首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
More than 2.5 million ha of Eucalyptus globulus are now planted across the globe including approximately 500 000 ha in southern Australia. In this region average annual rainfall has declined since 1960 and this trend is predicted to continue in the coming decades. E. globulus is a premium species for paper manufacture and grows well under moderate seasonal water stress. The traits that underpin this rapid early growth also make the species vulnerable to prolonged water stress. We established nitrogen rate and nitrogen-by-stocking experiments in five 2-year-old E. globulus plantations along a climatic gradient in south-western Australia. We measured volume growth, predawn leaf water potential and leaf area index over 7 years or until the plantations were 9 years old. These data were used to explore the relationship between growth and water stress, to understand the mechanistic basis for the relationship and to identify best-bet management strategies for E. globulus plantations in southern Australia.  相似文献   

2.
Fine root dynamics of shaded cacao plantations in Costa Rica   总被引:1,自引:0,他引:1  
Root turnover may contribute a significant proportion of recycled nutrients in agroforestry systems and competition between trees and crops for nutrients and water may depend on temporal fine root regrowth patterns. Fine root biomass ( 2 mm) and fine root productivity were measured during one year in plantations of cacao (Theobroma cacao) shaded by Erythrina poeppigiana or Cordia alliodora planted on a deep alluvial soil in Turrialba, Costa Rica. Fine root biomass of approximately 1.0 Mg ha–1 varied little during the year with maximum values at the beginning of the rainy season of 1.85 Mg ha–1 in the cacao-C. alliodora system compared to 1.20 Mg ha–1 for cacao-E. poeppigiana. Fine root productivity of C. alliodora and E. poeppigiana (maximum of 205 and 120 kg ha–1 4 week–1, respectively) was greatest at the end of the rainy season, while for cacao it was greatest at the beginning of the rainy season (34–68 kg ha–1 4 week–1), which suggests that if nutrient competition occurs between the shade trees and the cacao, it could be minimized by early fertilization during the beginning of the rains immediately after pruning the shade trees. Annual fine root turnover was close to 1.0 in both systems. Assuming that fine root biomass in these mature plantations was constant on an annual basis, nutrient inputs from fine root turnover were estimated as 23–24 (N), 2 (P), 14–16 (K), 7–11 (Ca) and 3–10 (Mg) kg ha–1 year–1, representing 6–13% and 3–6% of total nutrient input in organic matter in the C. alliodora and E. poeppigiana systems, respectively.  相似文献   

3.
Growth and yield modelers have incorporated mid-rotation fertilizer responses by: modifying site index; developing new models to include fertilizer responses directly; using multipliers or additional terms to scale existing models. We investigated the use of age-shifts to model mid-rotation fertilizer responses. Age-shift prediction models were constructed from 43 installations of a nitrogen (0, 112, 224 and 336 kg ha−1 elemental) by phosphorus (0, 28 and 56 kg ha−1 elemental) factorial experiment established in mid-rotation loblolly (Pinus taeda L.) pine stands in the southeastern US. Age-shifts for dominant height and basal area increased with time after fertilization, to a maximum and then either remained fairly constant, or declined. The initial rate of increase, maximum age-shift and decline were functions of the rate and combinations of fertilizers applied, as well as stand density and age at fertilization. Volume age-shifts increased linearly throughout the 10-year measurement period for most treatments with the rate of increase being a function of the elements applied, stocking, site index and age at fertilization. A mid-rotation fertilizer application of 224 and 28 kg ha−1 elemental N and P, respectively, resulted in age-shifts of 1.1, 1.9 and 2.4 years for dominant height, basal area and volume, respectively, 10 years after fertilization. The age-shifts were incorporated into growth and yield models.  相似文献   

4.
Within-tree variation in fibre length and coarseness was studied in fifty trees of E. globulus and E. nitens to develop a non-destructive sampling strategy. Trees, aged 5 to 9 years, were sampled across a range of sites in southern Australia. Simulated core samples were removed at six fixed heights easily accessible from the ground (0.5, 0.7, ... 1.5 m) and at eight percentage heights (0, 10, 20, ... 70%). Whole-tree values, calculated from percentage height data, were correlated with the core data to determine the optimal sampling height. Core samples were found to be reliable predictors of whole-tree fibre length, but results were variable for fibre coarseness. Simulated cores taken from the recommended sampling heights explained 87% and 71% of variation in whole-tree fibre length for E. globulus and E. nitens respectively and 54% and 45% of the variation in whole-tree fibre coarseness. Fibre length at all fixed heights showed good correlations with whole-tree values at all sites for E. globulus. For E. nitens the correlations were slightly lower and variable across sites. Results for fibre coarseness varied across sampling heights and sites for both species. The recommended sampling height for fibre length is 1.5 m for both species, whilst for fibre coarseness, the recommended sampling heights are 0.9 and 1.1 m for E. globulus, and 0.9 and 1.3 m for E. nitens. Radial orientation of cores was not important and neither fibre length nor coarseness were related to tree size or basic density. To estimate stand mean fibre length to an accuracy of ±5% would require sampling 9 whole trees or taking cores from 13 trees for E. globulus and 4 whole trees or cores from 8 trees for E. nitens. For estimating stand mean fibre coarseness, 10 whole trees of E. globulus and 7 whole trees are needed for E. nitens. Core sampling for stand mean coarseness would require more trees: 13 to 21 for E. globulus and 11 to 16 trees for E. nitens. Received 17 September 1998  相似文献   

5.
Predictive models were developed for Cordia alliodora branch and Theobroma cacao branch or leaf biomass,based on branch basal areas (r2 0.79) but the model of C. alliodora leaf biomass, although significant, was of very low accuracy (r2 = 0.09) due to annual leaf fall. At age 10 years, shade tree stem biomass accounted for 80% of the total above-ground biomass of either tree. However, between the ages of 6 and 10 years, the biomass increment of T. cacao branches (3–4t.ha–1.a–1) was similar to that of the shade tree stems. During the same period, the net primary productivity was 35 and 28 t.ha–1.a–1, for the Erythrina poepigiana and and C. alliodora systems, respectively.Cocoa production under either of the shade trees C. alliodora or E. poeppigiana was 1000 kg.ha–1.a–1 (oven-dry; ages 6–10 yr). During the same period, C. alliodora timber production was 9 m3.ha–1.a–1 whilst the leguminous shade tree E. poeppigiana does not produce timber. Litterfall over the same 5 years, including crop and/or shade tree pruning residues, averages 11 and 23 t.ha–1.a–1, respectively. The main difference was due to E. poeppigiana pruning residues (10t.ha–1.a–1).Soil organic material reserves (0–45 cm) increased over 10 years from 198 to 240 t.ha–1 in the E. poeppigiana plots and from 168–184 t.ha–1 in the C. alliodora plots. These values, together with the productivity indices presented, provide evidence that the systems are sustainable.For economic reasons, the use of C. alliodora is recommended under the experimental conditions. however, on less fertile soils without fertilization, the greater biomass and hence nutrient return to the soil surface under E. poeppigiana, might make this the preferable shade tree.  相似文献   

6.
较低氮利用性经常会导致桉树人工林的减产.为检验氮矿化的土壤指标的利用并预测桉树对添加氮肥的响应,研究四种桉树人工林(印度海岸低洼地2种细叶桉人工林和和喀拉拉邦高地的2种巨桉人工林)对添加氮肥和相关季节性氮矿化以及其他氮利用率指标的响应,测定几种生化指标对氮肥的响应,包括全氮,土壤C:N比和在厌氧、有氧孵化过程中释放的氮.结果表明,在4块实验地里,增加氮肥可以相应的提高生产率7%至70%;在有氧孵化过程中,释放的氮与氮肥间有最显著相关性(R2=0.92,p<0.01).与有氧孵化过程中释放的氮相比,季节性土壤氮矿化作用是一个较差的肥料响应的指标.虽然有的指标有很好的应用价值,但在广泛应用之前还需验证测试.  相似文献   

7.
Significant increases in aboveground biomass production have been observed when Eucalyptus is planted with a nitrogen-fixing species due to increased nutrient availability and more efficient use of light. Eucalyptus and Acacia are among the most popular globally planted genera with the area of Eucalyptus plantations alone expanding to over 19 Mha over the past two decades. Despite this, little is known about how nutrition and light availability in mixed-species tree plantations influence water use and water use efficiency (WUE). This study examined to what extent water use and WUE have been influenced by increased resource availability and growth in mixed-species plantations. Monocultures of Eucalyptus globulus Labill. and Acacia mearnsii de Wildeman and 1:1 mixtures of these species were planted. Growth and transpiration were measured between ages 14 and 15 years. Aboveground biomass increment (Mg ha−1) was significantly higher in mixtures (E. globulus; 4.8 + A. mearnsii; 0.9) than E. globulus (3.3) or A. mearnsii monocultures (1.6). Annual transpiration (mm) measured using the heat pulse technique was also higher in mixtures (E. globulus; 285 + A. mearnsii; 134) than in E. globulus (358) and A. mearnsii (217) monocultures. Mixtures exhibited higher WUE than monocultures due to significant increases in the WUE of E. globulus in mixtures (1.69 kg aboveground biomass per cubic metre water transpired) compared to monocultures (0.94). The differences in WUE appear to result from increases in canopy photosynthetic capacity and above- to belowground carbon allocation in mixtures compared to monocultures. Although further studies are required and operational issues need to be resolved, the results of this study suggest that mixed eucalypt–acacia plantations may be used in water-limited environments to produce a given amount of wood with less water than eucalypt monocultures. Alternatively, because mixtures can be more productive and use more water per unit land area (but use it more efficiently), they could be utilized in recharge zones where rising water tables and salinity result from the replacement of vegetation (fast growing trees) that uses higher quantities of water with vegetation (shallow rooted annual crops) that use lower quantities of water.  相似文献   

8.
Nineteen frost-resistant Eucalyptus species were screened for salt tolerance under glasshouse conditions. This study was undertaken in order to determine the potential of these species for planting on dryland salt-affected sites in the frost-prone Tablelands of south-eastern Australia. Seedlings were established in sand-filled pots and exposed to a step-wise increase in NaCl concentration to a maximum of 500 mol m–3. Salt tolerance was assessed on the basis of mortality, leaf damage and height growth. All species in the subgenus Symphyomyrtus , particularly those in the Section Maidenaria Series Ovatae, were moderately salt-tolerant (no mortality at 300 mol m–3 NaCl) whereas those in the subgenus Monocalyptus proved to be very salt-sensitive (no survival at 300 mol m–3 NaCl). Eucalyptus camaldulensis, E. tereticornis and E. occidentalis were the most salt-tolerant species of those included in this study. Salt-sensitive species had shoot Na+ and Cl concentrations of up to 2.25 mmol g–1 dry wt.
  相似文献   

9.
Further study is needed on loblolly pine (Pinus taeda L.) growth in a systematic array of plantation designs or stocking rates commonly used in temperate forestry and agroforestry practices. Our objective was to determine loblolly pine growth responses and agroforestry implications of 13 plantation designs (i.e., stocking rates in trees ha−1 [TPH]) at mid-rotation (14 years old). Survival, diameter at 1.3 m above soil surface (dbh), height, basal area (BA), and volume (V) were measured in unthinned plantations ranging from 490 to 2,300 TPH. Stocking rate was positively correlated with BA (r ≥ 0.67) and V (r ≥ 0.55) and negatively correlated with survival (r ≤ −0.83) and dbh (r ≤ −0.83). Plantations with ≥2,000 TPH had closed canopies and excessively high BA and V at mid-rotation. The 4- and 5-row plantations (≥12 m alley spacing) had small dbh (≤17.5 cm). Single-row plantations with ≥3.6 m within row spacing and ≤700 TPH, and the 3-row multiple-row plantations (1,200 TPH), had acceptable BA (29.4–33.2 mha−1) and V (127–136 mha−1). Basal area was ≥30 mha−1 in most plantations indicating thinning is needed to optimize individual tree growth. Besides timber, an array of design-dependent agroforestry and forestry products should drive the selection of any one of these plantation designs: pine straw or biomass production at ≥1,800 TPH, and alley cropping or silvopasture in single-row (≤1,000 TPH) and multiple-row plantations (<1,400 TPH).  相似文献   

10.
A non-destructive sampling strategy for basic density, based on removing 12 mm bark-to-bark cores, was developed in E. globulus and E. nitens. Fifty trees of each species, aged 5 to 9 years, were sampled across a range of sites. Core samples were removed on both a north-south and an east-west axis from 6 fixed heights in the base of the tree (0.5 m, 0.7 m, …, 1.5 m). Whole-tree values were calculated from disc samples removed at eight percentage heights (0, 10, 20, …, 70%) and correlations between the cores and whole-tree values were used to determine the optimal sampling height. Core samples were found to be reliable predictors of whole-tree density, explaining between 84% and 89% of the variation between trees. Core sampling of E. globulus and E. nitens to estimate basic density of whole-trees and stands is feasible; cores from trees at all E. globulus sites gave high correlations with whole-tree values. For E. nitens, site differences were apparent, and it is recommended that a small destructive sampling program should be undertaken prior to commencing a major sampling program. Recommended optimal sampling heights are 1.1 m for E. globulus and 0.7 m for E. nitens. Core orientation was not important and density was not related to tree size. Six whole-tree samples or eight core samples are required for estimating the mean density of a stand at a specific site to an accuracy of ±20 kg m−3 with a 95% confidence interval. Received 17 September 1998  相似文献   

11.
Doubts exist about the effectiveness of establishing trees near saline discharge areas on farmland to manage dryland salinity. These centre on low rates of water uptake from saline water tables, salt accumulation in tree root zones and the consequent poor growth and survival of trees. Despite this, trees still survive in many plantations established adjacent to saline discharge areas and land-holders often favour such locations, as they do not compete for arable land such as that occurs with plantings in recharge areas. Tree performance and salt accumulation were assessed in three experimental plantations established adjacent to saline discharge areas 20–25 years ago. These were all in the 400–600 mm rainfall zone of south-western Australia. Mean soil salinity, within 1 m of the surface, ranged from 220 to 630 mS m−1, while permanent ground-waters occurred within 2–5 m of the surface and had electrical conductivities ranging from 175 to 4150 mS m−1. The study confirmed the low growth rates expected for trees established over shallow, saline water tables in a relatively low rainfall environment, with estimated wood volumes in Eucalyptus cladocalyx, E. spathulata, E. sargentii, E. occidentalis and E. wandoo of between 0.5 and 1.5 m3 ha−1 yr−1. Values of up to 3 m3 ha−1 yr−1 were obtained on soils with low salinity (<200 mS m−1). The excellent survival (>70%) of several Eucalyptus species confirms that discharge plantations species can persist, despite increasing soil salinity. However, the long-term sustainability of such plantings (50–100 years) without broader landscape treatment of the present hydrological imbalance must be questioned.  相似文献   

12.
A little-leaf disease of Eucalyptus tereticornis, E. grandis and E. globulus characterized by stunting of plants and considerable reduction in size of leaves and internodes, was recorded during survey of nurseries and plantations in Kerala State. The survey indicated that though the little leaf disease was widespread, its incidence was quite low. Transmission of the symptoms by sap and graft techniques was unsuccessful. However, positive fluorescence and staining of phloem tissues by Dienes' stain indicates that this disease may be caused by mycoplasmalike organisms (MLO).  相似文献   

13.
Eucalyptus globulus is the predominant exotic hardwood plantation species in Western Australian (WA), and is often planted adjacent to native eucalypt forests. The increase in number of Mycosphaerella species associated with Mycosphaerella leaf disease (MLD) in E. globulus plantations in WA in the past decade has raised concern about the possible movement of pathogens between the native forests and plantations. In order to determine whether the introduction of new E. globulus genetics into WA may have further exacerbated this situation, juvenile and adult foliage were taken from a genetics trial near Albany, WA consisting of 60 full-sib families and Mycosphaerella species identified using morphological and molecular tools. Eleven species of Mycosphaerella were identified from one plantation: Mycosphaerella fori (Pseudocercospora fori) and Mycosphaerella ellipsoidea are new records for Australia; Mycosphaerella tasmaniensis (Passalora tasmaniensis) and Mycosphaerella suttoniae (Kirramyces epicoccoides) are new records for WA; and Mycosphaerella nubilosa, Mycosphaerella cryptica, Mycosphaerella marksii, Mycosphaerella molleriana, Mycosphaerella lateralis, Mycosphaerella aurantia and Mycosphaerella parva, previously recorded for WA. The most frequently isolated species from juvenile foliage was M. marksii (77%) followed by M. nubilosa (33%). M. nubilosa was most frequently isolated from adult leaves (88%) followed by M. parva (7.5%). Three species, M. molleriana, M. lateralis and M. cryptica, were only isolated from adult leaves while M. ellipsoidea was only isolated from juvenile leaves. These records increase the number of known Mycosphaerella species from eucalypts in WA from 10 to 13. The increase in the number, distribution and impact of Mycosphaerella species contributing to MLD in WA is of concern both to the potential productivity of the plantations and the biosecurity of native WA Eucalyptus species. Continued monitoring of the plantation estate is required to understand the dynamics of the host–pathogen interactions.  相似文献   

14.
Severe environmental problems encountered in the highlands of Bolivia may be remedied through the adoption of agroforestry systems, never before studied adequately in this region. As a first step, seven tree species were tested for growth, survival and health at two elevations in the Bolivian altiplano. Species responded variably with Buddleja coriacea Remy., Pinus radiata D. Don. and Eucalyptus globulus Labill. (at the higher elevation) and E. globulus, Baccharis spp., Robinia pseudoacacia L. and B. coriacea (at the lower elevation), displaying high survival, growth and health. In a related greenhouse study, grain yields of wheat planted in soils amended with incorporated foliage of B. coriacea, P. radiata and E. globulus increased three-fold (0.3 g·plant−1 to >1.0 g·plant−1) over grain yields in unamended soils (B. coriacea > P. radiata = E. globulus). Grain nitrogen (mg·plant−1) increased equally in soils amended with P. radiata and B. coriacea foliage (18 mg N⋅plant−1 to 20 mg·plant−1) but decreased in soils amended with foliage of E. globulus (18 g·plant−1 to 9 g·plant−1). This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

15.
A study was conducted in coastal Andhra Pradesh to evaluate current practices and suitability of coastal sandy soils for raising tree plantations. Poor soil moisture retention characteristics of these soils make irrigation an essential, but costly silvicultural practice for obtaining desirable establishment and growth. Saline ground water is the only available source of irrigation. Its use seems safe and successful in such soils. The farmers have adopted a specialized manual splashing technique (Doruvu) of seepage pits for irrigating tree plantations in their establishment phase. This technique was observed to be well suited to the sandy soils. Casuarina equisetifolia and Eucalyptus tereticornis were the two most popular species being afforested. E. camaldulensis is also in an introduction phase. Comparison of growth performance and biomass accumulation by C. equisetifolia and E. tereticornis plantations at different growth stages showed the former to be significantly better than the latter. Build up of the soil organic carbon was also found to be markedly more in comparable C. equisetifolia plantations than those of E. tereticornis. Similarly, the blanketing influence of C. equisetifolia plantations was observed to modify soil temperature extremes considerably more than in the case of E. tereticornis. The findings, indicated a vast scope for utilization of coastal sandy soils for afforestation with the successful use of saline ground waters.  相似文献   

16.
Forest plantations for wood production are an increasingly important land use in southern Australia, and there are potentially important hydrologic consequences of what is mostly a change in land use from agriculture to silviculture. An ability to predict, with some degree of accuracy, the impact of plantation expansion on surface water and groundwater resources is essential. A validated process-based modelling approach, integrating the many interacting environmental and management factors which may influence plantation growth and transpiration, can be used for this purpose. The 3PG forest growth model has been evaluated for a number of species from widely differing climate and site conditions. While growth predictions have been validated, little attention has been given to testing the accuracy of the transpiration predictions or the model's representation of the water balance. We enhanced the 3PG forest growth model (known as 3PG+) and then integrated it into the Catchment Analysis Tool (CAT), so that it now interfaces with a more detailed multi-layered, daily time step representation of the soil water balance. Simulated transpiration using 3PG+ in CAT was compared with field measurements in 30 plots (across 15 sites) representing 5 common plantation species (Eucalyptus globulus, E. nitens, E. grandis, E. regnans and Pinus radiata) across ages 2–31 years. Mean daily plot transpiration during the measurement periods ranged between 0.4 and 4.2 mm day−1 (average 2.0 mm day−1). Simulated mean daily plot transpiration using 3PG+ in CAT for Eucalyptus was good (coefficient of efficiency = 0.80; R2 = 0.81). While the model tended to slightly under-predict transpiration at higher measured rates (>3.5 mm day−1), predictions at monthly timescales had acceptable accuracy. The integration of 3PG+ into CAT resulted in an improvement in accuracy and applicability of CAT, and provides for the spatial application of 3PG+ across diverse and mixed land use catchments for investigation into carbon and water movement in forest systems.  相似文献   

17.
Site productivity of the hybrid poplar clone Brooks6 was predicted using soil and site information from 6, 4-year-old plantations in north-east Alberta. Predictions were made at both the local and microsite scales. Percent sand (R 2 = 0.352, P = 0.001) was the best single predictor of hybrid poplar productivity, showing a curved relationship. Soil pH also showed a curved but weaker relationship with hybrid poplar productivity (R 2 = 0.133, P = 0.100). Maximum tree productivity occurred at sand contents between 55 and 70% and pH values near 6. Other variables, including foliar nutrient concentrations, foliar δ13C, electrical conductivity, depth of the A horizon and total chemistry of the soil, were also related to hybrid poplar productivity at the local and microsite scales. However, all of these variables were correlated to either soil texture (percent sand) or pH. At the microsite scale within plantations, percent sand was the most important predictor of tree productivity and explained more than 50% of the variability within plantations, although the relationship varied by plantation. In plantations with fine textures, sandier microsites were associated with increased growth while in sandy plantations, finer textured microsites were more productive. As a whole, the growth of the hybrid poplar clone Brooks6 appears to be mostly influenced by a combination of soil water and nutrient availability, the former being impacted by soil texture and the latter being governed by soil pH.  相似文献   

18.
Accurately and non-destructively quantifying the volume, mass or nutrient content of tree components is fundamental for assessing the impact of site, treatment, and climate on biomass, carbon sequestration, and nutrient uptake of a growing plantation. Typically, this has involved the application of allometric equations utilising diameter and height, but for accurate results, these equations are often specific to species, site, and silvicultural treatment. In this study, we assessed the value of incorporating a third piece of information: the height of diameter measurement. We derived a more general volume equation, based on the conical approximation, using a diameter projected to the base of the tree. Common equations were developed which allowed an accurate estimate of stem volume, dry weight and nutrient content across two key plantation grown eucalypt species, Eucalyptus grandis W. Hill ex Maiden and Eucalyptus globulus (Labill.). The conical model was developed with plantation-grown E. grandis trees ranging from 0.28 to 15.85 m in height (1.05 g to 80.3 kg stem wood dry weight), and E. globulus trees ranging from 0.10 to 34.4 m in height (stem wood dry weight from 0.48 g to 652 kg), grown under a range of contrasting cultural treatments, including spacing (E. grandis), site (E. globulus) and fertilization (nitrogen and phosphorus) for both species. With log transformed data the conical function (Vcon) was closely related to stem sectional volume over bark and stem weight (R2 = 0.996 and 0.990, respectively) for both E. grandis and E. globulus, and the same regressions can be applied to both species. Back transformed data compared with the original data yielded modelling efficiencies of 0.99 and 0.97, respectively. Relationships between Vcon and bark dry weight differed for the two species, reflecting differing bark characteristics. Young trees with juvenile foliage had a different form of relationship to older trees with intermediate or adult foliage, the change of slope corresponding to heights about 1.5 m for E. grandis and age 1 year for E. globulus. The Vcon model proved to be robust, and unlike conventional models, does not need additional parameters for estimating biomass under different cultural treatments. More than 99% of the statistical variance of the logarithm of biomass was accounted for in the model. Vcon captures most of the change in stem taper associated with cultural treatments and some of the change in stem form that occurs after the crown base has lifted appreciably. Fertilization increased N and P concentrations in stem wood and bark, and regressions to estimate N and P contents (the products of biomass and concentration) were dependent on treatment. For instance, there was a large growth response to N fertilization in E. globulus corresponding with a change (P < 0.05) in the intercept of the regression to estimate N content.  相似文献   

19.
The potential allelopathic effect ofCupressus lusitanica, Eucalyptus globulus, E. camaldulensis andE. saligna on seed germination, radicle and seedling growth was investigated with four crops:Cicer arietinum (chickpea),Zea mays (maize),Pisum sativum (pea) andEragrostis tef (teff). Aqueous leaf extracts of all the tree species significantly reduced both germination and radicle growth of the majority of the crops mostly starting from concentrations of 1% or 2.5%. The shoot and root dry weight increase of the crops was significantly reduced after 10 weeks treatment with leaf extracts. Among the four crops, chickpea and teff were most susceptible with respect to germination, and teff with respect to growth. From the overall data the leaf extracts of the four tree species can be arranged according to increasing allelopathic potential:C. lusitanica, E. globulus, E. saligna andE. camaldulensis. It is suggested that the planting ofE. camaldulensis andE. saligna in integrated land use systems should be minimized, whereas the use ofC. lusitanica andE. globulus seems less environmentally damaging in this respect.  相似文献   

20.
We studied the importance of effective rainfall for interannual variation in water use efficiency (WUE) and tree-ring growth of Chinese pine (Pinus tabulaeformis Carr.) and black locust (Robinia pseudoacacia L.) by examining correlations of seasonal precipitation with annual values of stable carbon isotope ratio (δ13C) and tree-ring width in early and late wood. The correlations with precipitation were examined for each month and for periods of all possible lengths from 2 to 22 months starting from January of the previous year to October of the current year. The period with the highest correlation was adopted as the most effective rainfall season for interannual variations in WUE and tree-ring width. In early wood, precipitation during the dry season (October to May) before the growing season was negatively correlated with δ13C in pine trees and positively correlated with ring width in pine and locust trees. In late wood, rainfall during the growing season in the current year was negatively correlated with δ13C in pine and locust trees, and positively correlated with ring width in locust trees. Our results demonstrated the differences in the water use strategies of pine and locust trees. The δ13C in pines indicated higher WUE and more conservative water use than in locust trees. Precipitation during the dry season affected the interannual variation in WUE and tree-ring growth in pine and locust trees, indicating that rainfall during the dry season is important for carbon gain and tree-ring growth during the following growing season.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号