首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
【目的】 在叶片水平上构建基于高光谱的苹果品种叶片铁素含量估测模型,为探寻实时、高效、无损的果树树体营养诊断提供技术途径。【方法】以苹果品种岩富10号为材料,测定岩富10号叶片光谱数据和铁素含量,采用光谱分析和相关分析法,筛选与叶片铁素含量相关性较强的光谱组合,利用偏最小二乘法构建苹果叶片铁素含量光谱估测模型。【结果】岩富10号苹果叶片一阶微分光谱与铁素含量的敏感波段为R′990R′1 113R′1 360R′1 408,相关系数最高为-0.698 9。对敏感波段两两进行加、减、乘、除运算,最优波段组合形式R′990×R′1 048与铁素含量相关系数为0.846 2。估测模型拟合度(R2)最高为0.827 5。【结论】苹果叶片一阶微分光谱组合与铁素含量显著相关(P<0.05),光谱组合能够明显提高其相关性,偏最小二乘法与逐步回归建模相比估算模型的精度更佳,可以用于苹果叶片铁素含量的光谱估算。  相似文献   

2.
【目的】探究玉米叶片SPAD值与其高光谱特征之间的品种差异,构建不同玉米品种叶片SPAD值估测模型,并对模型应用范围进行验证。【方法】通过大田试验,测定多个玉米品种叶片的SPAD值及其高光谱数据,利用相关分析及逐步回归分析等方法,构建和筛选玉米叶片SPAD值与相关光谱参数的回归模型,并利用偏差率对模型精度进行检验。【结果】不同玉米品种叶片的SPAD值与其高光谱反射率及一阶导数的相关波段存在差异,但品种间差异较小,关系最密切的波段均处于560和700nm附近。对不同玉米品种的光谱反射率一阶导数进行比较时,出现"红移"现象,"红移"规律与各品种叶片SPAD值大小表现一致;叶片SPAD值与光谱反射率一阶导数的显著相关波段在510,615,690和740nm附近。在构建估测模型时,以单波段光谱参数构建的模型估测效果较组合波段构建的模型好,且模型类型为多元方程和指数方程。以单一玉米品种叶片光谱参数建立的模型可以对其他玉米品种叶片的SPAD值进行估测,但估测精度在不同品种间存在差异。【结论】以高光谱560nm附近波段反射率建立的模型精度最高,对不同品种的玉米叶片SPAD预测值偏差率普遍小于5.00%。  相似文献   

3.
利用光谱仪(SVC HR-768)对树龄22年的库尔勒香梨叶片进行光谱反射率测定,采集并分析叶片全氮含量。采用逐步回归法分析库尔勒香梨叶片全氮含量与叶片原始光谱反射率、一阶微分光谱反射率的相关性,并建立叶片全氮含量估测模型。结果表明:不同生育期库尔勒香梨叶片光谱的敏感波段和敏感波长均有差异,依据敏感波长建立库尔勒香梨叶片全氮含量估测模型,并对其进行检验。确定基于光谱一阶微分模型Y=50.535X703-40.586可作为坐果期库尔勒香梨叶片全氮含量的最佳估测模型;基于原始光谱模型Y=0.856X769-29.233可作为膨大期库尔勒香梨叶片全氮含量的最佳估测模型;基于原始光谱模型Y=0.728X761-14.142可作为成熟期库尔勒香梨叶片全氮含量的最佳估测模型。不同生育期库尔勒香梨叶片全氮含量估测模型进行比较,坐果期估测模型的拟合效果更好,预测精度更高。  相似文献   

4.
【目的】利用敏感波段构建适宜的植被指数,对于提高光谱技术诊断作物营养状况的精确度具有十分重要的意义。【方法】采用单因素随机区组设计的方法,通过设置5种不同施氮处理,研究夏玉米在吐丝期穗位叶光谱反射率与氮素含量的关系,进而比较了前人的植被指数与构建的8种不同形式宽窄波段组合植被指数的优越性,并对构建的氮素含量估测模型进行精度验证。【结果】穗位叶原始光谱反射率在近红外波段(700~1000 nm)随施氮量增加而升高,与氮素含量的变化表现一致;一阶导数光谱的红边位置随施氮量增加依次为698、703、709、714和714 nm,出现"红移"现象;利用氮素敏感波段构建宽窄波段组合的植被指数与叶片氮含量进行相关性分析,优于前人所采用的植被指数;植被指数[R(800-900)-R(692-729)]/R711和植被指数[R(800-900)+R(650-670)]/R711构建的乘幂函数估测模型检验精度较高,R~2和RMSE分别为0.92和0.09。【结论】利用氮素敏感波段构建的宽窄波段组合植被指数,提高了光谱参量与氮素含量的相关性,可以实现对夏玉米吐丝期氮素营养的诊断。  相似文献   

5.
一种新的估算水稻上部叶片蛋白氮含量的植被指数   总被引:1,自引:0,他引:1  
 【目的】阐明水稻顶部4张叶片蛋白氮含量和反射光谱特征的变化规律及其相互关系,建立快速、准确诊断水稻功能叶片蛋白氮含量的方法。【方法】通过3年不同施氮水平和不同品种类型的大田试验,分生育期同步测定顶部4张叶片的光谱反射率及蛋白氮含量,系统分析叶片蛋白氮含量与多种高光谱参数的定量关系。【结果】水稻叶片蛋白氮含量和光谱反射率在不同施氮水平、不同生育期及不同叶位间均存在明显差异,叶片蛋白氮含量的敏感波段主要存在于可见光绿光区530~580 nm及红边区域695~715 nm,其中红边区域表现最为显著。红边区域700 nm附近波段与近红外短波段的比值组合(SRs)可以有效地估算水稻上部功能叶片的蛋白氮含量,其次是绿光区587 nm左右的波段与近红外短波段的比值组合。基于新提出的SR(770,700)及已报道的GM-2、SR705、RI-half光谱指数,线性回归模型的拟合精度(R2)分别达到 0.874,0.873,0.871和0.867。经独立资料的检验表明,这些回归模型可以实时监测叶片蛋白氮含量变化,预测精度R2分别为0.810、0.806、0.804和0.800,相对误差RE 分别为12.1%、12.4%、12.6%和12.9%。【结论】可以利用关键特征光谱指数来诊断水稻上部叶片的蛋白氮含量状况,尤以SR(770,700)、GM-2、SR705和RI-half表现为较强的估测能力。  相似文献   

6.
【目的】 研究一种快速、简便、无损的苹果冠层叶绿素含量估测模型。探索苹果品种岩富10号冠层的高光谱特征和叶绿素含量的估测方法,为该地区岩富10号苹果营养的快速诊断奠定基础,为红富士苹果精准化管理和-7光谱尺度研究提供参考依据。【方法】以红富士苹果(Malus domestica Borkh. cv. Red Fuji)主栽品种岩富10号叶绿素含量以及冠层高光谱反射率为数据源,分析叶绿素含量与冠层原始光谱(R)、微分光谱(R')之间的相关关系,利用敏感波段建立新的对应关系,构建岩富10号叶绿素含量的多种回归估测模型,并对不同模型进行了精度评价。【结果】微分光谱用于岩富10号叶绿素含量的估测精度要显著高于原始光谱反射率;利用敏感波段组合新定义的衍生变量拟合程度更优;在多种回归方式中,三次多项式模型的拟合程度最好,最优模型为357 nm等7个波段组合定义的新植被指数所建立的三次多项式模型,其精度为0.839。【结论】应用光谱技术对南疆塔里木盆地阿克苏地区岩富10号叶绿素含量进行定量反演是可行的。  相似文献   

7.
【目的】研究实时、快速估测冬小麦不同生育时期水分状况并构建模型,为冬小麦水分精准管理提供科学依据。【方法】以新疆典型滴灌冬小麦为研究对象,应用高光谱成像技术获取冬小麦冠层光谱信息,并对原始光谱反射率进行平滑和数据变换,利用一元线性回归(Simple linear regression,SLR)、主成分回归(Principal components regression,PCR)和偏最小二乘回归(Partial least squares regression,PLSR)3种建模方法,对冬小麦冠层原始光谱及变换光谱分别构建植株水分含量估测模型。【结果】冬小麦冠层原始光谱反射率与植株水分含量相关性不高,对原始光谱反射率进行数据变换可以显著增强与水分含量的相关性和相关波段数,其中倒数一阶微分变换与冬小麦植株水分含量的相关系数最大,为-0.893 0,但不同变换最优相关系数所对应的波段位置并不固定。PLSR方法的模型精度最高,对数变换的PLSR模型估测精度最高,模型$R_{p}^{2}$、RMSEpRPD值分别为0.880 8、3.251 2%、2.934 3;冬小麦不同生育时期估测模型精度存在差异,拔节期、抽穗期估测模型精度较低,灌浆中期最高,其估测模型$R_{p}^{2}$、RMSEpRPD值分别为0.904 8、1.381 1%、3.454 7。【结论】利用高光谱成像技术对估测冬小麦植株水分含量是可行的,在灌浆中期的估测效果最佳。  相似文献   

8.
【目的】研究不同光环境下,棉花不同发育阶段叶片色素含量、荧光参数和光谱参数之间的关系,通过光谱参数快速无损估测叶片光合生理指标。【方法】棉花品种为新陆早45号,对棉花不同发育阶段叶片进行遮荫处理,分别测定其色素含量、荧光参数、光谱反射率,并进行相关性分析。【结果】与对照相比,遮荫后棉花不同发育阶段叶片550 nm处反射率显著升高,680 nm处反射率差异不显著,780~1 100 nm间反射率显著降低。棉花叶片色素含量和荧光参数与光谱参数均具有显著的相关性。【结论】RRed/RGreen可以估测不同光环境下棉花不同发育阶段叶片类胡萝卜素含量的变化。PSSRa、PSSRb和m SR705均可以估测不同光环境下棉花不同发育阶段叶片与光化学过程相关的参数,如Y(II)、q P和q L的变化,而PRI可以估测与非光化学过程相关的参数,如NPQ、q N和Y(NPQ)的变化。  相似文献   

9.
苹果叶片的高光谱特征及其色素含量监测   总被引:7,自引:2,他引:5  
【目的】分析苹果叶片的高光谱特征,探索建立苹果叶片色素含量的高光谱监测模型,以促进高光谱技术在苹果长势监测中的应用。【方法】通过方差分析方法,分析苹果春梢和秋梢停止生长两个时期功能叶片的不同部位、不同含水率、不同品种的高光谱特征。利用相关分析方法,研究高光谱参数与叶片色素含量间的关系,并建立基于光谱参数的叶片色素含量监测模型。【结果】在760—1300nm的近红外波段,叶片光谱反射率后部低、前部高、中部居于二者之间;随着叶片含水率降低,光谱反射率逐渐增大;不同品种的叶片,光谱反射率差异显著。光谱参数R800/R550、红边面积Sr和绿峰反射率Rg与叶片色素含量之间有较好的相关性,并分别建立了色素含量监测模型。其中以Sr建立的Chla、Chl(a+b)、Car含量监测模型和以R800/R550建立的Chlb含量监测模型为最佳。经均方根误差(RMSE)和相对误差(RE%)指标测试表明,模型能较好地监测苹果叶片色素含量。【结论】用红边面积Sr和波段组合R800/R550来监测苹果叶片色素含量效果较好,为苹果长势遥感监测提供了理论依据。  相似文献   

10.
基于高光谱的核桃叶片铁元素含量反演模型研究   总被引:1,自引:0,他引:1  
【目的】铁元素是评价植物长势的重要指标,监测营养状况是果树栽培管理过程中的主要指标之一。分析核桃叶片Fe素含量与叶片光谱之间的关系,监测核桃活体叶片Fe素含量,为核桃叶片Fe含量快速诊断提供理论依据和技术支撑。【方法】对阿克苏红旗坡地区8个核桃生产园进行随机采样,测定其叶片光谱反射率及Fe素含量,对经过数据变换后的光谱采用逐步线性回归和主成分回归两种方法构建Fe素含量估测模型。用随机分组法选取检验样本并进行精度评价。【结果】经过数据转换的光谱与Fe素含量的相关性明显高于原始光谱,其中以对数二阶光谱725~730 nm、1 140、1 141、1 443、1 444和1 445 nm作为敏感波段构建的主成分回归模型精度最佳,构建模型为y=558.648+113.024 PC13-31.514 PC12+71.519 PC1,R2为0.870,RMSE为0.304,RPO为2.39。【结论】光谱技术在开展阿克苏红旗坡地区核桃叶片Fe素含量估算方面具有一定的应用潜力。  相似文献   

11.
【目的】探明高光谱遥感技术反演葡萄叶片叶绿素含量的可能性,构建葡萄叶片叶绿素含量反演模型,为快速且无损估测葡萄长势提供技术参考。【方法】以西南山区成熟期葡萄叶片为研究对象,同步获取冠层叶片高光谱数据和SPAD值,研究不同分数阶(0.0~1.4阶,步长0.2阶)微分光谱反演葡萄叶片SPAD值的能力,构建多个基于特征波段和光谱指数的单因素模型及基于连续投影算法的多因素模型。【结果】不同SPAD值葡萄叶片原始光谱曲线整体一致,在可见光区域反射率较低而在近红外区域反射率高;可见光、近红外区域反射率与SPAD值分别呈反比和正比;随着分数阶上升,特征波段由近红外向红边靠近,光谱指数由近红外与蓝光组合变更为近红外与绿光组合,单因素模型建模变量相关性呈先升后降趋势,在0.6阶达峰值;除0.6与0.8阶外,其余分数阶微分光谱单因素模型建模变量均为DSI;多因素模型优于单因素模型,机器学习算法可提升传统回归模型精度,所有模型以0.6阶下SPA-GA-XGBoost回归模型精度最优,其建模与验证R2分别为0.79和0.75,相应均方根误差(nRMSE)分别为15.54%和14.45%。...  相似文献   

12.
【目的】筛选相关性好的植被指数构建马铃薯叶片叶绿素a、叶绿素b估测模型,为科学、无损地进行马铃薯叶片叶绿素含量估算提供技术支撑。【方法】采用便携式高光谱地物波谱仪,获取不同施氮水平下不同生育时期的马铃薯植株叶片光谱反射率,提取植被指数,测定马铃薯叶片叶绿素a、叶绿素b含量,并研究叶绿素含量与植被指数的相关性。【结果】12个植被指数与叶绿素a、叶绿素b含量相关性较好,其中修正归一化差异指数(mND_(705))、修正简单比值指数(mSR_(705))、地面叶绿素指数(MTCI)、修改叶绿素吸收反射指数(MCARI)与叶绿素a、叶绿素b含量相关性最好。基于这4个植被指数建立的估测模型中,MTCI构建的乘幂模型估测叶绿素a含量的效果最佳,mND_(705)构建的指数模型估测叶绿素b含量的效果最佳。【结论】MTCI构建的乘幂模型能较为精确地估测叶绿素a含量,mND_(705)构建的指数模型能较为精确地估测叶绿素b含量;这2种模型可用于间接监测马铃薯植株的氮营养亏缺状态。  相似文献   

13.
【目的】叶片氮素状况是小麦生产中精确施氮管理与调控的前提,实时无损监测叶片氮素状况对小麦生产管理具有重要意义。本文旨在综合分析不同环境下小麦冠层光谱响应差异,进而构建其估测模型,为小麦氮肥合理运筹提供技术支持。【方法】本研究基于3种不同土壤质地(砂土、壤土和黏土)、5种不同施氮水平(0、120、225、330和435 kg•hm-2)及3种河南省主栽小麦品种(矮抗58、周麦22和郑麦366)连续2年的大田试验,于小麦主要生育时期同步测定冠层光谱反射率和叶片氮含量,对3种不同土壤质地条件下小麦冠层叶片氮含量的高光谱响应差异进行比较,系统分析350—1 050 nm 波段范围内任意两波段组合而成的差值(DSI)、比值(RSI)及归一化差值(NDSI)光谱指数与叶片氮含量的量化关系,并建立估算模型。【结果】冠层光谱反射率在不同施氮水平和不同生育时期下存在明显差异,但趋势基本一致;比较3种土壤质地小麦冠层光谱反射率大小表现为:黏土>壤土>砂土,可以反映小麦实时田间长势。通过系统分析3种土壤质地小麦冠层反射光谱与对应叶片氮含量间的定量关系,表明在可见光和近红外区域均有较好的相关性,但敏感波段区域有所不同。对3种质地获取的样本进行系统分析表明,砂土、壤土和黏土质地小麦叶片氮含量分别以光谱指数NDSI(FD710,FD690)、DSI(R515,R460)和RSI(R535,R715)建模结果表现最好,决定系数分别达到0.88、0.87和0.87。经不同年份独立资料检验结果显示,基于上述光谱指数估测小麦叶片氮含量的预测决定系数分别为0.87、0.85和0.77,预测均方根误差分别为0.31、0.32和0.26。【结论】利用光谱参数NDSI(FD710,FD690)、DSI(R515,R460)和RSI(R535,R715)为自变量建立的估测模型分别可以较好地预测砂土、壤土和黏土3种质地小麦叶片氮含量。  相似文献   

14.
关中地区小麦冠层光谱与氮素的定量关系   总被引:4,自引:0,他引:4  
【目的】分析不同生育期及整个生育期小麦叶片氮含量(LNC)与冠层光谱反射特征的关系,以实现对田间小麦活体氮素营养状况的监测,为小麦叶片氮素状况的精确诊断提供依据。【方法】以位于陕西关中地区杨凌揉谷镇、扶风马席村和巨良农场的3个小麦试验田为研究对象,测定不同长势及生育期小麦LNC及冠层光谱反射率,分析不同长势下小麦LNC和反射率的变化,并研究氮含量与冠层光谱反射率的相关性,以及小麦LNC与比值植被指数(RVI)、归一化植被指数(NDVI)的相关性,建立小麦LNC的敏感波段及光谱监测模型。【结果】在同一生育期,长势差的小麦叶片氮含量较低,长势较好的叶片氮含量高。与单波段相比,组合波段构成的植被指数RVI、NDVI与LNC的相关性明显提高,近红外波段(730~1 075nm)和红波段630,660,690nm组成组合波段的RVI、NDVI与LNC呈极显著正相关,其中LNC与RVI的相关性较高。利用独立的小麦田间试验数据,采用通用的均方根差(RMSE)、决定系数(R2)、准确度(斜率)3个指标对所建立的模型进行检验,最终选取RVI(970,690)为监测小麦LNC的最佳光谱参数,构建的最佳模型为LNC=0.176 3×RVI(970,690)0.775 6,R2为0.863,RMSE为0.137,准确度为0.979,接近于1。【结论】利用小麦冠层光谱反射率构建了预测小麦LNC的最佳模型,该模型具有较好的准确度和普适性,适用于整个生育期小麦叶片氮含量的监测。  相似文献   

15.
【目的】分析325~1 075 nm范围内核桃叶片光谱与叶片氮元素含量的相关性,研究核桃叶片光谱数据预处理和特征波段筛选方法,建立核桃叶片氮元素含量的预测模型,为实现核桃生产中的快速施肥提供参考。【方法】建立多元散射校正、Savitzky-Golay卷积平滑滤波和小波去噪的组合预处理方法;采用连续投影算法筛选出了特征波段;采用特征波段建立核桃叶片氮元素含量的偏最小二乘回归预测模型。【结果】建立的组合预处理方法对核桃叶片光谱去噪效果较好;采用特征波段建立的核桃叶片氮元素含量的预测模型,模型的验证集决定系数R2达到了0.875,均方根误差RMSE达到了0.697 3 mg/g。【结论】与全光谱数据相比,筛选出的特征波段降低了冗余数据和噪声的影响,提取出了有效成分相关的光谱信息,提高了建模质量。  相似文献   

16.
【目的】研究西北地区不同生育时期油菜叶片SPAD值与多种光谱参数之间的关系,并建立估测模型。【方法】以陕西省乾县齐南村施肥程度一致的大田种植的油菜为试验材料,分别在苗期、现蕾抽苔期和开花期测定叶片的光谱反射率和SPAD值,得到不同波段组合的光谱指数,计算其与SPAD值之间的相关性系数,并拟合以各种光谱指数预测SPAD值的模型,以均方根误差(RMSE)和相对误差(RE)作为模型的评价和检验指标。【结果】苗期SDr/SDy与叶片SPAD值相关性最高,为0.79,构造的最佳预测模型决定系数为0.67;现蕾抽苔期(SDr-SDy)/(SDr+SDy)与叶片SPAD相关性最高,达到0.82,构造的最佳SPAD估测模型决定系数为0.70;苗期(SDr-SDy)/(SDr+SDy)与叶片SPAD有较高相关性,相关性系数为0.65,构造的预测模型决定系数为0.43。【结论】各时期预测模型效果较好的光谱指数基本一致,为SDr/SDy和(SDr-SDy)/(SDr+SDy),可以利用高光谱遥感信息反演西北地区油菜各时期的叶绿素含量,并分析其生长状况。  相似文献   

17.
基于成像高光谱的苹果叶片叶绿素含量估测模型研究   总被引:1,自引:0,他引:1  
以苹果树正常叶片、受红蜘蛛胁迫叶片的高光谱反射率和SPAD值为数据源,在分析SPAD值与原始光谱反射率及其一阶导数、高光谱值相关性的基础上,筛选敏感波段,建立了基于高光谱反射率的叶绿素含量估测模型。结果表明:正常苹果叶片叶绿素含量的敏感波段为513~539、564~585、694、699、720 nm,叶绿素含量的最佳估测模型为线性函数模型SPAD=152.450-1884.851R377;受红蜘蛛胁迫的苹果叶片叶绿素含量的敏感波段为961、972、720 nm,叶绿素含量的最佳估测模型为线性函数模型SPAD=49.371-46428.473 R’972。  相似文献   

18.
以不同截形叶螨(Tetranychus truncatus Ehara)危害等级下枣叶片高光谱和叶绿素含量数据为基础,分析不同截形叶螨危害等级(0级、1级、2级、3级、4级)下枣叶片高光谱特征,构建基于一阶微分光谱的不同截形叶螨危害等级枣叶片叶绿素含量高光谱线性回归估测模型。结果表明:截形叶螨危害造成叶片中叶绿素含量减少,导致光谱反射率降低,表现为随危害等级的增加叶绿素含量呈逐级减少趋势。在不同截形叶螨危害等级枣叶片叶绿素估测模型中,危害等级为0级时,模型拟合度最好,达到0.810,表明利用高光谱数据构建不同危害等级枣叶片叶绿素含量估算模型具有一定的潜力,对危害植被叶片的虫害诊断意义重大。  相似文献   

19.
基于GF-1土壤有机质含量估测的研究   总被引:1,自引:0,他引:1  
【目的】本试验利用GF-1遥感影像估测土壤有机质含量。【方法】该文对扶余市耕作区土壤进行采样,在实验室化验土壤样品的有机质含量,分析GF-1各波段反射率及其变换形式与土壤有机质含量的相关性,确定有机质的敏感波段,建立土壤有机质含量的单波段与多波段估测模型,旨在通过比较估测模型的精度和稳定性,确定研究区土壤有机质含量的最优估测模型。【结果】F-1各波段反射率与有机质含量均呈显著负相关,且在第3波段达到最大值,其相关系数为-0.805,均方根误差为0.362;将反射率进行幂、指数变换以后可以有效提高与有机质含量的相关性,相关系数分别提高至-0.886和-0.872,均方根误差下降至0.283和0.342;利用前3个波段反射率指数变换建立起的多元估测模型,模型判定系数R~2达到0.851,检验样本的均方根误差降低至0.172,表明此模型的估测精度较高、稳定性较好。【结论】GF-1遥感影像可以作为估测土壤有机质含量的遥感数据源,并为使用GF-1遥感影像估测土壤成分等方面的研究提供参考。  相似文献   

20.
基于连续统去除和偏最小二乘回归的油菜SPAD高光谱估算   总被引:1,自引:0,他引:1  
【目的】探讨油菜叶绿素含量的高光谱估算方法,为实现油菜叶片叶绿素含量的高效、无损、大面积监测提供理论依据。【方法】以陕西省关中地区油菜叶片为研究对象,分别测定苗期、蕾薹期、开花期及角果期的叶片高光谱数据和SPAD值,提取各生育期连续统去除光谱和7类光谱吸收特征参数,分析原始光谱、连续统去除光谱、光谱吸收特征参数与SPAD值之间的相关关系,构建基于原始光谱特征波段、连续统去除光谱特征波段、光谱吸收特征参数的SPAD估算模型,并对模型精度进行验证。【结果】在可见光范围,光谱反射率由蕾薹期、开花期、苗期到角果期依次递增,最大吸收深度和吸收谷面积逐渐增大。利用连续统去除光谱特征波段与吸收特征参数,分别建立的油菜各生育期叶片SPAD估算模型均优于原始光谱。运用连续统去除光谱特征波段结合最优吸收特征参数构建的偏最小二乘回归估算模型,是进行油菜叶片SPAD估算的最优模型。【结论】连续统去除法对不同生育期油菜叶片叶绿素相对含量具有较好的预测能力,是估算油菜叶片SPAD值的一种实时高效方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号