首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
In this study, IgG subclass responses against equine herpesvirus type 4 (EHV-4) were examined by enzyme-linked immunosorbent assay (ELISA) using a type-specific region of EHV-4 glycoprotein G (gG). ELISA using sera collected from horses experimentally infected with EHV-4 revealed that IgGa and IgGb antibodies were detected at high level, but IgGc and IgG(T) antibody responses were detected at low level or were undetectable. The IgGa antibody response reached its peak on day 10 post-infection, and then dropped. The IgGb antibody response reached its maximum level on day 12 post-infection, and then the level was sustained during at least 28 days after infection. Forty healthy racehorses that had already been infected with EHV-4 possessed antibody against EHV-4. Although IgGa antibodies specific for EHV-4 were not detected in any horses, IgGb antibodies were detected and the levels correlated with total IgG antibodies against EHV-4 gG. The results suggest that EHV-4-specific IgGa and IgGb antibodies are induced in EHV-4-infected horses, and that IgGb antibody, but not IgGa, is long lasting.  相似文献   

2.
An immunoglobulin G (IgG) subclass response against equine herpesvirus type 1 (EHV-1) infection was investigated in horses that were na?ve to EHV-1/4 and those that had previously been exposed to EHV-4. The IgG subclass response was determined by an ELISA using EHV-1-specific recombinant gG protein as an antigen. In most horses na?ve to EHV-1/4, IgGa, IgGb, and IgG(T) were induced after experimental infection with EHV-1. In contrast, a subclass response dominated by IgGa and IgGb, with no apparent increase in IgG(T), was observed after EHV-1 infection in horses previously infected with EHV-4. Horses naturally infected with EHV-1 in the field showed similar responses. These results indicated that pre-infection with EHV-4 induced a Th-1-biased IgG subclass response against subsequent EHV-1 infection.  相似文献   

3.
Equine herpesvirus 1 (EHV-1) is a major cause of respiratory disease and abortion in horses worldwide. Although some vaccines have been shown experimentally to reduce disease, there are few reports of the responses to vaccination in the field. This study measured antibody responses to vaccination of 159 mares (aged 4-17 years) and 101 foals (aged 3-6 months) on a large stud farm with a killed whole virus EHV-1/4 vaccine used as per the manufacturer's recommendations. Using an EHV glycoprotein D (gD)-specific ELISA and a type-specific glycoprotein G (gG) ELISA, respectively 13.8 and 28.9% of mares, and 42.6 and 46.6% of foals were classed as responding to vaccination. Additionally, 16.4 and 17.6% of mares were classified as persistently seropositive mares. Using both assays, responder mares and foals had lower week 0 mean ELISA absorbances than non-responder mares and foals. Responder mares were ten times more likely to have responder foals, and non-responder mares were six times more likely to have non-responder foals than other mares using the gG ELISA. Mares aged 7 years or less and foals aged 4 months or more were more likely to respond to vaccination than animals in other age groups. There was no association between response of mares and the number of previous vaccinations received and persistently seropositive mares did not respond to vaccination. This study documents the responses of mares and foals to vaccination in a large scale commercial environment in 2000, and suggests that knowledge of antibody status may allow a more selective vaccination strategy, representing considerable savings to industry.  相似文献   

4.
OBJECTIVE: To evaluate a technique for identifying horses latently infected with neuropathogenic strains of equine herpesvirus-1 (EHV-1). ANIMALS: 36 adult mares, 24 of which were experimentally infected as weanlings with neuropathogenic or nonneuropathogenic EHV-1. PROCEDURES: Mandibular lymph node (MLN) tissue was obtained from each horse via biopsy during general anesthesia. Purified DNA from MLNs was tested for EHV-1 DNA by use of a magnetic bead, sequencecapture, nested PCR assay. For MLNs that contained EHV-1 DNA, the 256-bp DNA fragments amplified via sequence-capture nested PCR were sequenced to determine the nucleotide at the polymorphic site that determines pathotype (ie, neuropathotype [G(2254)] or non-neuropathotype [A(2254)]). RESULTS: Latent viral DNA was detected in 26 of the 36 (72%) mares tested. Neuropathogenic and nonneuropathogenic EHV-1 genotypes were detected in the latently infected horses. In each mare previously infected with known EHV-1 pathotypes, the open reading frame 30 genotype of latent EHV-1 was identical to that of the strain that had been inoculated 4 to 5 years earlier. Latent viral DNA was detected in 10 of the 12 mares that were inoculated as weanlings with neuropathogenic strains of EHV-1. The detection rate of the sequence-capture PCR method for EHV-1 latency was double that of conventional nested or realtime PCR assays performed on the same MLN DNA preparations. CONCLUSIONS AND CLINICAL RELEVANCE: The magnetic bead, sequence-capture, nested PCR technique enabled low-threshold detection of DNA from latent neuropathogenic strains of EHV-1 in MLN specimens from live horses. The technique may be used to screen horses for latent neuropathogenic EHV-1 infection.  相似文献   

5.
AIM: To identify viruses associated with respiratory disease in young horses in New Zealand.

METHODS: Nasal swabs and blood samples were collected from 45 foals or horses from five separate outbreaks of respiratory disease that occurred in New Zealand in 1996, and from 37 yearlings at the time of the annual yearling sales in January that same year. Virus isolation from nasal swabs and peripheral blood leukocytes (PBL) was undertaken and serum samples were tested for antibodies against equine herpesviruses (EHV-1, EHV-2, EHV-4 and EHV-5), equine rhinitis-A virus (ERAV), equine rhinitis-B virus (ERBV), equine adenovirus 1 (EAdV-1), equine arteritis virus (EAV), reovirus 3 and parainfluenza virus type 3 (PIV3).

RESULTS: Viruses were isolated from 24/94 (26%) nasal swab samples and from 77/80 (96%) PBL samples collected from both healthy horses and horses showing clinical signs of respiratory disease. All isolates were identified as EHV-2, EHV-4, EHV-5 or untyped EHV. Of the horses and foals tested, 59/82 (72%) were positive for EHV-1 and/or EHV-4 serum neutralising (SN) antibody on at least one sampling occasion, 52/82 (63%) for EHV-1-specific antibody tested by enzyme-linked immunosorbent assay (ELISA), 10/80 (13%) for ERAV SN antibody, 60/80 (75%) for ERBV SN antibody, and 42/80 (53%) for haemagglutination inhibition (HI) antibody to EAdV-1. None of the 64 serum samples tested were positive for antibodies to EAV, reovirus 3 or PIV3. Evidence of infection with all viruses tested was detected in both healthy horses and in horses showing clinical signs of respiratory disease. Recent EHV-2 infection was associated with the development of signs of respiratory disease among yearlings [relative risk (RR)=2.67, 95% CI=1.59-4.47, p=0.017].

CONCLUSIONS: Of the equine respiratory viruses detected in horses in New Zealand during this study, EHV-2 was most likely to be associated with respiratory disease. However, factors other than viral infection are probably important in the development of clinical signs of disease.  相似文献   

6.
The objective of this study was to detect and characterize latent equine herpes virus (EHV)-1 and -4 from the submandibular (SMLN) and bronchial lymph (BLN) nodes, as well as from the trigeminal ganglia (TG) of 70 racing Thoroughbred horses submitted for necropsy following sustaining serious musculoskeletal injuries while racing. A combination of nucleic acid precipitation and pre-amplification steps was used to increase analytical sensitivity. Tissues were deemed positive for latent EHV-1 and/or -4 infection when found PCR positive for the corresponding glycoprotein B (gB) gene in the absence of detectable late structural protein gene (gB gene) mRNA. The EHV-1 genotype was also determined using a discriminatory real-time PCR assay targeting the DNA polymerase gene (ORF 30). Eighteen (25.7%) and 58 (82.8%) horses were PCR positive for the gB gene of EHV-1 and -4, respectively, in at least one of the three tissues sampled. Twelve horses were dually infected with EHV-1 and -4, two carried a latent neurotropic strain of EHV-1, six carried a non-neurotropic genotype of EHV-1 and 10 were dually infected with neurotropic and non-neurotropic EHV-1. The distribution of latent EHV-1 and -4 infection varied in the samples, with the TG found to be most commonly infected. Overall, non-neurotropic strains were more frequently detected than neurotropic strains, supporting the general consensus that non-neurotropic strains are more prevalent in horse populations, and hence the uncommon occurrence of equine herpes myeloencephalopathy.  相似文献   

7.
AIM: To identify viruses associated with respiratory disease in young horses in New Zealand. METHODS: Nasal swabs and blood samples were collected from 45 foals or horses from five separate outbreaks of respiratory disease that occurred in New Zealand in 1996, and from 37 yearlings at the time of the annual yearling sales in January that same year. Virus isolation from nasal swabs and peripheral blood leukocytes (PBL) was undertaken and serum samples were tested for antibodies against equine herpesviruses (EHV-1, EHV-2, EHV-4 and EHV-5), equine rhinitis-A virus (ERAV), equine rhinitis-B virus (ERBV), equine adenovirus 1 (EAdV-1), equine arteritis virus (EAV), reovirus 3 and parainfluenza virus type 3 (PIV3). RESULTS: Viruses were isolated from 24/94 (26%) nasal swab samples and from 77/80 (96%) PBL samples collected from both healthy horses and horses showing clinical signs of respiratory disease. All isolates were identified as EHV-2, EHV-4, EHV-5 or untyped EHV. Of the horses and foals tested, 59/82 (72%) were positive for EHV-1 and/or EHV-4 serum neutralising (SN) antibody on at least one sampling occasion, 52/82 (63%) for EHV-1-specific antibody tested by enzyme-linked immunosorbent assay (ELISA), 10/80 (13%) for ERAV SN antibody, 60/80 (75%) for ERBV SN antibody, and 42/80 (53%) for haemagglutination inhibition (HI) antibody to EAdV-1. None of the 64 serum samples tested were positive for antibodies to EAV, reovirus 3 or PIV3. Evidence of infection with all viruses tested was detected in both healthy horses and in horses showing clinical signs of respiratory disease. Recent EHV-2 infection was associated with the development of signs of respiratory disease among yearlings [relative risk (RR)=2.67, 95% CI=1.59-4.47, p=0.017]. CONCLUSIONS: Of the equine respiratory viruses detected in horses in New Zealand during this study, EHV-2 was most likely to be associated with respiratory disease. However, factors other than viral infection are probably important in the development of clinical signs of disease.  相似文献   

8.
OBJECTIVE: To determine the incidence of equine herpesvirus-1 (EHV-1) infection among Thoroughbreds residing on a farm on which the virus was known to be endemic. DESIGN: Prospective cohort study. ANIMALS: 10 nonpregnant mares, 8 stallions, 16 weanlings, 11 racehorses, and 30 pregnant mares and their foals born during the 2006 foaling season. PROCEDURES: Blood and nasopharygeal swab samples were collected every 3 to 5 weeks for 9 months, and placenta and colostrum samples were collected at foaling. All samples were submitted for testing for EHV-1 DNA with a PCR assay. A type-specific EHV-1 ELISA was used to determine antibody titers in mares and foals at birth, 12 to 24 hours after birth, and every 3 to 5 weeks thereafter. RESULTS: Results of the PCR assay were positive for only 4 of the 1,330 samples collected (590 blood samples, 590 nasopharyngeal swab samples, 30 placentas, and 30 colostrum samples), with EHV-1 DNA detected in nasal secretions from 3 horses (pregnant mare, stallion, and racehorse) and in the placenta from 1 mare. Seroconversion was detected in 3 of 27 foals during the first month of life. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggested that there was a low prevalence of EHV-1 infection among this population of Thoroughbreds even though the virus was known to be endemic on the farm and that pregnant mares could become infected without aborting. Analysis of nasopharyngeal swab samples appeared to be more sensitive than analysis of blood samples for detection of EHV-1 DNA.  相似文献   

9.
The objectives of this study were to estimate the prevalence of equine herpesviruses (EHV) 1-5 in the nasal secretions (NS) of a cohort of 12 mares and their foals from birth to 6 months of age, estimate the prevalence of EHV-1-5 infection of peripheral blood mononuclear cells (PBMC) of selected foals, and investigate phylogenetic relationships amongst the various strains of EHV-2 and 5. Virus-specific PCR assays were used to detect EHV-1-5 in NS and PBMC. A homologous portion of the glycoprotein B (gB) gene of the various strains of EHV-2 and 5 was sequenced and compared. EHV-2, 4, and 5 were all detected in NS from the horses, but only EHV-4 was associated with respiratory disease (P=0.005). EHV-2 and 5 infections were both common, but foals shed EHV-2 in their NS earlier in life than EHV-5 (P=0.01). Latent EHV-2 and 5 infections were detected in the PBMC of 75 and 88%, respectively, of the foals at approximately 6 months of age. The strains of EHV-2 shed in the NS of individual horses were more genetically heterogeneous than the strains of EHV-5 (95.5-99.3% versus 98.8-99.3% nucleotide identity, respectively). One-month-old foals typically shed strains of EHV-2 that were identical to those infecting their dams whereas older foals often shed virus strains that were different from those of their dams. Although herpesvirus infections were ubiquitous in this cohort of horses, there were distinct clinical consequences and clear epidemiological differences between infections with the different viruses.  相似文献   

10.
An outbreak of neurological disease caused by EHV-1 infection is described with emphasis on diagnosis and prognosis for recumbent horses. In April 1995, an outbreak of the neurological form of Equine herpesvirus type 1 (EHV-1) occurred in a well-managed riding school with 41 horses: 34 horses showed a temperature spike and 20 some degree of neurological signs, of which 10 were nursed intensively in the indoor arena of the riding school for 3 to 20 days, 8 having to be maintained in slings for 2-18 days, while 9 needed bladder catheterisation b.i.d. for 2-16 days. Within the first 3 days, one horse was subjected to euthanasia and another horse died. Postmortem examination revealed a mild vasculitis with perivascular mononuclear cuffing and axonal degeneration in the central nervous system. Clinical diagnosis was confirmed by serology and virology: 28 horses seroconverted in one or more tests during the outbreak, whereas 12 had already high CF and SN titres in the first sample, suggestive of recent infection. Virus was isolated from nasal swabs of 4 horses, and identified as EHV-1 with type-specific monoclonal antibodies. Restriction enzyme analysis revealed that the EHV-1 strains from this outbreak belonged to genome type EHV-1.IP. The electropherotypes were identical to those from another, epidemiologically unrelated, outbreak of neurological disease 2 months earlier. The timing of the temperature spikes and seroconversions indicated that the infection was probably introduced by a horse purchased 3 weeks before neurological signs occurred. At follow-up one year later, the 10 horses that showed mild neurological signs had recovered completely. Of the 8 horses that survived intensive care, 3 had returned to around their former performance level (2 of which had been in slings), while the other 5 had become pasture-sound. At follow-up 4 years later, all pasture-sound horses had been subjected to euthanasia because of persistent mild ataxia and incontinence. In conclusion, the prognosis for recumbent horses due to EHV-1 infection is grave. For virological diagnosis, extensive and strategic sampling of febrile in-contact horses is required, and the EHV-1-specific glycoprotein G (gG) ELISA is a valuable tool for specific serological diagnosis of EHV-1 infection causing neurological disease.  相似文献   

11.
The prevalence of equine respiratory virus infections among a suspected population of race horses was examined using polymerase chain reaction (PCR). One or more of five equine respiratory viruses were detected in the nasal swabs of 45 of 89 horses (50.6%), and the detection rate of equine herpesvirus type 1 (EHV-1), equine herpesvirus type 4 (EHV-4), equine herpesvirus type 5 (EHV-5), equine rhinitis A virus (ERAV) and equine rhinitis B virus (ERBV) were 5.6%, 7.9%, 39.0%, 2.2%, and 6.7%, respectively. Among the 45 infected horses, 7 were co-infected with EHV and/or equine rhinitisvirus (ERV). Equine influenzavirus and equine arteritisvirus were not detected in any samples. Specific antibodies to EHV-1 and/or EHV-4 were detected in 59 of 73 tested sera (80.8%), using a virus neutralization test. This investigation suggests that equine respiratory viruses are endemic at Seoul Race Park and that the impact of viral infections on race horses’ health in Republic of Korea should be evaluated.  相似文献   

12.
A type-specific enzyme-linked immunosorbent assay (ELISA) using equine herpesvirus types 1 (EHV-1) and 4 (EHV-4) glycoprotein G was applied for sero-epizootiology of EHV infections in Japan. Recently, an inactivated EHV-1 vaccine has been administered to racehorses for prevention of upper respiratory disease. To examine the effect of the vaccination on the result of the ELISA, 6 horses were experimentally inoculated three times intramuscularly or intranasally with inactivated EHV-1 vaccine. Sera collected from these horses were used to the type-specific ELISA and complement-fixation (CF) test. Although the CF test detected a significant increase of antibody elicited by vaccination, the ELISA did not detect any antibody response. Next, sera collected from thirty-eight horses, which were intramuscularly inoculated with inactivated EHV-1 twice at an interval of four weeks, were used in the ELISA and CF test. The results also indicated that CF titers increased by vaccine inoculation, but ELISA titers did not. To examine epizootiology of EHVs serologically in racehorse populations at two Training Centers of the Japan Racing Association, the type-specific ELISA and CF test were carried out using paired sera collected from racehorses before and after the winter season. The results showed that the ELISA could distinguish EHV-1 and EHV-4 infections in vaccinated horses serologically. In conclusion, the type-specific ELISA is considered to be useful for sero-diagnosis and sero-epizootiological research on EHV-1 and EHV-4 infections not only in unvaccinated horses, but also in vaccinated horses in Japan.  相似文献   

13.
Equine respiratory viral infections cause significant worldwide disease and economic loss. Common causes include equine influenza virus (EIV) and equine herpesviruses-1 and -4 (EHV-1 and -4), and risk of exposure to these agents may be highest in young horses commingling at sales and competitive events. A surveillance study was conducted at two horse shows and two Thoroughbred sales to determine whether horses shed EHV-1, EHV-4, or EIV on arrival, or 2-4 days later, and whether shedding was associated with identifiable risk factors. Real-time polymerase chain reaction assays were used to detect EHV-1, EHV-4, and EIV nucleic acid in nasal swabs obtained from 369 horses at the four events. In response to evidence of clinical disease, 82 additional horses were sampled at two farms providing horses for one of the sales. On arrival at the events, shedding of EHV-1 was detected in 3.3%, EHV-4 in 1.1%, and EIV in 0.8% of horses. EHV-1 was detected at low levels, and EHV-1 and EHV-4 detection was not associated with clinical disease. EIV was detected only in horses at a Thoroughbred sale, in association with an outbreak of respiratory disease traced back to regional farms. On arrival at events, horses younger than 2 years had a significantly greater risk of shedding EHV-1 compared with older horses; no other significant risk factors associated with viral shedding were identified. Thus, there is a risk of exposure to EIV, EHV-1, and EHV-4 at equine events, and horses and events should be managed to mitigate this risk.  相似文献   

14.
AIMS: To determine which viruses circulate among selected populations of New Zealand horses and whether or not viral infections were associated with development of respiratory disease.

METHODS: Nasal swabs were collected from 33 healthy horses and 52 horses with respiratory disease and tested by virus isolation and/or PCR for the presence of equine herpesviruses (EHV) and equine rhinitis viruses.

RESULTS: Herpesviruses were the only viruses detected in nasal swab samples. When both the results of nasal swab PCR and virus isolation were considered together, a total of 41/52 (79%) horses with respiratory disease and 2/32 (6%) healthy horses were positive for at least one virus. As such, rates of virus detection were significantly higher (p<0.001) in samples from horses with respiratory disease than from healthy horses. More than half of the virus-positive horses were infected with multiple viruses. Infection with EHV-5 was most common (28 horses), followed by EHV-2 (27 horses), EHV-4 (21 horses) and EHV-1 (3 horses).

CONCLUSIONS: Herpesviruses were more commonly detected in nasal swabs from horses with respiratory disease than from healthy horses suggesting their aetiological involvement in the development of clinical signs among sampled horses. Further investigation to elucidate the exact relationships between these viruses and respiratory disease in horses is warranted.

CLINICAL RELEVANCE: Equine respiratory disease has been recognised as an important cause of wastage for the equine industry worldwide. It is likely multifactorial, involving complex interactions between different microorganisms, the environment and the host. Ability to control, or minimise, the adverse effects of equine respiratory disease is critically dependent on our understanding of microbial agents involved in these interactions. The results of the present study update our knowledge on the equine respiratory viruses currently circulating among selected populations of horses in New Zealand.  相似文献   

15.
16.
Equid herpesviruses types 1 and 4 (EHV-1 and EHV-4) are closely related pathogens of horses. While both viruses can infect the upper respiratory tract, EHV-1 regularly causes systemic infection, which is only rarely observed in the case of EHV-4. Little is known about the molecular basis for this striking difference in pathogenic potential. Recently, we have started a systematic analysis of differences in the amino acid sequences of proteins involved in virus replication, more specifically entry and egress, as well as proteins involved in immune evasion. Here, we summarize our findings relevant to glycoproteins D and G (gD and gG), which share a high degree of similarity between the viruses, yet exhibit important differences. We found that both these glycoproteins appear to be involved in the conquest of the mononuclear cell compartment. While gD is involved in infection of peripheral blood mononuclear cells through an RSD motif present in EHV-1 but not EHV-4, gG is implicated in thwarting innate responses by sequestration of chemokines. Again, the activity is only present in EHV-1, more specifically in a short stretch of variable amino acids in the extracellular domain of gG. The differences in the two glycoproteins of EHV-1 and EHV-4 are discussed, as is their role in pathogenesis. In addition, hypotheses are proposed related to the other equid respiratory alphaherpesviruses, EHV-8 and EHV-9, based on the amino acid sequences of gD and gG.  相似文献   

17.
The objective of this study was to investigate the nasal bacterial microbiota of healthy horses and horses infected with equine herpesvirus 1 (EHV-1). The nasal bacterial microbiota of 10 horses infected with EHV-1 and 11 control horses from a farm experiencing an outbreak was characterized using the Illumina MiSeq platform targeting the V4 region of the 16S ribosomal RNA gene. The nasal bacterial microbiota of healthy horses and EHV-1 horses was significantly different in community membership and structure. Horses shedding EHV-1 had lower bacterial richness (P = 0.002), evenness (P = 0.008), and diversity (P = 0.026) than healthy horses. Healthy horses had a higher relative abundance of Firmicutes and Bacteroidetes, but lower Proteobacteria than horses with EHV-1 (P < 0.05). This study provides the basis for generating hypotheses and investigations on the role of bacterial-viral interactions in the health and diseases of adult horses.  相似文献   

18.
Pulmonary fibrosis and interstitial lung disease are poorly understood in horses; the causes of such conditions are rarely identified. Equine herpesvirus 5 (EHV-5) is a gamma-herpesvirus of horses that has not been associated with disease in horses. Pathologic and virologic findings from 24 horses with progressive nodular fibrotic lung disease associated with EHV-5 infection are described and compared with 23 age-matched control animals. Gross lesions consisted of multiple nodules of fibrosis throughout the lungs. Histologically, there was marked interstitial fibrosis, often with preservation of an "alveolar-like" architecture, lined by cuboidal epithelial cells. The airways contained primarily neutrophils and macrophages. Rare macrophages contained large eosinophilic intranuclear viral inclusion bodies; similar inclusion bodies were also found cytologically. The inclusions were identified as herpesviral-like particles by transmission electron microscopy in a single horse. In situ hybridization was used to detect EHV-5 nucleic acids within occasional macrophage nuclei. With polymerase chain reaction (PCR), the herpesviral DNA polymerase gene was detected in 19/24 (79.2%) of affected horses and 2/23 (8.7%) of the control horses. Virus genera-specific PCR was used to detect EHV-5 in all of the affected horses and none of the control horses. EHV-2 was detected in 8/24 (33.3%) of affected horses and 1/9 (11.1%) of the control horses. This disease has not been reported before, and the authors propose that based upon the characteristic gross and histologic findings, the disease be known as equine multinodular pulmonary fibrosis. Further, we propose that this newly described disease develops in association with infection by the equine gamma-herpesvirus, EHV-5.  相似文献   

19.
In this report we examined the presence of specific antibodies against equine herpesvirus type 1 (EHV-1), and equine herpesvirus type 4 (EHV-4) in several equidae, including mules, donkeys, horses. The presence of EHV-1 and EHV-4 in respiratory diseases of equids, and ability of multiplex nested polymerase chain reaction (PCR) screening in simultaneous diagnosis of horses acutely infected by EHV-1 and EHV-4 were also investigated. Sera from 504 horses, mules and donkeys sampled were tested for the presence of EHV-1 and EHV-4 specific antibodies. Blood samples taken from 21 symptomatic horses and nasal swabs taken from 40 symptomatic horses were tested for the presence of EHV-1 and EHV-4 by a multiplex nested PCR. A total of 14.3% (3/21) of buffy coat samples and 32.5% (13/40) nasal swab samples were found to contain EHV-1 DNA, while 19% (4/21) buffy coat samples and 22.5% (9/40) nasal swab samples were found to be positive for EHV-4 DNA. By species, 14.5% of horses, 37.2% of mules and 24.2% of donkeys tested were EHV-1 seropositive. EHV-4 specific antibodies were detected in 237 (81.7%) of 290 horse sera tested. Results from this investigation demonstrate that EHV-1 and EHV-4 are prevalent throughout the equid population, and that donkeys and mules might also represent an important source of infection for other equids. We also showed that the multiplex nested PCR assay might be useful for diagnosis of mixed respiratory infections in horses due to EHV-1 and EHV-4.  相似文献   

20.
The prevalence of EHV-1 and EHV-4 antibody-positive horses was determined using a type specific ELISA on serum samples collected from 229 mares and their foals resident on a large Thoroughbred stud farm in the Hunter Valley of New South Wales in February 1995. More than 99% of all mares and foals tested were EHV-4 antibody positive, while the prevalence of EHV-1 antibody positive mares and foals were 26.2 and 11.4%, respectively. Examination of the ELISA absorbance data for the individual mares and foals suggested that the EHV-1 antibody positive foals had been infected recently with EHV-1 and that a sub-group of the mare population was the likely source of infectious virus for the unweaned foals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号