首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effect of the ripening time on the proteolytic process in cheeses made from ewe's milk during a 139-day ripening period was monitored by the use of capillary electrophoresis of pH 4.6 insoluble fraction. Totals of 18 and 21 peaks were recognized and matched in the electropherograms obtained with a fused-silica capillary and a neutral capillary (hydrophilically coated), respectively. These peaks correspond to intact ovine caseins and their hydrolysis products (alpha(s1)-casein I, alpha(s1)-casein II, alpha(s1)-casein III, alpha(s2)-casein, beta(1)-casein, beta(2)-casein, p-kappa-casein, alpha(s1)-I-casein, gamma(1)-casein, gamma(2)-casein, and gamma(3)-casein). The alpha(s)-caseins (alpha(s1)- and alpha(s2)-casein) displayed similar degradation pattern to one another, but different from those of beta-caseins (beta(1)- and beta(2)-casein). beta-Caseins were very much undergoing lesser degradation during the ripening time than alpha(s)-casein. Finally, partial least-squares regression and principal components regression were used to predict the ripening time in cheeses. The models obtained yielded good results since the root-mean-square error in prediction by cross validation was <8.6 days in all cases.  相似文献   

2.
In this study a new method was developed for analysis of the low molecular weight protein fraction of milk, allowing a simple and fast overview of the peptide profile of various milk samples. For this purpose, immobilized metal affinity chromatography (IMAC) was coupled with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). By this technique, two major peptides in milk could be identified as fragments of alpha-s1-casein. During heat treatment of raw milk, five new peptides were generated, the origin of which could be assigned to the casein fraction. Storage experiments with extended shelf life milk at 4 degrees C did not show any changes in the peptide profile, whereas in ultra high temperature milk stored at room temperature, one peptide increased significantly, which was identified as the N-terminus of alpha-s1-casein. The peptide was assumed to be formed in an enzymatic reaction, which was confirmed in a storage experiment with sterilized milk. Analyses of different commercially available milk samples confirmed the results obtained with the heated and stored milk. Furthermore, differences in the peptide profiles of the samples, probably due to different cow breeds or lactation stages, were observed. These results establish IMAC prior to MALDI-TOF-MS as a valid tool for the rapid analysis of the peptide profile of milk.  相似文献   

3.
Bovine chymosin has long been the preferred enzyme used to coagulate cow's milk, in the initial stage of cheese production, during which it cleaves a specific bond in the milk protein κ-casein. Recently, camel chymosin has been shown to have a 70% higher clotting activity toward cow's milk and, moreover, to cleave κ-casein more selectively. Bovine chymosin, on the other hand, is a poor clotting agent toward camel's milk. This paper reports a molecular modeling study aimed at understanding this disparity, based on homology modeling and molecular dynamics simulations using peptide fragments of κ-casein from cow and camel in both bovine and camel chymosin. The results show that the complex between bovine chymosin and the fragment of camel κ-casein is indeed less stable in the binding pocket. The results also indicate that this in part may be due to charge repulsion between a lysine residue in bovine chymosin and an arginine residue in the P4 position of camel κ-casein.  相似文献   

4.
During thermal milk processing, severe oxidation can occur, which alters the technological and physiological properties of the milk proteins. Due to differences in composition and physicochemical properties, it can be expected that the particular milk proteins are differently affected by oxidative damage. Therefore, the protein-specific distribution of oxidation products in the heated milk proteome was investigated. Raw and heated milk samples were separated by one-dimensional gel electrophoresis. Protein oxidation was visualized by Western blot after derivatization of protein carbonyls with 2,4-dinitrophenylhydrazine. Thus, α-lactalbumin displayed enhanced oxidation compared to β-lactoglobulin, despite its lower concentration in milk. Highly selective oxidation was detected for a previously unassigned minor milk protein. The protein was identified by its peptide mass fingerprint as a variant of α(S1)-casein (α(S1)-casein*). Similar oxidation patterns were observed in several commercial milk products.  相似文献   

5.
Chemical (vapors of formaldehyde), physical (temperature, UV and gamma radiation), and aging treatments were applied to wheat gluten films. Changes in film mechanical properties, water vapor permeability, solubility, and color coordinates were investigated. An aging of 360 h led to a 75 and 314% increase in tensile strength and Young's modulus, respectively, and a 36% decrease in elongation. Severe thermal (above 110 degrees C, 15 min) and formaldehyde treatments highly improved the mechanical resistance of the films. Under these conditions, up to 376 and 654% increase in tensile strength and Young's modulus and up to 66% decrease in elongation have been observed. Water solubility was only slightly modified, whereas water vapor permeability was not affected. Color coordinates of films heated above 95 degrees C changed to a great extent. An almost total insolubilization of proteins in sodium dodecyl sulfate occurred for heat- and formaldehyde-treated films, due to the modification of protein network leading to changes in properties of the films.  相似文献   

6.
Chymosin-induced coagulation of individual milk proteins during incubation at 30 °C was investigated using a proteomic approach. The addition of chymosin (0.006 units/mL) caused the milk proteins to coagulate after a 3 h incubation period. Approximately 88% of the milk proteins were coagulated into the milk pellet fraction, and the protein concentration of the milk supernatant fraction (MSF) decreased from 29.88 ± 0.12 to 3.74 ± 0.13 mg/mL. SDS-PAGE analysis showed that α(S)-, β- and κ-caseins in the MSF were almost depleted and that the total intensity of the protein bands corresponding to α(S)-caseins (α(S1) and α(S2)), β-casein, and κ-casein decreased from 1088.0, 901.5, and 617.0 area units to 6.9, 6.1, and 5.2 area units, respectively. Two-dimensional electrophoresis analysis indicated that α(S1)-, α(S2)-, β-, and κ-casein and a fraction of the β-lactoglobulin and serum albumin were found in the MSF following incubation with chymosin.  相似文献   

7.
Ragusano is a pasta filata cheese produced from raw milk in Sicily. The proteolysis was extensively analyzed after stretching (day 0), at 4 and 7 months of ripening through soluble nitrogen, urea-PAGE, and peptide identification by tandem mass spectrometry. After stretching, 123 peptides were identified: 72 arising from β-casein, 34 from α(s1)-casein, and 17 from α(s2)-casein. The main protein splitting corresponded to the action of plasmin, chymosin, cathepsin D, cell envelope proteinase, and peptidase activities of lactic acid bacteria. Unlike other types of cheeses, <10% residual β- and α(s)-caseins remained intact at 7 months, indicating original network organization based on large casein fragments. The number of identified soluble peptides also dramatically decreased after 4 and 7 months of ripening, to 47 and 25, respectively. Among them, bioactive peptides were found, that is, mineral carrier, antihypertensive, and immunomodulating peptides and phosphopeptides.  相似文献   

8.
Casein micelles were separated from unheated reconstituted skim milk powder (RSMP) and were resuspended in the serum of RSMP that had been heated, with and without dialysis of this serum against unheated RSMP. Using size-exclusion chromatography, it was found that the soluble complexes of whey protein (WP) with κ-casein in the serum of the heated milk bind progressively to unheated casein micelles during renneting, even prior to the onset of clotting. Similar trends were noted when casein micelles from RSMP heated at pH values of 6.7, 7.1, or 6.3, each with different amounts of WP coating the micelles, were renneted in the presence of soluble WP/κ-casein complexes. No matter what was the initial load of micelle-bound WP complexes, all micelle types were capable of binding additional serum protein complexes during renneting. However, it is not clear that this binding of WP/κ-casein complexes to the micellar surface is a direct cause of the impaired rennet clotting of the RSMP.  相似文献   

9.
Low concentrations of a disulfide reducing agent were added to unheated and heated (80 °C for 30 min) skim milk, with and without added whey protein. The reduction of the β-lactoglobulin and κ-casein disulfide bonds was monitored over time using electrophoresis. The distribution of the proteins between the colloidal and serum phases was also investigated. κ-Casein disulfide bonds were reduced in preference to those of β-lactoglobulin in both unheated and heated skim milk (with or without added whey protein). In addition, in heated skim milk, while the serum κ-casein was reduced more readily than the colloidal κ-casein, the distribution of κ-casein between the two phases was not affected.  相似文献   

10.
Molecular changes in milk proteins during storage of UHT-treated milk have been investigated using two-dimensional electrophoresis (2-DE) coupled to MALDI-TOF mass spectrometry. UHT-treated samples were stored at three different temperatures, 4 °C, 28 °C, and 40 °C, for two months. Three main changes could be observed on 2-DE gels following storage. They were (1) the appearance of diffuse staining regions above the position of the monomeric caseins caused by nondisulfide cross-linking of α and β-caseins; (2) the appearance of additional acidic forms of proteins, predominantly of α(S1)-casein, caused by deamidation; and (3) the appearance of "stacked spots" caused by lactosylation of whey proteins. The extent of the changes increased with increased storage temperature. Mass spectrometric analysis of in-gel tryptic digests showed that the cross-linked proteins were dominated by α(S1)-casein, but a heterogeneous population of cross-linked forms with α(S2)-casein and β-casein was also observed. Tandem MS analysis was used to confirm deamidation of N(129) in α(S1)-casein. MS analysis of the stacked spots revealed lactosylation of 9/15 lysines in β-lactoglobulin and 8/12 lysines in α-lactalbumin. More extensive analysis will be required to confirm the nature of the cross-links and additional deamidation sites in α(S1)-casein as the highly phosphorylated nature of the caseins makes them challenging prospects for MS analysis.  相似文献   

11.
Several theoretical models of the casein micelle structure have been proposed in the past, but the exact organization of the four individual caseins (α(s1), α(s2), β, and κ) within this supramolecular structure remains unknown. The present study aims at determining the topography of the casein micelle surface by following the interaction between 44 monoclonal antibodies specific for different epitopes of α(s1)-, α(s2)-, β-, and κ-casein and the casein micelle in real time and no labeling using a surface plasmon resonance (SPR)-based biosensor. Although the four individual caseins were found to be accessible for antibody binding, data confirmed that the C-terminal extremity of κ-casein was highly accessible and located at the periphery of the structure. When casein micelles were submitted to proteolysis, the C-terminal extremity of κ-casein was rapidly hydrolyzed. Disintegration of the micellar structure resulted in an increased access for antibodies to hydrophobic areas of α(s1)- and α(s2)-casein.  相似文献   

12.
Milk proteins contain numerous potential bioactive peptides, which may be released by digestive proteases or by the proteolytic system of lactic acid bacteria during food processing. The capacity of Streptococcus thermophilus to generate peptides, especially bioactive peptides, from bovine caseins was investigated. Strains expressing various levels of the cell envelope proteinase, PrtS, were incubated with α(s1)-, α(s2)-, or β-casein. Analysis of the supernatants by LC-ESI-MS/MS showed that the β-casein was preferentially hydrolyzed, followed by α(s2)-casein and then α(s1)-casein. Numbers and types of peptides released were strain-dependent. Hydrolysis appeared to be linked with the accessibility of different casein regions by protease. Analysis of bonds hydrolyzed in the region 1-23 of α(s1)-casein suggests that PrtS is at least in part responsible for the peptide production. Finally, among the generated peptides, 13 peptides from β-casein, 5 from α(s2)-casein, and 2 from α(s1)-casein have been reported as bioactive, 15 of them being angiotensin-converting enzyme inhibitors.  相似文献   

13.
The effects of protein oxidation, for example of methionine residues, are linked to many diseases, including those of protein misfolding, such as Alzheimer's disease. Protein misfolding diseases are characterized by the accumulation of insoluble proteinaceous aggregates comprised mainly of amyloid fibrils. Amyloid-containing bodies known as corpora amylacea (CA) are also found in mammary secretory tissue, where their presence slows milk flow. The major milk protein κ-casein readily forms amyloid fibrils under physiological conditions. Milk exists in an extracellular oxidizing environment. Accordingly, the two methionine residues in κ-casein (Met(95) and Met(106)) were selectively oxidized and the effects on the fibril-forming propensity, cellular toxicity, chaperone ability, and structure of κ-casein were determined. Oxidation resulted in an increase in the rate of fibril formation and a greater level of cellular toxicity. β-Casein, which inhibits κ-casein fibril formation in vitro, was less effective at suppressing fibril formation of oxidized κ-casein. The ability of κ-casein to prevent the amorphous aggregation of target proteins was slightly enhanced upon methionine oxidation, which may arise from the protein's greater exposed surface hydrophobicity. No significant changes to κ-casein's intrinsically disordered structure occurred upon oxidation. The enhanced rate of fibril formation of oxidized κ-casein, coupled with the reduced chaperone ability of β-casein to prevent this aggregation, may affect casein-casein interaction within the casein micelle and thereby promote κ-casein aggregation and contribute to the formation of CA.  相似文献   

14.
Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis of the tryptic digest of a cleaned-up food matrix extract was used for the detection of milk allergens. The emphasis of this study was on casein, which is the most abundant milk protein and is also considered the most allergenic. A sample cleanup method was developed using an ion exchange column and centriprep device. Cookies spiked with milk powder from 0 to 1250 ppm were extracted, cleaned up, and either digested directly by trypsin or further cleaned up by gel electrophoresis before digestion. The peptide mixture was analyzed on a capillary LC-quadrupole time-of-flight system. Two marker peptides from alphaS1-casein were identified and used for prescreening. The MS/MS data from the mass spectrometry system were processed with Masslynx v4.0 and submitted for database search using either ProteinLynx Global Server or Mascot for protein identification. The LC-MS/MS method, using casein enzyme-linked immunosorbent assay as a reference, was tested on the cookie matrix and was extended to other sample matrices. There were good agreements between the two. This LC-MS/MS method provides a valuable confirmatory method for the presence of casein. It also allows the simultaneous detection of other milk allergens.  相似文献   

15.
Spray-dried skim milk, naturally contaminated with aflatoxin M1, was added to either raw or pasteurized whole milk to a final concentration of 1.1 microgram aflatoxin M1/L milk. Formalin (37% w/w) was added to the milk solutions to final concentrations of 0, 0.025, 0.05, and 0.1% formaldehyde. Samples were stored in the dark at 21 degrees C in plastic and glass containers and were analyzed for aflatoxin M1 at 0, 1, 2, 3, and 4 weeks. This experiment was repeated using only raw milk and glass containers. Aflatoxin M1 analyses were done at 0, 1, and 2 weeks. Aflatoxin M1 losses increased over time and with increased formaldehyde concentration. With both experiments, aflatoxin M1, levels after 2 weeks were less than 0.05 micrograms/L in samples containing 0.1% formaldehyde.  相似文献   

16.
Andosols and the soil components (allophanes, humic acids, and goethite) had been autoclaved to destroy the nuclease activity of soil microflora. DNA adsorption by allophanes and Andosols was decreased by increasing the amount of α-casein added to the allophanes and to soils up to casein concentration of 5 mg ml?1. DNA adsorption by humic acids was significantly increased by increasing the amount of α-casein up to 1.0 mg ml?1, whereas the addition of 20 mg α-casein ml?1 completely blocked DNA adsorption. These results can explain why the addition of excess skim milk is operationally needed for effective DNA extraction from Andosols. The amount of DNA adsorbed by Andosols treated with dephosphorylated α-casein was significantly higher than that of not treated Andosols (p?相似文献   

17.
Polyclonal antibodies raised against the plasmin-released 1-28 phosphopeptide from bovine beta-casein [i.e., beta-CN(f1-28)4P] specifically recognized the tryptic beta-casein 1-25 and 2-25 peptides, whatever the degree of phosphorylation, but were unresponsive to the shortened beta-casein 16-22 phosphopeptide. These antibodies were able to recognize the parent bovine beta-casein as well as the homologous water buffalo protein, but they could not detect the homologous counterparts from ovine and caprine milks. Such antibodies were used in competitive enzyme-linked immunosorbent assays to monitor the plasmin-mediated release of the 1-28 phosphopeptide from beta-casein and to evaluate the residual native beta-casein in bovine cheese sampled during ripening. Applications of these polyclonal antibodies are suggested mainly for estimating the age of hard cheeses and, possibly, for tracing the presence of bovine casein in fresh ovine and caprine cheeses.  相似文献   

18.
The effect of the ripening time on the proteolytic process in cheeses manufactured from mixtures of cow's and ewe's milk during a 167-day ripening period was monitored by capillary electrophoresis of the pH 4.6-insoluble fraction. Totals of 21 and 16 peaks were recognized and matched in the electropherograms obtained with a fused-silica capillary and a neutral capillary (hydrophilically coated), respectively. These peaks corresponded to intact bovine and ovine caseins and their hydrolysis products (e.g., alpha(s1)-casein, gamma-caseins). In 167-day-old cheeses, bovine alpha(s0)-casein (alpha(s1)-casein 9P) had been completely degraded and 6% of the residual bovine alpha(s1)-casein remained intact. Breakdown of the beta-casein fraction was lower than that of the alpha(s)-casein fraction. Finally, partial least-squares regression and principal component regression were used to predict the ripening time in cheeses. The root-mean-square errors in prediction by cross-validation were <7.8 days in all cases.  相似文献   

19.
The first enzyme of the basidiomycete Piptoporus soloniensis, a peptidase (PsoP1), was characterized after isolation from submerged cultures, purification by fractional precipitation, and preparative native-polyarylamide gel electrophoresis (PAGE). The native molecular mass of PsoP1 was 38 kDa with an isoelectric point of 3.9. Similar to chymosin from milk calves, PsoP1 showed a maximum milk-clotting activity (MCA) at 35-40 °C and was most stable at pH 6 and below 40 °C. The complete inhibition by pepstatin A identified this enzyme as an aspartic peptidase. Electrospray ionization-tandem MS showed an amino acid partial sequence that was more homologous to mammalian milk clotting peptidases than to the chymosin substitute from a fungal species, such as the Zygomycete Mucor miehei. According to sodium dodecyl sulfate-PAGE patterns, the peptidase cleaved κ-casein in a way similar to chymosin and hydrolyzed β-casein slowly, as it would be expected from an efficient chymosin substitute.  相似文献   

20.
This paper reports the development of an immunoassay for the specific analysis of doxycycline (DC), a congener of the tetracycline antibiotic family (TCs), in milk samples. This is the first time that DC antibody production is reported, based on a rationally designed and well-characterized immunizing hapten. The chemical structure of the immunizing hapten (13-[(2-carboxyethyl)thiol]-5-hydroxy-6-α-deoxytetracycline, TC1) was designed to maximize recognition of the tetracycline characteristic moiety defined as lower periphery of the TCs plus the region of the upper periphery composed by the hydroxyl group at position C(5) (B ring) and the dimethylamino group in ring A. Polyclonal antibodies raised against TC1 coupled to horseshoe crab hemocianyn (HCH) were used to develop a homologous indirect competitive enzyme-linked immunosorbent assay (ELISA). The microplate ELISA can detect DC in buffer down to 0.1 μg L(-1). The ELISA has been proven to tolerate a wide range of ionic strengths and pH values. The assay is very selective for DC with a minor recognition of methacycline (32% of cross-reactivity). Experiments performed with whole milk samples demonstrate that samples can be directly analyzed after a simple treatment method, reaching detectability values below 5 μg L(-1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号