首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Salt stress has become a major menace to plant growth and productivity. The main goal of this study was to investigate the effect of inoculation with the arbuscular mycorrhizal fungi (AMF; Rhizophagus intraradices) in combination or not with plant growth‐promoting rhizobacteria (PGPR; Pseudomonas sp. (Ps) and Bacillus subtilis) on the establishment and growth of Sulla coronaria plants under saline conditions. Pot experiments were conducted in a greenhouse and S. coronaria seedlings were stressed with NaCl (100 mM) for 4 weeks. Plant biomass, mineral nutrition of shoots and activities of rhizosphere soil enzymes were assessed. Salt stress significantly reduced plant growth while increasing sodium accumulation and electrolyte leakage from leaves. However, inoculation with AMF, whether alone or combined with the PGPR Pseudomonas sp. alleviated the salt‐induced reduction of dry weight. Inoculation with only AMF increased shoot nutrient concentrations resulting in higher K+: Na+, Ca2+: Na+, and Ca2+: Mg2+ ratios compared to the non‐inoculated plants under saline conditions. The co‐inoculation with AMF and Pseudomonas sp. under saline conditions lowered shoot sodium accumulation, electrolyte leakage and malondialdehyde (MDA) levels compared to non‐inoculated plants and plants inoculated only with AMF. The findings strongly suggest that inoculation with AMF alone or co‐inoculation with AMF and Pseudomonas sp. can alleviate salt stress of plants likely through mitigation of NaCl‐induced ionic imbalance, thereby improving the nutrient profile.  相似文献   

2.
This study was conducted to elucidate the effects of inoculation with plant-growth-promoting rhizobacteria (PGPR) on eggplant growth, yield, and mineral content under salt stress [0, 25, and 50 mM sodium chloride (NaCl)]. The PGPR strains Xanthobacter autotrophicus BM13, Enterobacter aerogenes BM10, and Bacillus brevis FK2 were isolated from the salt-affected maize and kidney bean fields. The increase in salinity decreased the growth and yield and increased the sodium (Na+) uptake of eggplant. However, inoculation with PGPR strains reduced the negative effects at each level of salinity tested. The E. aerogenes strain was capable of promoting eggplant growth and yield when compared to an uninoculated control. The B. brevis was the most effective strain for reducing the negative effects of salinity, and its effects occurred through increasing the potassium (K+)/Na+ ratio and K+-Na+ selectivity in the eggplant shoots. Inoculation of the eggplant seedlings with PGPR could alleviate the negative effects of salt stress.  相似文献   

3.
Improvement in sustainable production of switchgrass (SG, Panicum virgatum L), as a purpose-grown biomass feedstock crop, could be realized through investigation of plant–microbe interactions associated with plant growth promoting rhizobacteria (PGPR), capable of biological nitrogen fixation (BNF). The objective of this study is to increase establishment year production of SG biofuels by inoculation with a mixed PGPR inoculum. We isolated pure strains of N2-fixing, and other PGPR, from SG rhizomes. The bacteria were identified as Paenibacillus polymyxa, an N2-fixing bacterium, and other PGPR capable of solubilizing phosphate and/or producing auxins. Field trials utilizing these strains in a mixed PGPR inoculum showed that inoculated plants contained more N in tillers during anthesis but not at senescence, suggesting that more N could be cycled to belowground roots and rhizomes for winter storage. The amount of N removal in biomass and recovery of fertilizer N were also greater for inoculated than uninoculated plants. PGPR inoculation also resulted in positive N balances, suggesting improved access to N from non-fertilizer N sources, possibly through BNF and improved soil N uptake. Overall, inoculation of SG with PGPR enhanced N acquisition and could be an effective strategy to increase the establishment year production of this crop.  相似文献   

4.
盐条件下产胞外多糖植物促生细菌研究   总被引:3,自引:0,他引:3  
Salt-tolerant plant growth-promoting rhizobacteria (PGPR) can play an important role in alleviating soil salinity stress during plant growth and bacterial exopolysaccharide (EPS) can also help to mitigate salinity stress by reducing the content of Na + available for plant uptake.In this study,native bacterial strains of wheat rhizosphere in soils of Varanasi,India,were screened to identify the EPS-producing salt-tolerant rhizobacteria with plant growth-promoting traits.The various rhizobacteria strains were isolated and identified using 16S rDNA sequencing.The plant growth-promoting effect of inoculation of seedlings with these bacterial strains was evaluated under soil salinity conditions in a pot experiment.Eleven bacterial strains which initially showed tolerance up to 80 g L -1 NaCl also exhibited an EPS-producing potential.The results suggested that the isolated bacterial strains demonstrated some of the plant growth-promoting traits such as phosphate solubilizing ability and production of auxin,proline,reducing sugars,and total soluble sugars.Furthermore,the inoculated wheat plants had an increased biomass compared to the un-inoculated plants.  相似文献   

5.
There is an increasing concern that the continuous use of chemical fertilizers might lead to harmful effects on soil ecosystem. Accordingly, a biocompatible approach involving inoculation of beneficial microorganisms is presented to promote plant growth and simultaneously minimize the negative effect of chemical fertilizers. In this study, Rhodopseudomonas palustris, a plant growth-promoting rhizobacterium (PGPR), was inoculated into both fertilized and unfertilized soils to assess its influence on Stevia rebaudiana plant growth and microbial community in rhizosphere soils in a 122-d field experiment. Soil enzyme assays (dehydrogenase, urease, invertase, and phosphomonoesterase), real-time quantitative polymerase chain reaction (RT-qPCR), and a high-throughput sequencing technique were employed to determine the microbial activity and characterize the bacterial community. Results showed that the R. palustris inoculation did not significantly influence Stevia yields and root biomass in either the fertilized or unfertilized soil. Chemical fertilization had strong negative effects on soil bacterial community properties, especially on dehydrogenase and urease activities. However, R. palustris inoculation counteracted the effect of chemical fertilizer on dehydrogenase and urease activities, and increased the abundances of some bacterial lineages (including Bacteroidia, Nitrospirae, Planctomycetacia, Myxococcales, and Legionellales). In contrast, inoculation into the unfertilized soil did not significantly change the soil enzyme activities or the soil bacterial community structure. For both the fertilized and unfertilized soils, R. palustris inoculation decreased the relative abundances of some bacterial lineages possessing photosynthetic ability, such as Cyanobacteria, Rhodobacter, Sphingomonadales, and Burkholderiales. Taken together, our observations stress the potential utilization of R. palustris as PGPR in agriculture, which might further ameliorate the soil microbial properties in the long run.  相似文献   

6.
A mesocosm experiment was conducted to examine the effect of an arbuscular mycorrhizal (AM) fungus (Glomus mosseae (Nicol & Gerd.) Gerd. & Trappe) and a plant growth-promoting rhizobacterium (PGPR) (Pseudomonas mendocina Palleroni), alone or in combination, on the structural stability of the rhizosphere soil of Lactuca sativa L. grown under two levels of salinity. The plants inoculated with P. mendocina had significantly greater shoot biomass than the control plants at both salinity levels, whereas the mycorrhizal inoculation was only effective in increasing shoot biomass at the moderate salinity level. The aggregate stability of soils inoculated with the PGPR and/or G. mosseae significantly decreased with increasing saline stress (about 29% lower than those of soils under non-saline conditions). Only the inoculated soils showed higher concentrations of sodium (Na) under severe saline stress. The severe salinity stress decreased the glomalin-related soil protein (GRSP) concentration, but the highest values of GRSP were recorded in the inoculated soils. Our findings suggest that the use of AM fungi and/or a PGPR for alleviating salinity stress in lettuce plants could be limited by their detrimental effect on soil structural stability.  相似文献   

7.
有机肥、化肥及接种微生物对甜玉米生理和生长的影响   总被引:2,自引:0,他引:2  
A pot culture experiment was carried out in a glasshouse to compare the physiology and growth of sweet corn plants(Zea mays L.cv,Honey Bantam) grown under orgainc and chemical fertilizations with or without microbial inoculation(MI).The organic fertilizer used was fermented mainly using rice bran and oil mill sludge,and the MI was a liquid product containing many eneficial microbes such as lactic acid bacteria,yeast,photosynthetic bacteria and actinomycetes.The application amounts of the organic fertilizer and chemical fertilizers were based on the same rate of nitrogen,phosphorus and potassium.Sweet corn plants fertilized with organic materials inoculated with beneficial microbes grew better than those without inoculation.There were no significant differences in physiology and growth of the sweet corn plants between treatments of chemical fertilizers with and without MI.Among the organic fertilization treatments.only the sweet corn plants with organic fertilizer and MI applied 4 weeks before sowing had simlilar photosyntheitic capacity,total dry matter yield and ear yield to those with chemical fertilizers.Sweet corn plants in other organic fertilization treatments were weaker in physiology and grown than those in chemical fertilization treatments.There was no significant variance among chemical fertilization treatments at differenct time.It is concluded form this research that this organic fertilizer would be more effective if it was inoculated with the beneficial microbes.Early application of the organic fertilizer with beneficial microbes before sowing was recommended to make the nutrients available before the rapid growth at the eraly stage and obtain a yield simlar to or higher than that with chemical fertilizations.  相似文献   

8.
长期施肥黑土微生物区系及功能多样性的变化   总被引:9,自引:0,他引:9  
Black soil (Mollisol) is one of the main soil types in northeastern China. Biolog and polymerase chain reactiondenaturing gradient gel electrophoresis (PCR-DGGE) methods were used to examine the influence of various fertilizer combinations on the structure and function of the bacterial community in a black soil collected from Harbin, Heilongjiang Province. Biolog results showed that substrate richness and catabolic diversity of the soil bacterial community were the greatest in the chemical fertilizer and chemical fertilizer+manure treatments. The metabolic ability of the bacterial community in the manure treatment was similar to the control. DGGE fingerprinting indicated similarity in the distribution of most 16S rDNA bands among all treatments, suggesting that microorganisms with those bands were stable and not influenced by fertilization. However, chemical fertilizer increased the diversity of soil bacterial community. Principal com- ponent analysis of Biolog and DGGE data revealed that the structure and function of the bacterial community were similar in the control and manure treatments, suggesting that the application of manure increased the soil microbial population, but had no effect on the bacterial community structure. Catabolic function was similar in the chemical fertilizer and chemical fertilizer+manure treatments, but the composition structure of the soil microbes differed between them. The use of chemical fertilizers could result in a decline in the catabolic activity of fast-growing or eutrophic bacteria.  相似文献   

9.
Salinity is one of the major abiotic stress factors for cultivated plants, limiting their growth and productivity in many areas of the world. This study aims to determine the ameliorative effects of humic acid (HA) and plant growth-promoting bacteria (PGPR) on amino acids, enzymes, minerals, organic acids and hormones in Hungarian vetch (Vicia pannonica) plants under salinity stress conditions. Salinity stress was established by adding 0, 10, 30 and 60 mM of sodium chloride (NaCl) to growing media. HA and PGPR treatments had positive ameliorative effects on the minerals, organic acids, hormones and enzyme activity of Hungarian vetch plants under salinity stress conditions. PGPR treatments showed better ameliorative effects than HA. This study suggests that PGPR treatments have the potential to be used as alleviator fertilizer in salinity stress conditions and may have ameliorated the deleterious effects of salt stress on Hungarian vetch plants.  相似文献   

10.
A greenhouse experiment was carried out during the spring–summer 2009 to test the hypotheses that: (1) arbuscular‐mycorrhizal (AM) inoculation with a biofertilizer containing Glomus intraradices gives an advantage to overcome alkalinity problems, (2) mineral fertilization is more detrimental to AM development than organic fertilization on an equivalent nutrient basis. Arbuscular mycorrhizal (AM) and non‐AM of zucchini (Cucurbita pepo L.) plants were grown in sand culture with two pH levels in the nutrient solution (6.0 or 8.1) and two fertilization regimes (organic or mineral). The high‐pH nutrient solution had the same basic composition as the low‐pH solution, plus an additional 10 mM NaHCO3 and 0.5 g L–1 CaCO3. Increasing the concentration of NaHCO3 from 0 to 10 mM in the nutrient solution significantly decreased yield, plant growth, SPAD index, net assimilation of CO2 (ACO2), N, P, Ca, Mg, Fe, Mn, and Zn concentration in leaf tissue. The +AM plants under alkaline conditions had higher total, marketable yield and total biomass compared to –AM plants. The higher yield and biomass production in +AM plants seems to be related to the capacity of maintaining higher SPAD index, net ACO2, and to a better nutritional status (high P, K, Fe, Mn, and Zn and low Na accumulation) in response to bicarbonate stress with respect to –AM plants. The percentage root colonization was significantly higher in organic‐fertilized (35.7%) than in mineral‐fertilized plants (11.7%). Even though the AM root colonization was higher in organic‐fertilized plants, the highest yield and biomass production were observed in mineral‐fertilized plants due to the better nutritional status (higher N, P, Ca, and Mg), higher leaf area, SPAD index, and ACO2.  相似文献   

11.
Iron (Fe) bioavailability to plants is reduced in saline soils; however, the exact mechanisms underlying this effect are not yet completely understood. Siderophore-expressing rhizobacteria may represent a promising alternative to chemical fertilizers by simultaneously tackling salt-stress effects and Fe limitation in saline soils. In addition to draught, plants growing in arid soils face two other major challenges:high salinity and Fe deficiency. Salinity attenuates growth, affects plant physiology, and causes nutrient imbalance, which is, in fact, one of the major consequences of saline stress. Iron is a micronutrient essential for plant development, and it is required by several metalloenzymes involved in photosynthesis and respiration. Iron deficiency is associated with chlorosis and low crop productivity. The role of microbial siderophores in Fe supply to plants and the effect of plant growth-promoting rhizobacteria (PGPR) on the mitigation of saline stress in crop culture are well documented. However, the dual effect of siderophore-producing PGPR, both on salt stress and Fe limitation, is still poorly explored. This review provides a critical overview of the combined effects of Fe limitation and soil salinization as challenges to modern agriculture and intends to summarize some indirect evidence that argues in favour of siderophore-producing PGPR as biofertilization agents in salinized soils. Recent developments and future perspectives on the use of PGPR are discussed as clues to sustainable agricultural practices in the context of present and future climate change scenarios.  相似文献   

12.
Beneficial interactions of arbuscular mycorrhizal fungi (AM Fungi) and plant growth promoting rhizobacteria (PGPR) have an important role in keeping agriculture sustainable. The present study reports the positive effects of AM fungi (Rhizophagus intraradices, Rhizophagus fasciculatum), Burkholderia seminalis and dual inoculation of these two strains on growth of Lycopersicon esculatum and Capsicum annuum plant under drought stress conditions. Each treatment was replicated six times and was arranged in a complete randomized block design. A significant increase in terms of biomass, root length, shoot length, and chlorophyll content was observed with the plants inoculated with these beneficial microorganisms. Accumulation of proline was found to be less in AM fungi inoculated plants suggesting the role of it in mitigating the water stress. A positive correlation between % colonization and chlorophyll content, root length, catalase activity, and guaiacol peroxidase has been observed depicting the importance of the AM fungi in drought tolerance.  相似文献   

13.
Agricultural productivity is worldwide subjected to increasing salinity problems. Various strategies are applied to overcome the deleterious effects of salinity on plants. This study was conducted in order to determine whether drought pretreatment of seedlings or seed pretreatment with NaCl increases the long‐term salinity resistance of tomato (Solanum lycopersicum L.) and whether the adaptive response to salinity is accompanied by physiological changes throughout the plant‐growth cycle. When plants were pretreated at the five‐leaf growth stage, the plant dry weight was significantly higher in drought‐pretreated than in non‐pretreated plants after 50 d of salt treatment. The positive effect of drought pretreatment applied at the five‐leaf stage was maintained throughout the entire growth cycle, as fruit yield of drought‐pretreated plants was 40% higher than that of non‐pretreated plants at the end of the harvest period (150 d of 70 mM NaCl treatment). Moreover, the most productive plants maintained lower Na+ and Cl accumulation in their leaves until the end of the growth cycle, which shows that adaptation is a long‐term response during which the plants adjust their physiology to the environmental conditions. Salt resistance was also improved through seed pretreatment with NaCl. In conclusion, drought pretreatment applied at the five‐leaf stage or seed pretreatment with NaCl provide an alternative way to enhance salt resistance in tomato, and the increase in yield is associated with physiological changes throughout the plant‐growth cycle.  相似文献   

14.
We have evaluated the effectiveness of arbuscular mycorrhizal fungi (AMF) inoculation (+M and ?M) at 0, 60, and 120 kg ?ha?1 of P fertilizer on crop growth (IEg), plant P nutrition and yield (IEy), and on mycorrhization occurrence in a processing tomato crop. Two experiments were carried out in calcareous soil under field conditions. Phosphorus fertilization had no effect on crop growth and yield. At harvests, +M plants showed higher aerial dry weight, fruit fresh weight, and P concentration. Inoculated plants produced larger inflorescences, higher flower number, and total and marketable fruit number compared with ?M plants. At P0 and P60, plants associated with exogenous AMF were able to enhance P recovery, nevertheless factors other than the P uptake improvement concurred to make the inoculation effective. In both years, P fertilization enhanced IEg and IEy, and the application of 60 kg ?ha?1 of P in inoculated soil was enough to reach high production level (134 Mg ?ha?1). In the first trial, due to earlier root mycorrhization in inoculated and P fertilized soil, higher IEg and IEy were obtained compared with the second experiment. In the latter, during the initial phase, plant growth was more affected by P fertilization than by soil arbuscular mycorrhizal (AM) inoculation. Root mycorrhization by native AM fungi indicates that the intensive management of the investigated agro-system did not depress fungi infectivity; however, it caused the selection of less effective AMF. The application of selected AMF as a biofertilizer may represent an innovative ecosustainable practice for improving the crop profitability for growers while reducing the need for P fertilization.  相似文献   

15.
In a greenhouse pot experiment, maize was grown inoculated with the spores of the VAM fungi Glomus mosseae and Glomas multicaulis or non‐inoculated. Low soluble ferrous phosphate (FePO4.4H2O) was added to the mycorrhized and non‐mycorrhized maize. The fresh and dry weights of mycorrhized plants with added phosphate (P) were higher than in mycorrhized plants without added P or non‐mycorrhized plants with added P. The amount of P in the soil samples from pots with mycorrhizal plants fertilized with P was evidently smaller than those in samples also fertilized non‐mycorrhizal plants. The percentage of P was higher in tissues of fertilized mycorrhizal plants than in those mycorrhized plants without or non‐mycorrhized plants with added low‐ soluble P. These results indicated that plants in VAM symbiosis mobilize P better from low‐soluble P than non‐mycorrhized plants.  相似文献   

16.
A pot experiment in a greenhouse was conducted in order to investigate the effect of different N2‐fixing, phytohormone‐producing, and P‐solubilizing bacterial species on wheat and spinach growth and enzyme activities. Growth parameters and the activities of four enzymes, glucose‐6‐phosphate dehydrogenase (G6PD; EC 1.1.1.49), 6‐phosphogluconate dehydrogenase (6PGD; EC 1.1.1.44), glutathione reductase (GR; EC 1.8.1.7), and glutathione S‐transferase (GST; EC 2.5.1.18) were determined in the leaves of wheat (Triticum aestivum L., Konya) and spinach (Spinacia oleracea L.), noninoculated and inoculated with nine plant growth–promoting rhizobacteria (PGPR: Bacillus cereus RC18, Bacillus licheniformis RC08, Bacillus megaterium RC07, Bacillus subtilis RC11, Bacillus OSU‐142, Bacillus M‐13, Pseudomonas putida RC06, Paenibacillus polymyxa RC05 and RC14). Among the strains used in the present study, six PGPR exhibited nitrogenase activity and four were efficient in phosphate solubilization; all bacterial strains were efficient in indole acetic acid (IAA) production and significantly increased growth of wheat and spinach. Inoculation with PGPR increased wheat shoot fresh weight by 16.2%–53.8% and spinach shoot fresh weight by 2.2%–53.4% over control. PGPR inoculation gave leaf area increases by 6.0%–47.0% in wheat and 5.3%–49.3% in spinach. Inoculation increased plant height by 2.2%–24.6% and 1.9%–36.8% in wheat and spinach, respectively. A close relationship between plant growth and enzyme activities such as G6PD, 6PGD, GR, and GST was demonstrated. Plant‐growth response was variable and dependent on the inoculant strain, enzyme activity, plant species, and growth parameter evaluated. In particular, the N2‐fixing bacterial strains RC05, RC06, RC14, and OSU‐142 and the P‐solubilizing strains RC07 and RC08 have great potential in being formulated and used as biofertilizers.  相似文献   

17.
Plant growth–promoting rhizobacteria (PGPR) have been reported to stimulate the growth and yield of grain crops, particularly when nutrient supply is poor. However, the mechanisms underlying stimulation of plant growth may vary depending not only on growth conditions and crop management but also on plant and bacterial species. The present study assessed the effect of an inoculation with single or multiple PGPR strains on phosphorus (P)‐solubilization processes in the soil and on grain yield in wheat. Single inoculation with Bacillus subtilis OSU‐142, Bacillus megaterium M3, or Azospirillum brasilense Sp245 increased grain yield by 24%, 19%, and 19%, respectively, while a mixed inoculation with OSU‐142, M3, and Sp245 increased grain yield by 33% relative to noninoculated plants. Single inoculations with Paenibacillus polymyxa RC05 or Bacillus megaterium RC07 were less effective. Single or mixed treatments with OSU‐142, M3, and Sp245 increased the concentrations of the labile and moderately labile P fractions in rhizosphere soil. The growth‐stimulating effect of OSU‐142, M3, and Sp245 was also reflected by higher P concentrations in most plant organs. Among all inocula tested, the highest plant P acquisition was obtained in the presence of M3 and accompanied by the highest microbial P levels and the highest phosphatase activities in the rhizosphere soil. In conclusion, seed inoculation with mixed PGPR strains may effectively substitute for a part of P‐fertilizer application in extensive wheat production, and in particular M3 appears to improve the solubilization of inorganic soil P.  相似文献   

18.
Abstract

Greenhouse experiment was conducted to evaluate the effect of arbuscular mycorrhizal fungi (AMF) on plant growth, and nutrient uptake in saline soils with different salt and phosphorus (P) levels. The following treatments were included in this experiment: (i) Soil A, with salt level of 16.6 dS m?1 and P level of 8.4 mg kg?1; (ii) Soil B, with salt level of 6.2 dS m?1 and P level of 17.5 mg kg?1; and (iii) Soil C, with salt level of 2.4 dS m?1 and P level of 6.5 mg kg?1. Soils received no (control) or 25 mg P kg?1 soil as triple super phosphate and were either not inoculated (control) or inoculated with a mixture of AM (AM1) and/or with Glomus intraradices (AM2). All pots were amended with 125 mg N kg?1 soil as ammonium sulfate. Barley (Hordeum vulgar L., cv. “ACSAD 6”) was grown for five weeks. Plants grown on highly saline soils were severely affected where the dry weight was significantly lower than plants growing on moderately and low saline soils. The tiller number and the plant height were also lower under highly saline condition. The reduced plant growth under highly saline soils is mainly attributed to the negative effect of the high osmotic potential of the soil solution of the highly saline soils which tend to reduce the nutrient and water uptake as well as reduce the plant root growth. Both the application of P fertilizers and the soil inoculation with either inoculum mixture or G. intraradices increased the dry weight and the height of the plants but not the tiller number. The positive effect of P application on plant growth was similar to the effect of AM inoculation. Phosphorus concentration in the plants was higher in the mycorrhizal plant compared to the non mycorrhizal ones when P was not added. On the other hand, the addition of P increased the P concentration in the plants of the non mycorrhizal plants to as high as that of the mycorrhizal plants. Iron (Fe) and zinc (Zn) uptake increased with AM inoculation. The addition of P had a positive effect on micronutrient uptake in soil with low level of soil P, but had a negative effect in soil with high level of soil P. Micronutrient uptake decreases with increasing soil salinity level. Inoculation with AMF decreases sodium (Na) concentration in plants grown in soil of the highest salinity level but had no effect when plants were grown in soil with moderate or low salinity level. The potassium (K) concentration was not affected by any treatment while the K/Na ratio was increased by AM inoculation only when plant were grown in soil of the highest salinity level.  相似文献   

19.
Bacillus velezensis strains, belonging to plant growth‐promoting rhizobacteria (PGPR), are increasingly used as microbial biostimulant. However, their field application to winter wheat under temperate climate remains poorly documented. Therefore, three B. velezensis strains IT45, FZB24 and FZB42 were tested for their efficacy under these conditions. Two biological interaction systems were firstly developed under gnotobiotic and greenhouse conditions combined with sterile or non‐sterile soil, respectively, and finally assayed in the field during two years coupled with different N fertilization rates. Under gnotobiotic conditions, all three strains significantly increased root growth of 14 d‐old spring and winter wheat seedlings. In the greenhouse using non‐sterile soil, only FZB24 significantly increased root biomass of spring wheat (+31%). The three strains were able to improve nutrient uptake of the spring wheat grown in the greenhouse, particularly for the micronutrients Fe, Mn, Zn, and Cu, but the observed increases in nutrient uptake were dependent on the organs and the elements. The root biomass increases in inoculated plants coincided with lowered nutrient concentrations of P and K. In 2014, under field conditions and absence of any N fertilizer supply, FZB24 significantly increased grain yields by 983 kg ha?1, or 14.9%, in relation to non‐inoculated controls. The three strains in the 2015 field trial failed to confirm the previous positive results, likely due to the low temperatures occurring during and after inoculations. The Zeleny sedimentation value, indicative of flour quality, was unaffected by the inoculants. The results are discussed in the perspective of bacterial application to wheat under temperate agricultural practices.  相似文献   

20.
We compare the effect of arbuscular mycorrhizal (AM) colonization and PO4?3 fertilization on nitrate assimilation, plant growth and proline content in lettuce plants growing under well‐watered (?0.04 MPa) or drought (?0.17 MPa) conditions. We also tested how AM‐colonization and PO4?3 fertilization influenced N uptake (15N) and the percentage of N derived from the fertilizer (% NdfF) by plants under a concentration gradient of N in soil. Growth of mycorrhizal plants was comparable with that of P‐fertilized plants only under well‐watered conditions. Shoot nitrogen content, proline and nitrate reductase activity were greater in AM than in P‐fertilized plants under drought. The addition of 100 μg g?1 P to the soil did not replace the AM effect under drought. Under well‐watered conditions, AM plants showed similar (at 3 mmol N), greater (at 6 mmol N) or lesser (at 9 mmol N) %NdfF than P‐fertilized plants. Comparing a control (without AM inoculation) to AM plants, differences in % NdfF ranged from 138% (3 mmol N) to 22.6% (6 mmol N) whereas no differences were found at 9 mmol N. In comparison with P fertilization, mycorrhizal effects on %NdfF were only evident at the lowest N levels, which indicated a regulatory mechanism for N uptake in AM plants affected by N availability in the soil. At the highest N level, P‐fertilized plants showed the greatest %NdfF. In conclusion, AM symbiosis is important for N acquisition and N fertilizer utilization but this beneficial mycorrhizal effect on N nutrition is reduced under large quantities of N fertilizer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号