首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Among the 57 monoclonal antibodies (mAb) analyzed within the T-cell group from the Second Swine CD Workshop, six mAb fell within clusters T10 and T11 (No. 088, STH164; No. 148, FY1A3; No. 149, FY2C1; No. 150, FY1H2; No. 151, FY2A11; No. 169, BB23-8E6). The mAb within these two groups gave a similar appearance on flow cytometry and stained all peripheral blood T-cells as defined by CD4 and wCD8 staining. All six mAb precipitated a 24 kDa protein. On the basis of inhibition analyses performed as part of the workshop and from published data, the mAb define at least three epitopes. There is only minimal stimulation of resting peripheral lymphocytes, but four of the mAb produce strong stimulation in the presence of PMA. With the exception of STH164, all have been shown to react with CD3-transfected COS cells. The new mAb, therefore, react with three epitopes on porcine CD3 designated CD3a (BB23-8E6, FY2A11), CD3b (FY1A3, FY2C1), and CD3c (FY1H2). mAb STH164 appears to be reactive with another epitope, however, since its reactivity with CD3 has not been confirmed it is designated as wCD3.  相似文献   

2.
The myeloid panel of monoclonal antibodies (mAbs) submitted to the Third Swine CD Workshop were analysed for reactivity with bone marrow haematopoietic cells (BMHC). Using single and triple immunofluorescence labelling by flow cytometry (FCM), the mAbs were grouped according to their capacity to recognise myeloid cell populations and/or maturation stages. Group 1 consisted of mAbs labelling the majority of myeloid BMHC, including neutrophilic, eosinophilic and monocytic cells. The ligands for SWC3 and CD11b-like mAbs of group 1 showed a maturation-dependent intensity of expression. The other antibodies of group 1 reacted with BMHC to give a sharp, single peak. Group 2 mAbs reacted only with monocytic cells. The anti-human CD49e mAb Sam-1 was the only mAb detecting the majority of monocytic cells, but not other BMHC. The mAbs in group 3 recognised antigens expressed on granulocytes, but not monocytes. The previously identified SWC8 in this group proved to be useful in differentiating major population of BMHC when cells were double labelled with the pan-myeloid SWC3. Other mAbs within group 3, such as MIL4 and TMG6-5 (an anti-human CD11b), only recognised subsets of neutrophils and eosinophils. Group 4 mAbs reacted with the more mature subpopulations of neutrophils and monocytes. Some of these antibodies might prove useful for assessment of cell maturity, such as anti-CD14 and the anti-human CD50 mAb HP2/19.  相似文献   

3.
In this study we have used the expression of perforin to characterize subsets of porcine cytotoxic lymphocytes. Perforin positive lymphocytes expressed both CD2 and CD8, most were small dense lymphocytes (SDL) and up to 90% were CD3 negative. However, the numbers of perforin positive T-cells increased with the age of the animal and their populations increased after specific antigen stimulation in vitro. The remaining perforin positive lymphocytes were large and granular and contained more CD3+CD5+CD6+ T-cells (−40%) of which a substantial proportion also co-expressed CD4. Perforin was expressed in subpopulations of both CD8 and CD8β lymphocytes, but was not expressed in γδ T-cells or monocyte/macrophages. The perforin positive CD3 subset was phenotypically homogeneous and defined as CD5CD6CD8βCD16+CD11b+. This population had NK activity and expressed mRNA for the NK receptor NKG2D, and adaptors DAP10 and DAP12. Perforin positive T-cells (CD3+) could be divided into at least three subsets. The first subset was CD4CD5+CD6+CD11bCD16 most were small dense lymphocytes with cytotoxic T-cell activity but not all expressed CD8β. The second subset was mainly observed in the large granular lymphocytes. Their phenotype was CD4+CD5+CD6+CD8β+CD16CD11b and also showed functional CTL activity. Thus not all of double positive T-cells are memory helper T-cells. The third subset did not express the T-cell co-receptor CD6, but up to half of them expressed another T-cell co-receptor CD5. The majority of this subset expressed CD11b and CD16, thus the third perforin positive T-cell subset was CD3+CD4CD5+CD6CD8β±CD11b+CD16+, and possessed MHC-unrestricted cytotoxicity and LAK activity.  相似文献   

4.
After initial evaluation of the 176 new and 19 control monoclonal antibodies (mAb) submitted to the Second International Swine CD Workshop, 57 were assigned to the T-cell/activation marker subgroup. These 57 mAb were further analyzed using flow cytometry on whole blood lymphocytes, splenocytes, Peyer's patch lymphocytes, in vitro cell lines, broncho-alveolar lavage cells, Con A and PHA blasts, fetal cell populations, and by 2-color flow cytometry against mAb to porcine CD2, CD4, and CD8. Finally, the molecular weights of the target antigens were characterized when possible. As a result of these analyses, 23 mAb were distributed into 7 CD clusters. Newly confirmed mAb assignments included: two CD2; one CD4; two CD5; one wCD6; and one wCD25. Three new mAb were found that reacted with wCD8, one of which defined a new epitope, wCD8c. For the first time, mAb against porcine CD3 were identified, including 6 mAb that reacted with three different epitopes. Several new mAb reacted with antigens whose expression varied depending on the activation state of the test cell. These will require further characterization in order to assign a CD number.  相似文献   

5.
Among the 57 monoclonal antibodies analyzed within the T-cell group, three mAbs fell within cluster T13 including the CD5a standard b53b7 (No. 174). The two new mAbs 1H6/8 (No. 058) and BB6-9G12 (No. 166) both precipitated 55 and 60 kDa proteins that were of similar molecular weights as the standard. Staining patterns on the various cell types were similar. Both new antibodies inhibited the binding of the CD5a reference mAbs b53b7 to peripheral lymphocytes. These mAbs, therefore both react with the CD5a epitope bringing the number of anti-porcine CD5 mAbs to eight, all of which appear to recognize the same epitope.  相似文献   

6.
Lymphocytes obtained from mammary gland secretions (MGS) during lactation or the dry period of dairy cows were simultaneously analyzed and compared to ileal intraepithelial lymphocytes (IEL) and peripheral blood lymphocytes (PBL) using monoclonal antibodies (mAb) specific for bovine leukocyte differentiation antigens. The T-lymphocytes of MGS during lactation and those in IEL were predominantly CD8(+), while T-cells in MGS during the dry period were predominantly CD4(+). In addition, the proportion of gamma delta T-cells in MGS during lactation and IEL was fairly high. A large percentage of CD8(+) cells and T-cells coexpressed the activation molecule, ACT2, yielding a high proportion of ACT2(+) CD8 T-cells and ACT2(+) gamma delta T-cells, in MGS during lactation and IEL. However, both types of cells were found at an extremely low level in MGS during the dry period and in PBL. Thus, the predominant T-cell populations in MGS during lactation are phenotypically similar to those in IEL in the intestine.  相似文献   

7.
The aim of the Second International Swine Cluster of Differentiation (CD) Workshop, supported by the Veterinary Immunology Committee (VIC) of the International Union of Immunological Societies (IUIS), was to standardize the assignment of monoclonal antibodies (mAb) reactive with porcine leukocyte differentiation antigens and to define new antibody clusters. At the summary meeting of the workshop in July, 1995, revisions in the existing nomenclature for Swine CD were approved, so that the rules are now in accord with those for human and ruminant CD. Swine CD numbers will now be given to clusters of mAb to swine orthologues of human CD molecules when homology is proven by (1) suitable tissue distribution and lymphoid cell subset expression, (2) appropriate molecular mass of the antigen recognized by the mAbs, and (3) reactivity of mAbs with the cloned swine gene products, or cross-reactivity of the mAb on the human gene products. In some cases, this reactivity would not be fully proven, mainly due to the lack of cloned gene products; for these CD antigens, the respective clusters will be assigned by the prefix ‘w' which will lead to ‘wCD' antigens. As a result of the Second International Swine CD Workshop the assignment of 16 mAb to existing CD groups (CD2a, CD4a, CD5a, wCD6, wCD8, CD14, CD18a, wCD21, wCD25) was confirmed, and 2 mAb to existing swine workshop clusters (SWC). More importantly, for the work on the porcine immune system, was the definition of 5 new swine CD antigens, namely CD3 (recognized by 6 new mAb and 3 epitopes), CD16 (1 new mAb), wCD29 (2 mAb), CD45RA (3 mAb) and CD45RC (1 new mAb). Finally, the demarcation of two new SWC molecules in swine, SWC8 (2 mAb) and SWC9 (2 mAb) was confirmed.  相似文献   

8.
Twenty-six monoclonal antibodies (mAbs) selected after the first round of analysis in the Third International Swine Workshop were grouped with additional mAbs from the first and second workshops and mAbs under study for further evaluation. Preparations of peripheral blood leukocytes were used in single and multicolor flow cytometric (FC) analyses. Six mAbs did not react with gammadelta T-cells. Two were negative for all tested specificities. Seven mAbs recognized molecules expressed on gammadelta T-cells that were not lineage restricted. One of these from the first workshop (2B11) yielded a pattern of labeling identical to a mAb under study (PGB73A). Ten mAbs were characterized in previous workshops and known to react with the gammadelta TCR or molecules expressed on subsets of gammadelta T-cells. One belonged to SWC4, two to SWC5, and one to SWC6. Two mAbs from the second workshop recognized a molecule or molecules expressed on subsets of gammadelta T-cells. A new mAb (PPT16) added late to the workshop following a request by the workshop chairs appeared to recognize a determinant expressed on the gammadelta TCR/CD3 molecular complex.  相似文献   

9.
Fifty-nine monoclonal antibodies (mAb) were assigned to the adhesion section of the Second International Swine CD Workshop. They were analysed for their reactivity to selected lymphoid cell populations, as well as to non-lymphoid cell lines. Cell lysate ELISAS and Western Blot analyses were also carried out. As a result, thirteen separate cluster groups emerged (p>0.95). Workshop assignments for adhesion molecules were made: wCD29/49 for mAbs UCP1D2 (#133) and FW4-101 (#165), and PNK-I (#194) and MUC76A (#025) could be assigned to wCD18. For one cluster (FQ1D7, #161 and 2F4, #069) the cellular distribution and MW were characteristic for MHC Class II, and another cluster comprising several antibodies which appeared to recognise MHC Class I. Other clusters could not be assigned to cell surface structures known to be linked to cellular adhesion, however, two further antibodies, 335-2 (#112) and FG1F6 (#156), could be added to SWC1, and the new SWC8 was defined by MIL3 (#077) and MUC20A (#029), binding a ligand of 29–32 kDa. Clustering for these two antibodies was confirmed by blocking studies. The cellular distribution is known for MIL3, recognising an epitope present on granulocytes, B cells, and a subset of T cells expressing CD8 at high intensity.  相似文献   

10.
Interleukin-4 (IL-4) is secreted by T helper type 2 cells, mast cells, basophils and eosinophils. Detection of IL-4 can contribute the evaluation of cellular immune responses during infectious diseases, immunological disorders or vaccination. We used recombinant equine IL-4 to generate a monoclonal antibody (mAb) to equine IL-4. The mAb detected recombinant IL-4 in mammalian cells transfected with different plasmids containing IL-4 cDNA. After mitogen stimulation of equine peripheral blood mononuclear cells, an intracellular protein was recognized by the new mAb in 1–2% of lymphocytes using flow cytometric analysis. In the presence of the secretion blocker Brefeldin A, the protein accumulated and was detected in 4–8% of lymphocytes stimulated with phorbol 12-myristate 13-acetate and ionomycin. Double staining with the new mAb and T-cell or B-cell markers identified a subpopulation of CD4+ T-cells expressing the protein recognized by the mAb. In addition, the protein was detectable in cell culture supernatants of mitogen stimulated cells by ELISA when using the new mAb for coating of the plates and a polyclonal antiserum to equine IL-4 for detection. In conclusion, the new mAb detects equine IL-4 and can be used for intracellular staining and ELISA to measure this important cytokine.  相似文献   

11.
Fifty-seven monoclonal antibodies (mAb) selected after the first round analyses in the Third International Swine CD workshop for their possible reactivity with T-lymphocyte specific antigens were further analysed in a second round. As target cells for flow cytometric analyses served peripheral blood mononuclear cells, nylon-wool enriched T-lymphocytes, thymocytes, splenocytes, and lymphocytes derived from Peyer's patches. These second round analyses revealed 15 different data sets. Together with 22 pre-selected data sets from the first round analyses with the whole panel of monoclonal antibodies, 37 data sets were used for the clustering of the respective mAb. Using the LTDB4 program, 19 preliminary clusters could be defined. Two clusters (C3 and C7) with 4 mAb showed no labelling of resting T-lymphocytes. Seven clusters (C1, C2, C4, C5, C6, C11, and C12) contain mAb (in total: 16 mAb) directed against subsets of CD4(-)CD8(-) T-lymphocytes. These mAb seem to recognise antigens on porcine T-lymphocytes with T-cell receptor (TcR) gamma/delta chains. Three clusters (C8, C9, C10, C13) seem to be artificial. They contain either mAb staining CD4(-)CD8(-) T-lymphocytes and low CD8+ cells (C8, C9), mAb with various reactivity (C10) and mAb with known differences in their reactivity (C13). Cluster C14 contains 3 mAb against the CD4a-epitope, C15 describes mAb directed against porcine CD8c-epitope whereas mAb against CD8a and CD8b-epitopes grouped in C19. The mAb found in C16 seem to recognise CD45R. Cluster C17 is composed of different standards directed against CD2, CD3, CD5 and wCD6. Two additional mAb recognising the CD2a-epitope could be enclosed. C18 contains two mAb directed against SWC2.  相似文献   

12.
Based on an analysis of their reactivity with porcine peripheral blood lymphocytes (PBL), only three of the 57 mAbs assigned to the T cell/activation marker group were grouped into cluster T9 along with the two wCD8 workshop standard mAbs 76-2-11 (CD8a) and 11/295/33 (CD8b). Their placement was verified through the use of two-color cytofluorometry which established that all three mAbs (STH101, #090; UCP1H12-2, #139; and PG164A, #051) bind exclusively to CD8+ cells. Moreover, like the CD8 standard mAbs, these three mAbs reacted with two proteins with a MW of 33 and 35 kDa from lymphocyte lysates and were, thus, given the wCD8 designation. Because the mAb STH101 inhibited the binding of mAb 76-2-11 but not of 11/295/33, it was given the wCD8a designation. The reactivity of the other two new mAbs in the T9 cluster with the various subsets of CD8+ lymphocytes were distinct from that of the other members in this cluster including the standards. Although the characteristic porcine CD8 staining pattern consisting of CD8low and CD8high cells was obtained with the mAb UCP1H12-2, a wider gap between the fluorescence intensity of the CD8low and CD8high lymphocytes was observed. In contrast, the mAb PG164A, not only exclusively reacted with CD4/CD8high lymphocytes, but it also failed to recognize CD4/CD8 double positive lymphocytes. It was concluded that this mAb is specific for a previously unrecognized CD8 epitope, and was, thus, given the wCD8c designation. A very similar reactivity pattern to that of PG164A was observed for two other mAbs (STH106, #094; and SwNL554.1, #009). Although these two mAbs were not originally positioned in the T cell subgroup because of their reactivity and their ability to inhibit the binding of PG164A, they were given the wCD8c designation. Overall, five new wCD8 mAbs were identified. Although the molecular basis for the differences in PBL recognition by these mAbs is not yet understood, they will be important in defining the role of CD8+ lymphocyte subsets in health and disease.  相似文献   

13.
Since the T cell receptor of γδ T cells is associated with CD3 molecules, it is a reasonable postulate that signal transduction through CD3 would occur in γδ T cells as it does in β T cells. However, while a small percentage of bovine γδ T cells divided in cultures of peripheral blood mononuclear cells (PBMCs) in response to stimulation by anti-CD3 monoclonal antibody (mAb) the majority of viable γδ T cells at the end of the culture period had not. This was assessed by carboxyfluorescein succinimidyl ester (CFSE) loading of cells and flow cytometric analysis here and previously [Res. Vet. Sci. 69 (2000) 275]. When intracytoplasmic staining for interferon-γ (IFN-γ) was also used here to assess activation through CD3, a small proportion of γδ T cells (approximately 14%) produced IFN-γ during the first 4 h of culture and by 72 h of culture that number had doubled. By comparison, a much larger proportion of CD4 and CD8 T cells stimulated with anti-CD3 mAb divided and although the percentage of CD4 and CD8 T cells that produced IFN-γ at 4 h was similar to that of γδ T cells, by 72 h the majority of CD4 and CD8 T cells were IFN-γ+. Addition of IL-2 did not increase the proportion of γδ T cells that responded to anti-CD3 stimulation by cell division. To test the hypothesis that γδ T cells were inhibited from responding by other mononuclear cell populations within PBMC, monocytes were removed from the PBMC or γδ T cells were purified by magnetic-bead sorting. Only a small distinct population of the sorted cells underwent multiple cell divisions in response to anti-CD3 mAb and removal of monocytes resulted in only a moderate increase in γδ T cell replication. The anti-CD3 mAb stimulation system may provide a useful system to evaluate the difference in the requirements for activation and clonal expansion for γδ T cells versus β T cells.  相似文献   

14.
Anaplasma phagocytophilum infection in sheep is characterized by an immune suppression as indicated by impaired antibody response, reduced lymphocyte response and reduced oxidative burst. The effect of A. phagocytophilum infection on leucocyte populations, especially lymphocytes, was therefore investigated in six sheep experimentally infected with A. phagocytophilum, and compared with leucocyte populations from control animals.To investigate the ability of the infection to interfere with the cellular and humoral responses to specific antigens, the animals were vaccinated with commercial vaccines at the time of experimental infection, and monitored for 56 days.There were reduced percentages of gammadelta T-cells and CD4+ T-cells in peripheral blood of infected animals throughout the study period, and these cell populations showed a down-regulation of CD25 expression; while there was a relative increase in CD8+ T-cells. The reduction in CD25+ gammadelta T-cells involved a subpopulation of WC1+ gammadelta T-cells. During the first 2 weeks of the study there were reduced percentages of B-cells and leukocytes expressing MHC II and CD11b, though this decrease changed to a relative increase later in the study. The relative reductions in leucocyte populations corresponded with the observed leucopenia during the first 3 weeks post-infection, which involved lymphocyte, neutrophil and eosinophil subsets [Vet. Immunol. Immunopathol. 86 (2002) 183]. There was a reduced expression of CD11b and CD14 on granulocytes during the first 2 weeks of the study, which corresponded with the previously reported leucopenia involving neutrophils and eosinophils. Antibody responses to vaccines, lymphocyte in vitro proliferative responses to antigens and mitogens, and in vitro IFN-gamma responses to antigens were reduced up to 4 weeks after infection.  相似文献   

15.
Three 10 months old cattle were infected by the intratracheal route with 10(6)cfu of a field strain of Mycobacterium bovis. Blood samples were regularly collected for in vitro IFN-gamma production after antigenic stimulation. Peripheral blood cells of infected animals produced IFN-gamma in response to crude M. bovis antigens (live and heat-inactivated BCG and protein-purified derivative (PPD)) 3-4 weeks after infection. The ratio of the response to bovine PPD versus avian PPD indicated a specific sensitisation for M. bovis antigens. Three months post-infection (PI), animals were culled and M. bovis was cultured from tubercle lesions. At different time points, the frequency of specific M. bovis IFN-gamma producing CD4+, CD8+ and WC1+ T-cells in the peripheral blood was examined by flow cytometry. Two colour immunofluorescence staining of intracellular IFN-gamma and bovine cell surface molecules showed that both CD4+ and CD8+, but not WC1+, T-cells produced IFN-gamma following stimulation with PPD, live or killed BCG.In two animals analysed, the relative percentage of circulating IFN-gamma producing CD8+ cells decreased between week 5 and week 9 PI. The same evolution was not observed for IFN-gamma secreting CD4+ cells. Magnetic positive selection of T-cells from infected animals showed that CD4+ T-cells produced specific IFN-gamma only in the presence of antigen presenting cells (APCs). Positively selected CD8+ T-cells secreted IFN-gamma only in the presence of recombinant human IL-2 and APCs. In vitro depletion of the CD4+ T-cells, but not the depletion of CD8+ or WC1+ T-cells, resulted in abrogation of the specific IFN-gamma production showing the key role of this cell population for the specific IFN-gamma production.  相似文献   

16.
Most of the metabolic diseases of dairy cows occur within the first 2 wk after calving, and cows with a metabolic disease are prone to infectious diseases. Although metabolic diseases are generally recognized as a risk factor for infectious diseases owing to the associated decrease in immune function, the difference in immune status between cows with milk fever (MF) or displaced abomasum (DA) during the lactation period has not been clarified. Therefore, the peripheral blood leukocyte populations in 38 multiparous Holstein cows from 1 herd were analyzed after calving. The cows were divided into 3 groups according to health: 21 cows that remained clinically healthy throughout the experimental period (control group), 9 cows that had MF on the day of calving, and 8 cows with an onset of DA within 4 wk after calving. The T- and B-cell numbers were lowest at week 0, and they increased gradually after calving. There was no significant difference between the 3 groups in the number of each subset of leukocytes on the day of calving, but the number of CD8+ T-cells was significantly lower in the MF and DA groups than in the control group at week 1. The numbers of CD4+, CD8+, and WC1+ T-cells tended to be lower in the DA group than in control group from weeks 4 to 12, a tendency not observed in the MF group. These data suggest that when cows have DA around the time of calving, their lymphocyte numbers remain lower until 12 wk after calving.  相似文献   

17.
Thirty two monoclonal antibodies (mAbs) from the first round of analysis in the Second International Swine CD Workshop were placed together with additional mAb derived from the first workshop in the null cell panel for further evaluation. Preparations of peripheral blood leukocytes, concanavalin A stimulated peripheral blood mononuclear cells, and spleen cells were used in flow cytometric analyses. Nineteen mAbs identified molecules that were not expressed on null cells, not lineage specific, or recognized activation molecules. Sixteen mAbs including control mAbs were identified that were specific for null cells. One of the latter mAbs, 041 (PGBL22A), that recognizes a determinant on a constant region of porcine γδ TcR established the majority of null cells are γδ T cells. Use of this mAb in further comparisons demonstrated the γδ T cell population is comprised of two major subpopulations, one negative and one positive for CD2. Two color analyses demonstrated that 11 of the mAbs formed a broad cluster that included control mAbs 188 (MAC320) that defined the CD2 negative SWC6 cluster in the first workshop and mAb 122 (CC101) that might recognize an orthologue of bovine WC1 and nine mAbs that recognize determinants on one or more molecules with overlapping patterns of expression on subsets of CD2 γδ T cells. Two groups of mAbs formed the previously identified subset clusters SWC4 and SWC5. Two new mAbs formed a third subcluster. Three mAbs did not form clusters. Three mAbs predicted to recognize TcR in the first workshop (020 [PT14A], 021 [PT79A], and 022 [MUC127A]) and mAb PGBL22A were shown to immunoprecipitate a 37, 40 kDa heterodimer.  相似文献   

18.
19.
Gnotobiotic calves were injected intravenously with murine monoclonal antibodies (mAb) directed against the BoCD4, BoCD8 or BoWC1 antigens that define the three major T-lymphocyte subpopulations in cattle. This produced a transient, specific depletion of each cell type in the circulation. Calves were then infected intranasally with a non-cytopathogenic biotype of bovine virus diarrhoea virus and the effect of the specific depletion with the mAb on viraemia and shedding of virus from the nasopharynx determined. Depletion of the cells expressing the BoCD4 antigen resulted in an extension of the duration of viraemia and an increase in the titre of virus in blood. No effect on nasopharyngeal shedding was noted. Depletion of either of the other two T-cell subsets that expressed the BoCD8 antigen or the BoWC1 antigen present on the gamma/delta T-cells had no demonstrable effect. These findings are interpreted as showing that the BoCD4+ cells play a pivotal role in controlling a primary infection with this virus but MHC class I restricted BoCD8+ T-cells are not a major effector mechanism. The BoCD4+ cells may be acting directly or be mediators of T-cell help.  相似文献   

20.
The aetiology of porcine post-weaning multisystemic wasting syndrome (PMWS) is poorly understood. Porcine circovirus type 2 (PCV-2) is an essential component of the experimental disease model for PMWS: however, evidence from experimental and field studies indicates that additional factors play a critical role in the aetiopathogenesis of PMWS. Current candidates include (1) immune stimulation (for example, via co-infection or vaccination), and (2) a novel infectious agent. A prospective, longitudinal case-control study was designed to investigate molecular triggers in leucocytes of neonatal piglets that may predispose to the development of PMWS. Blood samples were collected weekly from pigs (n=125) within five farms, from 1 week to 8 weeks of age: that is, before the appearance of clinical signs. Four colour flow cytometry was used to investigate changes in subsets of peripheral blood mononuclear cells, using monoclonal antibodies against the following cell associated markers; sIgG, CD3, MHCII dR, CD14, CD4a, CD8a, CD45RC, CD25, SWC3a, SWC8, CD163 and CD45. Sampling and laboratory analysis was supported by monitoring of clinical signs from 1 week to 20 weeks of age, or until disease supervened. At the conclusion of the study, 68 pigs (54%) were classified in Group 1 (no signs of clinical disease), 34 pigs (27%) in Group 2 (signs of clinical disease but not characteristic of PMWS), 17 pigs (14%) in Group 3 (suspect PMWS case) and 5 pigs (4%) in Group 4 (PMWS case). A single case of Porcine Dermatitis and Nephropathy syndrome (PDNS) was also diagnosed. Significant changes with age were demonstrated in clinically normal, neonatal pigs (Group 1), including an increase in B-cells and T-cells, and an increase in the proportion of total T-cells expressing MHCII. Within the T-cell subset, the proportion of CD8(+high) CD4(-) T-cells increased, in addition to the proportion of CD4(+) T-cells co-expressing CD8. Of the factors recorded, farm was found to have a highly significant effect on immune system development in the neonate. Comparison of Groups 1 and 4 cases identified significant differences between pigs which remained normal and those which subsequently developed PMWS. Pigs which went on to develop PMWS had a greater proportion of T-cells expressing MHCII in early life, higher mean intensity of expression of MHCII on T-cells, higher mean intensity of expression of MHCII on B cells and higher expression of CD25 on CD45RC(-) T-cells. These findings suggest that lymphocyte activation may be a key early event in the aetiology of PMWS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号