首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Most garlic supplements are standardized on allicin potential and are enteric-coated to prevent gastric acid inactivation of the allicin-producing enzyme, alliinase. To determine whether these products release the claimed amount of allicin under simulated gastrointestinal conditions, USP dissolution method 724A for drug release was applied to all 24 known brands of enteric-coated tablets. It was found that nearly all brands employed effective coatings and that they met their claims for allicin potential when crushed and suspended in water. However, all brands except one gave low dissolution allicin release, with 83% of the brands releasing less than 15% of their potential. The low allicin release was found to be due to both impaired alliinase activity, mostly caused by tablet excipients, and to slow tablet disintegration, which also impairs alliinase activity. Only when tablets had high alliinase activity and disintegrated rapidly did they show high allicin release. The ability of USP 724A to estimate allicin release in vivo was validated by monitoring breath levels of the allicin metabolite, allyl methyl sulfide. In conclusion, garlic powder supplements should no longer be standardized on allicin potential, but rather on dissolution allicin release.  相似文献   

2.
Basil (Ocimum basilicum L.) is a popular culinary herb, and its essential oils have been used extensively for many years in food products, perfumery, and dental and oral products. Basil essential oils and their principal constituents were found to exhibit antimicrobial activity against a wide range of Gram-negative and Gram-positive bacteria, yeast, and mold. The present paper reviews primarily the topic of basil essential oils with regards to their chemical composition, their effect on microorganisms, the test methods for antimicrobial activity determination, and their possible future use in food preservation or as the active (antimicrobial), slow release, component of an active package.  相似文献   

3.
This study verifies the instability of garlic ( Allium sativum L.)-derived allyl 2-propenylthiosulfinate (allicin) in various aqueous and ethanolic solutions as well as in vegetable oil through chemical and biological analyses performed simultaneously. Crushed fresh garlic cloves generated antibacterial activity and chemically detectable allicin, a major antibacterial principle, and both declined on a daily basis in aqueous and ethanolic solutions at room temperature, showing biological and chemical half-lives of about 6 and 11 days, respectively. Allicin was more stable in 20% alcohol than in water, but surprisingly unstable in vegetable oil, with an activity half-life 0.8 h, as estimated from its antibacterial activity toward Escherichia coli, and a chemical half-life of 3.1 h, based on chromatographic quantification. In alcoholic and aqueous extracts, the biological half-life of allicin tended to be longer than the chemical one, suggesting the occurrence of bioactive compounds other than allicin in the extracts.  相似文献   

4.
A quantitative method is described for the determination of allicin (2-propene-1-sulfinothioic acid S-2-propenyl ester) in garlic, using standard additions of alliin (l-(+)-S-allylcysteine sulfoxide) in conjunction with supercritical fluid extraction (SFE) and high performance liquid chromatography analysis with UV-vis absorbance detection. Optimum CO(2)-SFE conditions provided 96% recovery for allicin with precision of 3% (RSD) for repeat samples. The incorporation of an internal standard (allyl phenyl sulfone) in the SFE step resulted in a modest improvement in recovery (99%) and precision (2% RSD). Standard additions of alliin were converted to allicin in situ by endogenous alliinase (l-(+)-S-alk(en)ylcysteine sulfoxide lyase, EC 4.4.1.4). Complete conversion of the spiked alliin to allicin was achieved by making additions after homogenization-induced conversion of the naturally occurring cysteine sulfoxides to thiosulfinates had taken place, thus eliminating the likelihood of competing reactions. Concentration values for allicin determined in samples of fresh garlic (Allium sativum L. and Allium ampeloprasum) and commercially available garlic powders (Allium sativum L.) by standard addition of alliin were found in all cases to be in statistical agreement (95% confidence interval) with values determined using a secondary allicin standard (concentration determined using published extinction coefficients). This method provides a convenient alternative for assessing the amount of allicin present in fresh and powdered garlic, as alliin is a far more stable and commercially prevalent compound than allicin and is thus more amenable for use as a standard for routine analysis.  相似文献   

5.
A model reaction system was developed for generating pure thiosulfinates and propanethial-S-oxide (PTSO) using an isolated alliinase (EC 4.4.1.4) and isolated or synthetic alk(en)yl-L-cysteine sulfoxides (ACSO). Reaction yields ranged from 30 to 60% after 3 h at 21-23 degrees C, and organosulfur reaction products were extracted into CHCl3 to yield product preparations of controlled composition. A pure thiosulfinate or PTSO was derived from a single ACSO, and a preparation containing a mixture of four thiosulfinate species was derived from reaction mixtures employing binary ACSO substrate systems. Identities of homologous thiosulfinates and PTSO were confirmed by 1H NMR. This approach has the potential to be used as a preparative tool for yielding pure thiosulfinates and PTSO to facilitate the study of chemical and biological properties of this group of compounds or as a means to study the dynamics of organosulfur chemistry in preparations from Allium spp.  相似文献   

6.
Sulfur-containing compounds of ramson (Allium ursinum L.) are responsible for its traditional use in terms of culinary and medicinal purposes. Leaves and bulbs were investigated for their contents of cysteine sulfoxides (volatile precursors) as well as volatile compounds released from minced plant material. Plants were analyzed during the whole vegetation period, focused on the months from March to June. Additionally, within the dormancy period bulbs were analyzed again and alliinase activity was determined. The pattern of volatile compounds was analyzed both by SPME/GC-MS and by SDE/GC-MS. Compared to each other, SDE exhibited a wider spectrum of detectable volatile compounds. The quality and quantity of volatiles significantly depended on the time of harvest. The highest amounts of volatile precursors can be gained in March and April, shortly before flowering time (up to 0.4% of total cysteine sulfoxides). The main cysteine sulfoxides were alliin and isoalliin. It has been found that alliinase of A. ursinum exhibited properties similar to those of alliinase of garlic (Allium sativum L.), but differing in terms of substrate specificity.  相似文献   

7.
The essential oil, obtained by using a Clevenger distillation apparatus, and water-soluble (polar) and water-insoluble (nonpolar) subfractions of the methanol extract of Thymus pectinatus Fisch. et Mey. var. pectinatus were assayed for their antimicrobial and antioxidant properties. No (or slight) antimicrobial activity was observed when the subfractions were tested, whereas the essential oil showed strong antimicrobial activity against all microorganisms tested. Antioxidant activities of the polar subfraction and the essential oil were evaluated using 2,2-diphenyl-1-picrylhydrazyl, hydroxyl radical, superoxide radical scavenging, and lipid peroxidation assays. The essential oil, in particular, and the polar subfraction of the methanol extract showed antioxidant activity. The essential oil was analyzed by GC/MS, and 24 compounds, representing 99.6% of the essential oil, were identified: thymol, gamma-terpinene, p-cymene, carvacrol, and borneol were the main components. An antimicrobial activity test carried out with fractions of the essential oil showed that the activity was mainly observed in those fractions containing thymol, in particular, and carvacrol. The activity was, therefore, attributed to the presence of these compounds. Other constituents of the essential oil, such as borneol, gamma-terpinene, and p-cymene, could be also taken into account for their possible synergistic or antagonistic effects. On the other hand, thymol and carvacrol were individually found to possess weaker antioxidant activity than the crude oil itself, indicating that other constituents of the essential oil may contribute to the antioxidant activity observed. In conclusion, the results presented here show that T. pectinatus essential oil could be considered as a natural antimicrobial and antioxidant source.  相似文献   

8.
Curcumin is a highly potent, nontoxic, bioactive agent found in turmeric and has been known for centuries as a household remedy to many ailments. The only disadvantage that it suffers is of low aqueous solubility and poor bioavailability. The aim of the present study was to develop a method for the preparation of nanoparticles of curcumin with a view to improve its aqueous-phase solubility and examine the effect on its antimicrobial properties. Nanoparticles of curcumin (nanocurcumin) were prepared by a process based on a wet-milling technique and were found to have a narrow particle size distribution in the range of 2-40 nm. Unlike curcumin, nanocurcumin was found to be freely dispersible in water in the absence of any surfactants. The chemical structure of nanocurcumin was the same as that of curcumin, and there was no modification during nanoparticle preparation. A minimum inhibitory concentration of nanocurcumin was determined for a variety of bacterial and fungal strains and was compared to that of curcumin. It was found that the aqueous dispersion of nanocurcumin was much more effective than curcumin against Staphylococcus aureus , Bacillus subtilis , Escherichia coli , Pseudomonas aeruginosa , Penicillium notatum , and Aspergillus niger . The results demonstrated that the water solubility and antimicrobial activity of curcumin markedly improved by particle size reduction up to the nano range. For the selected microorganisms, the activity of nanocurcumin was more pronounced against Gram-positive bacteria than Gram-negative bacteria. Furthermore, its antibacterial activity was much better than antifungal activity. The mechanism of antibacterial action of curcumin nanoparticles was investigated by transmission electron micrograph (TEM) analysis, which revealed that these particles entered inside the bacterial cell by completely breaking the cell wall, leading to cell death.  相似文献   

9.
The cationic biopolymer ε-polylysine (ε-PL) is a potent food-grade antimicrobial that is highly effective against a range of food pathogens and spoilage organisms. In compositionally complex systems such as foods and beverages, cationic ε-PL molecules may associate with anionic substances, leading to increased turbidity, sediment formation, and reduced antimicrobial activity. This study therefore characterized the interactions between cationic ε-PL and anionic pectins with different degrees of esterification (DE) and then investigated the influence of these interactions on the antimicrobial efficacy of ε-PL. The nature of the interactions was characterized using isothermal titration calorimetry (ITC), microelectrophoresis (ME), and turbidity measurements. High (DE 61%), medium (DE 51%), and low (DE 42%) methoxyl pectins interacted with ε-PL molecules through electrostatic forces, forming either soluble or insoluble complexes with various electrical charges, depending on the relative mass ratio of pectin and ε-PL. The interaction of pectin with ε-PL increased as the negative charge density on the pectin molecules increased, that is, with decreasing DE. The antimicrobial efficacy of ε-PL against two acid-resistant spoilage yeasts (Zygosaccharomyces bailii and Saccharomyces cerevisiae) decreased progressively in the presence of increasing levels of all three pectins. Nevertheless, the low DE pectin decreased the antimicrobial efficacy of ε-PL much more dramatically, likely due to strong electrostatic binding of ε-PL onto low DE pectin molecules reducing its interaction with anionic microbe surfaces. This study provides knowledge that will facilitate the rational application of ε-PL as an antimicrobial in complex food systems.  相似文献   

10.
The Maillard reaction occurs during many industrial and domestic thermal treatments of foods. It is widely used because of its role in creating colors, flavors, textures, and other functional properties in foodstuffs. Proteins glycated without the use of conventional chemical reagents have improved technofunctional properties such as heat stability, emulsifying, and foaming properties. The present study was carried out to determine the extent to which this reaction can convey antioxidant, antimicrobial, or cytotoxic activities to beta-lactoglobulin (BLG) and to its tryptic and peptic hydrolysates. BLG was modified with six different sugars in solution at 60 degrees C. Antiradical properties were estimated using a radical scavenging activity test. Antimicrobial activities against different bacterial strains were studied with a diffusion disk method. Cytotoxic tests were performed using two cell lines and the 3-(4,5-dimethylthiazoyl-2-yl)-2,5-diphenyltetrazolium bromide (MTT) rapid colorimetric assay. Glycation induced a radical scavenging activity to BLG, the intensity of which depended on the sugar used for modification. Proteins modified with ribose and arabinose showed the highest radical scavenging activities depicted by about 80 and 60% of 2,2-diphenyl-1-picrylhydrazyl (DPPH) absorption decrease at 515 nm. No antimicrobial effect of any glycated form of BLG against Escherichia coli, Bacillus subtilis, Listeria innocua, and Streptococcus mutans was observed. The MTT test showed no enhancement of cytotoxicity by modified proteins and peptides against COS-7 and HL-60 cells. Thus, glycated proteins could be used in formulated food as functional ingredients with a radical scavenging activity able to delay deterioration due to oxidation. This use could be even more advisable considering the lack of toxicity to eukaryotic and prokaryotic cell cultures demonstrated in this work.  相似文献   

11.
Thiosulfinates (TSs) have been implicated as a principle source of the antiplatelet property of raw onion and garlic juice. The in vitro responses of human platelets to dosages of four TSs were measured using whole blood aggregometry and compared by regression analysis. Of the compounds evaluated, methyl methane-TS (MMTS), propyl propane-TS (PPTS), and 2-propenyl 2-propene-TS (allicin) are present in freshly cut Allium vegetables, whereas ethyl ethane-TS (EETS) has not been detected. All TSs were synthesized using a model reaction system. PPTS and allicin had the strongest antiplatelet activity at 0.4 mM, inhibiting aggregation by 90 and 89%, respectively. At the same concentration, EETS and MMTS were significantly weaker, inhibiting 74 and 26%, respectively. Combinations of TSs were not additive in their inhibition of aggregation, indicating that the antiplatelet potential of Allium extracts cannot be easily predicted by quantifying organosulfur components. EETS, PPTS, and allicin were significantly more potent platelet inhibitors than aspirin at nearly equivalent concentrations.  相似文献   

12.
Coffee brew is a widely consumed beverage with multiple biological activities due both to naturally occurring components and to the hundreds of chemicals that are formed during the roasting process. Roasted coffee extract possesses antibacterial activity against a wide range of microorganisms, including Staphylococcus aureus and Streptococcus mutans, whereas green coffee extract exhibits no such activity. The naturally occurring coffee compounds, such as chlorogenic acids and caffeine, cannot therefore be responsible for the significant antibacterial activity exerted by coffee beverages against both bacteria. The very low minimum inhibitory concentration (MIC) found for standard glyoxal, methylglyoxal, and diacetyl compounds formed during the roasting process points to these alpha-dicarbonyl compounds as the main agents responsible for the antibacterial activity of brewed coffee against Sa. aureus and St. mutans. However, their low concentrations determined in the beverage account for only 50% of its antibacterial activity. The addition of caffeine, which has weak intrinsic antibacterial activity, to a mixture of alpha-dicarbonyl compounds at the concentrations found in coffee demonstrated that caffeine synergistically enhances the antibacterial activity of alpha-dicarbonyl compounds and that glyoxal, methylglyoxal, and diacetyl in the presence of caffeine account for the whole antibacterial activity of roasted coffee.  相似文献   

13.
To prepare composite films from biopolymers with anti-listerial activity and moisture barrier properties, the antimicrobial efficiency of chitosan-hydroxy propyl methyl cellulose (HPMC) films, chitosan-HPMC films associated with lipid, and chitosan-HPMC films chemically modified by cross-linking were evaluated. In addition, the physicochemical properties of composite films were evaluated to determine their potential for food applications. The incorporation of stearic acid into the composite chitosan-HPMC film formulation decreased water sensitivity such as initial solubility in water and water drop angle. Thus, cross-linking of composite chitosan-HPMC, using citric acid as the cross-linking agent, led to a 40% reduction in solubility in water. The water vapor transfer rate of HPMC film, approximately 270 g x m(-2) x day(-1) x atm(-1), was improved by incorporating chitosan and was further reduced 40% by the addition of stearic acid and/or cross-linking. Anti-listerial activity of films was determined on solid medium by a numeration technique. Chitosan-HPMC-based films, with and without stearic acid, inhibited the growth of Listeria monocytogenes completely. On the other hand, a loss of antimicrobial activity after chemical cross-linking modification was observed. FTIR and 13C NMR analyses were then conducted in order to study a potential chemical modification of biopolymers such as a chemical reaction with the amino group of chitosan. To complete the study, the mechanical properties of composite films were determined from tensile strength assays.  相似文献   

14.
The phenolic compounds composition, antioxidant potential, and antimicrobial activity of different table olives from Portugal, namely, natural black olives "Galega", black ripe olive "Negrinha de Freixo", Protected Designation of Origin (PDO) "Azeitona de Conserva Negrinha de Freixo" olives, and "Azeitona de Conserva de Elvas e Campo Maior" Designation of Origin (DO) olives, were investigated. The analysis of phenolic compounds was performed by reversed-phase HPLC/DAD, and seven compounds were identified and quantified: hydroxytyrosol, tyrosol, 5-O-caffeoilquinic acid, verbascoside, luteolin 7-O-glucoside, rutin, and luteolin. The antioxidant activity was assessed by the reducing power assay, the scavenging effect on DPPH (2,2-diphenyl-1-picrylhydrazyl) radicals, and the beta-carotene linoleate model system. The antioxidant activity was correlated with the amount of phenolics found in each sample. The antimicrobial activity was screened using Gram-positive (Bacillus cereus, Bacillus subtilis, Staphylococcus aureus) and Gram-negative bacteria (Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumoniae) and fungi (Candida albicans, Cryptococcus neoformans). PDO and DO table olives revealed a wide range of antimicrobial activity. C. albicans was resistant to all the analyzed extracts.  相似文献   

15.
The essential oil and gum of Pistacia lentiscus var. chia, commonly known as the mastic tree, are natural antimicrobial agents that have found extensive uses in medicine in recent years. In this work, the chemical composition of mastic oil and gum was studied by GC-MS, and the majority of their components was identified. alpha-Pinene, beta-myrcene, beta-pinene, limonene, and beta-caryophyllene were found to be the major components. The antibacterial activity of 12 components of mastic oil and the oil itself was evaluated using the disk diffusion method. Furthermore, attempts were made to separate the essential oil into different fractions in order to have a better picture of the components responsible for its antibacterial activity. Several trace components that appear to contribute significantly to the antibacterial activity of mastic oil have been identified: verbenone, alpha-terpineol, and linalool. The sensitivity to these compounds was different for different bacteria tested (Escherichia coli, Staphylococcus aureus, and Bacillus subtilis), which suggests that the antibacterial efficacy of mastic oil is due to a number of its components working synergistically. The establishment of a correlation between the antibacterial activity of mastic oil and its components was the main purpose of this research. Mastic gum was also examined, but it proved to be more difficult to handle compared to the essential oil.  相似文献   

16.
Applying combinatorial chemistry and biology to food research   总被引:1,自引:0,他引:1  
In the past decade combinatorial chemistry has become a major focus of research activity in the pharmaceutical industry for accelerating the development of novel therapeutic compounds. The same combinatorial strategies could be applied to a broad spectrum of areas in agricultural and food research, including food safety and nutrition, development of product ingredients, and processing and conversion of natural products. In contrast to "rational design", the combinatorial approach relies on molecular diversity and high-throughput screening. The capability of exploring the structural and functional limits of a vast population of diverse chemical and biochemical molecules makes it possible to expedite the creation and isolation of compounds of desirable and useful properties. Several studies in recent years have demonstrated the utility of combinatorial methods for food research. These include the discovery of synthetic antimicrobial, antioxidative, and aflatoxin-binding peptides, the identification and analysis of unique flavor compounds, the generation of new enzyme inhibitors, the development of therapeutic antibodies for botulinum neurotoxins, the synthesis of unnatural polyketides and carotenoids, and the modification of food enzymes with novel properties. The results of such activities could open a large area of applications with potential benefits to the food industry. This review describes the current techniques of combinatorial chemistry and their applications, with emphasis on examples in food science research.  相似文献   

17.
Cysteine sulfoxides and alliinase activity of some Allium species   总被引:17,自引:0,他引:17  
The flavor precursors of 17 species belonging to the Alliaceae family were analyzed by HPLC, and results were evaluated with respect to the classification of species into their genus, subgenus, and section. Identification and quantification of these precursors were carried out by synthetic and natural reference materials. In addition, nine of these species were investigated in terms of their alliinase activity. Alliinase (EC 4.4.1.4) catalyzes the conversion of odorless (+)-S-alk(en)yl-L-cysteine sulfoxides into volatile thiosulfinates. Cysteine sulfoxides as well as alliinase activity were found in all investigated samples, and (+)-S-methyl-L-cysteine sulfoxide was most abundant. (+)-S-Propyl-L-cysteine sulfoxide was detected in only a few, not closely related, species. Analysis of the crude protein extract of nine species gave evidence that alliinase activities of samples were similar in terms of pH and temperature optimum, K(M) value, and substrate specificity. For all investigated protein extracts, the highest specific alliinase activity was found for (+)-S-(2-propenyl)-L-cysteine sulfoxide (alliin). The substrate specificity of these enzymes was not related to relative abundance of the cysteine sulfoxides. However, SDS-PAGE yielded some significant differences among species in terms of their total protein compositions. Species belonging to different subgenera exhibited a specific protein pattern with molecular masses between 13 and 35 kDa.  相似文献   

18.
紫色土增施单质硫对大蒜生长发育和硫素营养的影响   总被引:6,自引:0,他引:6  
对紫色土施用单质硫条件下大蒜生长发育及硫素营养吸收和代谢进行了研究。结果表明,大蒜株高、叶面积、经济产量(蒜头)和经济系数以中等供硫水平最高,而茎粗和生物产量则以高硫水平最大。大蒜能耐高浓度的硫素供应,在0~120kghm-2供硫情况下,其全硫(TS)、水溶性硫(SS)和无机硫(Io-S)含量均随供硫量的增加而上升,小分子水溶性含硫氨基酸含量(Ws-S)以低硫水平最高,而大分子蛋白质硫含量(Wis-S)以中等供硫水平时最高,与大蒜素含量的变化一致。大蒜素含量与不同硫组分比率的关系分析发现,大蒜素含量与Ws-S/TS呈极显著的正相关(r=0.752 ),与Io-S/SS呈显著的正相关(r=0.702 )。全氮含量与全硫含量变化趋势一致,全磷含量以低硫水平时最高,全钾含量以中等供硫水平时最高。  相似文献   

19.
Many new in vitro methods have been developed to evaluate antioxidant activity. Unfortunately, these in vitro methods often correlate poorly with the ability of compounds to inhibit oxidative deterioration of foods because the in vitro assays do not account for factors such as the physical location of the antioxidant, its interaction with other food components, and environmental conditions. To accurately evaluate the potential of antioxidants in foods, models must be developed that have the chemical, physical, and environmental conditions expected in food products. This paper outlines model systems of the evaluation of antioxidants in three types of foods: bulk oil, oil-in-water emulsions, and muscle foods. These model systems are not intended to be inclusive of all possible methods to measure lipid oxidation and antioxidant activity. However, use of these models would allow researchers to more easily compare research results from one paper to another.  相似文献   

20.
Chemical modification of wheat protein-based natural polymer materials was conducted using glyoxal as cross-linker, and the cross-linking effect was studied on mechanical properties under different humidity conditions, the molecular motions of each component, and the phase structures/components of the whole materials. The cross-linking significantly enhanced the mechanical strength of wheat gluten (WG) materials under RH = 50%. The elongation of materials was also increased, which was in contrast to many cross-linked protein systems. The reaction mainly occurred in proteins and starch components, resulting in the formation of a stable cross-linked network with restricted molecular motions and modified motional dynamics. Although the plasticizer glycerol could also take part in the reaction with glyoxal or other components in WG especially when the glyoxal content was higher, the amount of glycerol involved in such reactions was very little. Glycerol was predominantly hydrogen-bonded with the network. The lipid component did not seem to take part in the cross-linking reaction; its mobility was promoted while its interaction with the protein-starch network was weakened after cross-linking. The formation of the cross-linked network did not enhance the hydrophobicity of the materials; the materials still adsorbed a high level of moisture under high humidity conditions (ca. RH = 85%) with no improvement in mechanical strength. In addition, further increasing the amount of glyoxal did not generate an additional strength improvement even at RH = 50%, possibly because the enhanced mobility of lipid promoted the component to be phase-separated from the WG system. To improve the water-resistant properties, the hydrophobicity of the protein macromolecules requires enhancement by other chemical modifications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号