首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We studied the presence of a potential transmission barrier that blocks Tomato yellow leaf curl virus in the nonvector greenhouse whitefly, Trialeurodes vaporariorum. Because T. vaporariorum can ingest and retain the virus after acquisition feeding on an infected plant, comparable to the vector whitefly Bemisia tabaci, circumstance evidence suggested that a transmission barrier presents at location(s) where the virus moves from the digestive tract lumen to the hemolymph. To provide direct evidence for the site of a transmission barrier in the nonvector insect, we compared the accumulation levels and localization of the virus between the two species of whiteflies. Quantitative real-time and conventional PCR analysis showed that accumulation of the virus during acquisition feeding and retention after a short acquisition period were indistinguishable between the two species, but the circulation of the virus within the whiteflies differed significantly between the species. In an immunofluorescence analysis using an antibody specific to the coat protein of the virus, the virus was restricted to the luminal surface of the midgut epithelial cells and did not enter their cytoplasm or that of the salivary glands in T. vaporariorum. In contrast, the virus was localized within the cytoplasm of the midgut epithelial cells and in the paired salivary glands of B. tabaci adults. This direct evidence shows that a selective transmission barrier at the luminal membrane surface of midgut epithelial cells in the nonvector whitefly blocks entrance of the virus into the midgut epithelial cells, resulting in incompetence as a vector of the virus.  相似文献   

2.
Protected tomato is the most important horticultural crop in the Algarve (south of Portugal). However, the growing area has decreased by almost 48% since 1995, mainly as a result of the pests Bemisia tabaci and Trialeurodes vaporariorum and the epidemics of Tomato yellow leaf curl virus (TYLCV), a Begomovirus transmitted by B. tabaci. Both whiteflies are vectors of economically important viruses. Recently, Tomato chlorosis virus (ToCV), a member of the genus Crinivirus, transmitted by both B. tabaci and T. vaporariorum, was reported infecting tomato crops in Algarve. A study was carried out to evaluate the dynamics of whitefly populations on tomato crops in Algarve. Population counts of B. tabaci were high in the first months of autumn, then decreased until January, when numbers of T. vaporariorum became higher. Counts of B. tabaci then increased again.  相似文献   

3.
The spread of tomato yellow leaf curl virus (TYLCV) is significantly correlated with the population size of its vector,Bemisia tabaci Genn. The perennial weedCynanchum acutum L. and the annual weedMalva parviflora L. were found to be natural hosts of TYLCV in the Jordan Valley.C. acutum is not a preferred host forB. tabaci, but the whitefly feeds on it sufficiently long to acquire the virus. Whiteflies marked with fluorescent dust while feeding naturally onC. acutum along the banks of the Jordan River, were subsequently trapped within the main tomato-production area 7 km away. An increase in theB. tabaci population and in TYLCV infectivity was found in plots surrounded by windbreaks. The epidemiological cycle of TYLCV is described and cultural control measures are suggested.  相似文献   

4.
为明确烟粉虱传播的番茄褪绿病毒(Tomato chlorosis virus,ToCV)与番茄黄化曲叶病毒(Tomato yellow leaf curl virus,TYLCV)对不同番茄品种的复合侵染情况,于2015年11月在山东省寿光市温室内采集13个番茄品种共390份疑似发病植株叶片,对不同番茄品种的TYLCV抗性和2种病毒的复合侵染以及温室内发病番茄植株上烟粉虱成虫的带毒率进行检测。结果表明,采集的13个番茄品种经分子标记检测鉴定均为TYLCV杂合抗性;不同番茄品种ToCV与TYLCV的复合侵染率存在明显差异,大果番茄粉宴和贝瑞上复合侵染率最高可达73.3%,而樱桃番茄八喜上未检测到这2种病毒的复合侵染。此外,在发病番茄植株上采集的烟粉虱成虫体内可检测到2种病毒,其中烟粉虱ToCV带毒率为90.7%,TYLCV带毒率为80.0%,同时检测到ToCV与TYLCV的概率为71.3%。表明ToCV和TYLCV的复合侵染在山东省番茄生产中普遍发生,烟粉虱可同时携带这2种病毒并广泛传播。  相似文献   

5.
Tomato yellow leaf curl disease is one of the most devastating viral diseases affecting tomato crops worldwide. This disease is caused by several begomoviruses (genus Begomovirus, family Geminiviridae), such as Tomato yellow leaf curl virus (TYLCV), that are transmitted in nature by the whitefly vector Bemisia tabaci. An efficient control of this vector‐transmitted disease requires a thorough knowledge of the plant–virus–vector triple interaction. The possibility of using Arabidopsis thaliana as an experimental host would provide the opportunity to use a wide variety of genetic resources and tools to understand interactions that are not feasible in agronomically important hosts. In this study, it is demonstrated that isolates of two strains (Israel, IL and Mild, Mld) of TYLCV can replicate and systemically infect A. thaliana ecotype Columbia plants either by Agrobacterium tumefaciens‐mediated inoculation or through the natural vector Bemisia tabaci. The virus can also be acquired from A. thaliana‐infected plants by B. tabaci and transmitted to either A. thaliana or tomato plants. Therefore, A. thaliana is a suitable host for TYLCV–insect vector–plant host interaction studies. Interestingly, an isolate of the Spain (ES) strain of a related begomovirus, Tomato yellow leaf curl Sardinia virus (TYLCSV‐ES), is unable to infect this ecotype of A. thaliana efficiently. Using infectious chimeric viral clones between TYLCV‐Mld and TYLCSV‐ES, candidate viral factors involved in an efficient infection of A. thaliana were identified.  相似文献   

6.
为评价释放前经历饥饿对浅黄恩蚜小蜂Encarsia sophia(GiraultDodd)寄生取食粉虱能力的影响,以3龄Q隐种烟粉虱Bemisia tabaci Q和温室白粉虱Trialeurodes vaporariorum若虫为寄主,在2种粉虱单独或同时存在的情况下,比较释放前经适度饥饿、初羽化未饥饿和初羽化喂饲蜂蜜水3种处理的浅黄恩蚜小蜂对2种粉虱寄主的寄生和取食选择情况。结果表明,在2种粉虱单独存在时,经适度饥饿6 h的浅黄恩蚜小蜂寄生的烟粉虱和温室白粉虱显著多于其它处理,而且能取食更多的温室白粉虱,经适度饥饿的寄生蜂在24 h内通过寄生和取食杀死烟粉虱和温室白粉虱的总量分别为12.5头和12.9头。在2种粉虱同时存在时,适度饥饿寄生蜂取食2种粉虱的总量明显高于其它处理,但不同处理间无显著差异,适度饥饿寄生蜂通过寄生和取食杀死2种粉虱的数量最多为11.5头,显著高于未饥饿处理的6.5头。表明释放前经历适度饥饿可以明显提高浅黄恩蚜小蜂寄生和取食粉虱若虫的能力。  相似文献   

7.
Tomato chlorosis virus (ToCV, genus Crinivirus, family Closteroviridae) causes yellowing of tomatoes in many countries worldwide. Symptoms of ToCV infections in tomatoes include inter-veinal yellow chlorotic areas that develop first on lower leaves and then advance towards the upper part of the plant. ToCV is transmitted in nature by the whiteflies Bemisia tabaci, Trialeurodes vaporariorum, and Trialeurodes abutilonea in a semi-persistent manner. In the summer of 2006, a few potato (Solanum tuberosum) volunteer plants heavily infested with the whitefly B. tabaci were found growing within a pepper crop in the province of Málaga, southern Spain. Leaf samples from volunteer plants were tested for the presence of ToCV by molecular hybridization and RT-PCR, and were shown to be infected. Furthermore, potato plants were readily infected by ToCV after experimental transmission using B. tabaci biotype Q as vector. ToCV was also detected in the tubers from infected plants that subsequently produced infected plants. Potato also served as virus source for tomato infection via B. tabaci transmission.  相似文献   

8.
For the UK, Bemisia tabaci poses a threat primarily to protected vegetable crops due to the transmission of several plant-pathogenic viruses. There are at least 24 different biotypes of B. tabaci that cannot be differentiated through morphological traits. The B (Middle East-Asia Minor 1 species) and Q (Mediterranean species) biotypes are widely considered to be the most important and, as such, the ability to rapidly and precisely biotype B. tabaci interceptions is vital when developing effective control strategies. Intercepted adult/pupal B. tabaci received from the UK Plant Health and Seeds Inspectorate (PHSI) during 2002–2003 (n?=?60) and 2010–2011 (n?=?42) were both biotyped and tested for the presence of Tomato yellow leaf curl virus (TYLCV) and Tomato yellow leaf curl Sardinia virus (TYLCSV) using a real-time PCR assay based on TaqMan? chemistry. The positive results indicated that during 2002–2003 the Q biotype comprised 68.3?% of the interceptions whilst in 2010–2011 it comprised 66.7?% of the B. tabaci samples intercepted. Only three of the B biotypes collected during 2002–2003 were positive for TYLCSV, two originating from Israel and the other of unknown origin. The implications in regards to pest management of the insect are discussed.  相似文献   

9.
The global invasion of certain Bemisia tabaci biotypes provides opportunities to compare the competency of virus transmission between invasive and indigenous biotypes. Here we report on the acquisition, retention and transmission of Tomato Yellow Leaf Curl Virus (TYLCV) by the invasive B, Q and indigenous ZHJ2 biotypes of B. tabaci from Zhejiang, China. For all whitefly biotypes, TYLCV DNA was detected within a 30-min acquisition access period (AAP) to infected leaves. The percentage of adults with viral DNA increased with the length of AAP and reached 100% after 10–12 h. Following acquisition, viruliferous B, Q and ZHJ2 adults retained TYLCV DNA for the rest of their lives. Transmission was achieved with one B/Q adult per plant at the frequency of 50–55%, which rose to 100% with 10 insects per plant. In contrast, transmission of the virus was not observed with one ZHJ2 adult per plant in the experiments, and the transmission frequency rose to only 30–45% when whitefly adults increased to 5–10 per plant. These new data will help in the determination of the pest status of the whitefly biotypes as virus vectors in the regions of invasion, and so help in the development of management strategies.  相似文献   

10.
ABSTRACT A membrane feeding system and polymerase chain reaction (PCR) were used to track squash leaf curl virus (SLCV) DNA in whole whitefly body extracts and in saliva, honeydew, and hemolymph of its whitefly vector, Bemisia tabaci, and a whitefly nonvector, Trialeurodes vaporariorum. SLCV ingestion was monitored by PCR in whiteflies that were given acquisition access periods (AAPs) ranging from 0.5 to 96 h on virus-infected plants. SLCV detection by PCR in whole body extracts was considered reflective of virus ingestion. As whiteflies were given longer AAPs, the number of whiteflies that ingested SLCV increased. SLCV DNA was detected in honeydew of vector and nonvector whiteflies, indicating that virions, viral DNA, or both passed unimpeded through the digestive system. SLCV DNA was detected in saliva and hemolymph of B. tabaci, but not in these fractions from nonvector whiteflies, despite virus ingestion by both. Although vector and nonvector whiteflies both ingested SLCV, only in the vector, B. tabaci, did virus cross the gut barrier, enter the hemolymph, or pass into the salivary system. These results suggest that digestive epithelia of nonvector whiteflies did not permit SLCV passage from the gut to hemocoel, whereas virus effectively crossed the analogous gut barrier in vector whiteflies.  相似文献   

11.
Pyriproxyfen, a novel juvenile hormone mimic, is a potent suppressor of embryogenesis and adult formation of the sweetpotato whitefly, Bemisia tabaci (Gennadius), and the greenhouse whitefly, Trialeurodes vaporariorum (Westwood). Dipping of cotton or tomato seedlings infested with 0 to 1-day-old eggs in 0.1 mg litre?1 resulted in over 90% suppression of egg hatch of both B. tabaci and T. vaporariorum. Older eggs were affected to a lesser extent. Exposure of whitefly females to cotton or tomato seedlings treated with pyriproxyfen resulted in oviposition of non-viable eggs. The LC90 values for egg viability of B. tabaci and T. vaporariorum exposed to treated plants were 0.05 and 0.2 mg litre?1, respectively. Treatment of whitefly larvae with 0.04–5 mg litre?1 resulted in normal development until the pupal stage; however, adult emergence was totally suppressed. Second instars of B. tabaci exposed to 5 mg litre?1 pyriproxyfen, excreted honeydew at a level similar to the control level until the fourth instar (pupation), after which a strong reduction was observed. Inhibition of egg-hatch on the lower surface of cotton leaves was observed when their upper surface was treated with 1–25 mg litre?1, indicating a pronounced translaminar effect. These findings indicate that pyriproxyfen is an efficient control agent of both B. tabaci and T. vaporariorum. The compound has been used successfully for controlling whiteflies in Israeli cotton fields since 1991. Adults of B. tabaci collected from a rose greenhouse and from adjacent cotton fields were monitored during 1991–1993 for their susceptibility to pyriproxyfen. A high level of resistance was recorded in whiteflies collected from a greenhouse after three successive applications of pyriproxyfen. Based on LC50 values, the resistance ratio for egg-hatch suppression was 554-fold and, for adult emergence failure, 10-fold. However, a single treatment of pyriproxyfen in cotton fields during the summer season (according to an insecticide resistance management (IRM) strategy) did not alter appreciably the susceptibility of B. tabaci to this compound. In order to prevent development of resistance, an attempt should be made to restrict its use to one treatment per crop season applied during the peak activity of the pest. Pyriproxyfen can be alternated with other novel compounds such as buprofezin and diafenthiuron for controlling whiteflies in cotton, vegetables and ornamentals as part of integrated pest management (IPM) and IRM strategies. In pyriproxyfen- or buprofezin-resistant strains of B. tabaci or T. vaporariorum, no appreciable cross-resistance was observed among pyriproxyfen, buprofezin and diafenthiuron.  相似文献   

12.
A. Lopes 《EPPO Bulletin》2002,32(1):7-10
In Portugal during the 1960/1980s, there was intensive development of vegetable crop production, in particular protected crops, of which tomato was the most important. The main producing regions now are Ribatejo e Oeste, Alentejo and Algarve. Tomato presents extensive phytosanitary problems, being host to a wide range of pests, including the whiteflies Trialeurodes vaporariorum, in protected crops, and Bemisia tabaci, in protected and field crops. Portugal has applied for the status of an EU ‘protected zone’ for this latter pest. As B. tabaci is an important vector of a large number of viruses, including tomato yellow leaf curl viruses (TYLCV), a monitoring programme of the tomato crop was implemented in Portugal. Preliminary data are presented concerning B. tabaci in the three main tomato‐growing regions of the country.  相似文献   

13.
The recent upsurgence ofBemisia tabaci (Genn.) as an important insect pest and vector ofTomato yellow leaf curl virus (TYLCV) is directly linked to serious damage to tomato crops grown throughout Japan. The molecular genetic identification and phylogenetic relationships of 12B. tabaci populations collected from representative locations in Japan were determined based on the mitochondrial cytochrome oxidase I (mtCOI) sequence. Phylogenetic analysis of the whitefly mtCOI sequence indicated that both the invasive B and Q biotypes now occur in Japan. The Q biotype was found at four locations: Mihara in Hiroshima, Nishigoshi in Kumamoto, Miyanojo and Okuchi in Kagoshima prefectures; the remaining eight collections were identified as the B biotype. This is the first report of the introduction of Q biotype in Japan. http://www.phytoparasitica.org posting July 21, 2006.  相似文献   

14.
Considering that certain morphological leaf characteristics and foliar pubescence may affect insect feeding preference on plant genotypes, the present studies were undertaken to study the variation in leaf morphology and to further evaluate the influence of leaf characteristics in imparting resistance to black gram (Vigna mungo (L.) Hepper) genotypes against Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae). Evaluation of nine black gram genotypes against B. tabaci in multiple-choice test revealed that moderately resistant genotypes KU 99-20 and NDU 5-7 recorded significantly lowest whitefly population (egg, nymph and adult) as compared to the susceptible genotypes IPU 02-043, KU 7-602, KU 7-605, KU 7-618 and Mash 1-1 and highly susceptible genotypes KU 7-504 and KU 7-505. Evidence for morphological leaf characteristics was gathered using data from leaf area meter, fluorescent, electron microscopy as well as direct visual observations. Correlations between morphological leaf characteristics of black gram genotypes and the whitefly population were examined. Leaf area, lamina thickness and trichome length were significantly and positively correlated with whitefly eggs, nymphs and adults whereas trichome density and angle were negatively correlated. Thus, black gram genotypes with narrow, thin and highly pubescent leaves having short, but erect trichomes should be selected for developing black gram varieties resistant to whitefly.  相似文献   

15.
The sweet potato whitefly, Bemisia tabaci (Gennadius) (Hemiptera:Aleyrodidae), is an invasive and damaging pest of field crops worldwide. The neonicotinoid insecticide imidacloprid has been widely used to control this pest. We assessed the species composition (B vs. Q), imidacloprid resistance, and association between imidacloprid resistance and the expression of five P450 genes for 14–17 B. tabaci populations in 12 provinces in China. Fifteen of 17 populations contained only B. tabaci Q, and two populations contained both B and Q. Seven of 17 populations exhibited moderate to high resistance to imidacloprid, and eight populations exhibited low resistance to imidacloprid, compared with the most susceptible field WHHB population. In a study of 14 of the populations, resistance level was correlated with the expression of the P450 genes CYP6CM1 and CYP4C64 but not with the expression of CYP6CX1, CYP6CX4, or CYP6DZ7. This study indicates that B. tabaci Q has a wider distribution in China than previously reported. Resistance to imidacloprid in field populations of B. tabaci is associated with the increased expression of two cytochrome P450 genes (CYP6CM1 and CYP4C64).  相似文献   

16.
Milbemectin has a chemical structure close to the group of avermectins, which are derived fromStreptomyces avermitilis, and is considered primarily an efficient miticide. Effects of milbemectin on the sweetpotato whitefly,Bemisia tabaci Gennadius, were investigated under laboratory and field conditions. In bioassays conducted under controlled chamber conditions, the compound affected 1st instars ofB. tabaci, resulting in a LC90 of 0.06 mg a.i. I-1. Later stage larvae were much less affected. Milbemectin is highly photodegradable in sunlight. In laboratory assays, when treated cotton seedlings were subjected to 3 h of sunlight before being exposed toB. tabaci adults, no mortality of the whiteflies was observed. Milbemectin at a concentration of 2 mg a.i. I-1 applied in combination with 0.2% ‘Ultra Fine’ mineral oil showed a residual activity of 67% adult mortality 10 days after application, whereas milbemectin alone had no appreciable activity. The effect of milbemectin on whitefly populations in a cotton field was compared with that of cypermethrin and of untreated control. Although milbemectin was not applied with mineral oil, it was more effective than cypermethrin in controlling the whitefly populations. This insecticide/miticide seems not to affect appreciably natural enemies ofB. tabaci. Milbemectin may be considered a compound with the potential for controllingB. tabaci populations. Mineral oils enhanced the potency of milbemectin on both whitefly larvae and adults. http://www.phytoparasitica.org posting July 27, 1999. Contribution No. 501/99 from the Inst. of Plant Protection, Agricultural Research Organization.  相似文献   

17.
BACKGROUND: Trialeurodes vaporariorum (Westwood), also known as the greenhouse whitefly, is a serious pest of protected vegetable and ornamental crops in most temperate regions of the world. Neonicotinoid insecticides are used widely to control this species, although resistance has been reported and may be becoming widespread. RESULTS: Mortality rates of UK and European strains of T. vaporariorum to a range of neonicotinoids and pymetrozine, a compound with a different mode of action, were calculated, and significant resistance was found in some of those strains. A strong association was found between neonicotinoids and pymetrozine, and reciprocal selection experiments confirmed this finding. Expression of resistance to the neonicotinoid imidacloprid and pymetrozine was age specific, and resistance in nymphs did not compromise recommended application rates. CONCLUSION: This study indicates strong parallels in the phenotypic characteristics of neonicotinoid resistance in T. vaporariorum and the tobacco whitefly Bemisia tabaci Gennadius, suggesting possible parallels in the underlying mechanisms. Copyright © 2010 Society of Chemical Industry  相似文献   

18.
A new approach for the simultaneous identification of the viruses and vectors responsible for tomato yellow leaf curl disease (TYLCD) epidemics is presented. A panel of quantitative multiplexed real‐time PCR assays was developed for the sensitive and reliable detection of Tomato yellow leaf curl virus‐Israel (TYLCV‐IL), Tomato leaf curl virus (ToLCV), Bemisia tabaci Middle East Asia Minor 1 species (MEAM1, B biotype) and B. tabaci Mediterranean species (MED, Q biotype) from either plant or whitefly samples. For quality‐assurance purposes, two internal control assays were included in the assay panel for the co‐amplification of solanaceous plant DNA or B. tabaci DNA. All assays were shown to be specific and reproducible. The multiplexed assays were able to reliably detect as few as 10 plasmid copies of TYLCV‐IL, 100 plasmid copies of ToLCV, 500 fg B. tabaci MEAM1 and 300 fg B. tabaci MED DNA. Evaluated methods for routine testing of field‐collected whiteflies are presented, including protocols for processing B. tabaci captured on yellow sticky traps and for bulking of multiple B. tabaci individuals prior to DNA extraction. This work assembles all of the essential features of a validated and quality‐assured diagnostic method for the identification and discrimination of tomato‐infecting begomovirus and B. tabaci vector species in Australia. This flexible panel of assays will facilitate improved quarantine, biosecurity and disease‐management programmes both in Australia and worldwide.  相似文献   

19.
The whitefly Bemisia tabaci has been a serious pest in protected tomato crops since 1995 in the south of Portugal (Algarve), causing severe losses mainly resulting from Tomato yellow leaf curl virus (TYLCV), first reported in the autumn/winter season. In order to manage and control the B. tabaci/TYLCV complex, experimental field trials were carried out between 1997 and 2000. Several control methods were tested, such as the application of white screen nets to windows and doors, chemical treatments against B. tabaci and the use of cucumber as a trap crop. The results show that the percentage of plants with TYLCV symptoms mainly reflects B. tabaci infestation level in the first 6 weeks. Screen net protection was the control method that clearly provided a low incidence of plants with TYLCV symptoms in the autumn/winter season. Additionally, insecticide treatments, made weekly in the first 6 weeks, may give improved protection. In the winter/spring season, the B. tabaci/TYLCV complex is a minor problem because of the low populations of B. tabaci and the climatic conditions. Information about the work in progress and results was given to growers through visits to the experimental fields and oral presentations.  相似文献   

20.
为明确以雪莲果Smallanthus sonchifolius为寄主植物繁育的浅黄恩蚜小蜂Encarsia sophia的生防潜能,测定雪莲果繁育的浅黄恩蚜小蜂个体大小以及其对烟粉虱Bemisia tabaci MED隐种和温室白粉虱Trialeurodes vaporariorum的致死能力,并解析其寄生2种粉虱若虫后的子代发育情况。结果表明,雪莲果繁育的浅黄恩蚜小蜂雌雄蜂体长、头宽及后足胫节长度均显著高于番茄繁育的浅黄恩蚜小蜂。雪莲果繁育的浅黄恩蚜小蜂对烟粉虱和温室白粉虱的平均致死数量分别为24.7头和25.0头,显著高于番茄繁育的21.4头和21.0头。相对于番茄,雪莲果繁育的浅黄恩蚜小蜂寄生烟粉虱和温室白粉虱若虫后其子代发育时间更短,平均分别为13.2 d和12.5 d;而且子代羽化率也显著高于番茄繁育的子代羽化率,分别为84.1%和86.9%。表明与番茄相比,雪莲果为寄主植物繁育的浅黄恩蚜小蜂对烟粉虱和温室白粉虱具有更强的生防潜能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号