的抗干扰能力,单帧平均处理时间仅为95.62 ms,正确率高达95.33%。结论 该算法解决了传统算法寻找特征质心偏移、识别结果不可靠等问题,为机器人在玉米田间行走提供了可靠的、实时的导航路径。  相似文献   

14.
对基于标签法和迭代最近点(Iterative closest point,ICP)算法相结合的点云拼接方法进行了研究.通过在物体上贴标志点来获取点云间的初始匹配关系,根据距离约束原理来选取匹配点,运用最小距离和角度位姿约束排除错误匹配点完成粗拼接;然后通过改进的ICP算法实现精确拼接.试验结果表明该方法简单可靠,具有较高的拼接精度.  相似文献   

15.
目的 提出一种基于多传感器融合的果园导航方案,解决果园机器人在GPS导航过程中受果树遮挡导致信号弱、定位效果差的问题。方法 通过16线激光雷达采集高精度的三维点云数据,利用Voxel grid filter滤波算法进行点云预处理,降低点云密度并去除离散点,将果树行通过欧几里类算法进行聚类,采用改进的随机采样一致性 (Random sample consensus, RANSAC) 算法拟合出果树行直线,根据平行直线的关系,推算得到导航线,并融合惯性测量单元(Inertial measurement unit, IMU)对果园机器人进行高精度定位。基于差速转向和纯追踪模型进行轨迹跟踪,实现果园机器人在果树行间自主导航以及自动换行的目标。结果 在将激光雷达和IMU的数据进行融合后,获取到果园机器人的准确位姿,当机器人以速度0.8 m/s在果园作业时,对比最小二乘法和传统RANSAC法产生的偏差,基于密度自适应RANSAC法产生的横向偏差不超过0.1 m、航向角偏差不超过1.5°,均为3种方法中的最小值。但当机器人速度增加到1.0 m/s时,各项偏差均明显增大。结论 本文提出的基于多传感器融合的果园机器人导航技术适用于大多数规范化果园,具有重要推广价值。  相似文献   

16.
油菜播种质量监测系统设计与试验   总被引:1,自引:0,他引:1  
目的 为了获取油菜播种质量信息,并实现信息的显示、远程传输与云存储,提出了一套油菜播种质量监测系统。方法 该监测系统由油菜籽传感检测装置、播种监测终端、播种质量信息云存储平台组成。采用多种形式小粒径种子传感检测装置实现对播种质量信息的实时获取,基于射频通信模块实现与播种监测终端的数据交互;监测终端完成信息显示,并通过北斗定位单元对播种质量信息位置进行精确定位;通过无线传输模块,实现油菜播种质量信息数据的远程传输和云存储。搭建油菜播种质量监测系统试验台,通过田间试验验证系统的稳定性和可靠性。结果 设计的油菜播种质量监测系统能通过内嵌的北斗定位单元获取播种机经、纬度信息,同时可利用4G无线传输模块将播种质量信息及定位信息传输至云存储平台。台架试验结果表明,当排种器落种频率为16.5~26.2 Hz时,检测准确率不低于97.1%,采集的油菜播种质量信息均能够传输至播种监测终端并进行显示;播种质量信息均准确上传至云存储平台数据库,传输时长不超过2 s,且与终端显示数据一致。田间试验验证结果表明,排种频率为17.4~25.5 Hz时,检测准确率不低于96.6%,且系统运行正常。结论 该系统为油菜播种过程智能化提升、播种状态图生成及产量预测提供了技术支撑。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号