首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 404 毫秒
1.
益生菌的应用对鳗鲡池塘水质变化的影响   总被引:1,自引:0,他引:1  
在鳗鲡养殖池中应用益生菌,研究其对池塘水质变化的影响。结果表明,在鳗鲡养殖池中添加芽胞杆菌、光合菌及EM菌,能有效降低养殖水体的氨氮(NH4+-N)、亚硝酸盐氮(NO2--N)及化学耗氧量,有利于水质净化和微生态环境的修复。  相似文献   

2.
基于15N稳定同位素技术的斜生栅藻对硝氮和氨氮吸收研究   总被引:2,自引:0,他引:2  
硝氮(NO3--N)和氨氮(NH4+-N)是水体中无机氮的主要形态。利用15N稳定同位素技术研究了斜生栅藻(Scendesmus obliquus)对NO3--N和NH4+-N的吸收特征。结果显示,在相同浓度条件下,斜生栅藻对NH4+-N的吸收速率显著高于对NO3--N的吸收率,在180min的试验中,对15NH4+-N的吸收速率为0.62~1.15μmol/(g·min);对15NO3--N的吸收速率为0.08~0.15μmol/(g·min)。在NO3--N和NH4+-N2种形态氮源同时存在的混合组中,斜生栅藻对NO3--N的吸收速率[0.12~1.00μmol/(g·min)]显著低于NO3--N作为唯一氮源的单一组[0.78~1.23μmol/(g·min)],表明NH4+-N的存在对藻类吸收NO3--N有抑制作用。在14NO3--N和15NO3--N同时存在时,斜生栅藻优先吸收14NO3--N,产生同位素分馏效应,但不同形态氮对藻类氮吸收的影响远远大于同位素的影响。  相似文献   

3.
养殖水体沉积物中氮的形态、分布及环境效应   总被引:8,自引:1,他引:8  
养殖水体沉积物中的氮可分为有机态氮和无机态氮,以有机态氮为主(70%~90%)。无机态氮主要有NO3--N、NO2--N和NH4 -N,其中以NH4 -N为主。各形态的氮含量在水平方向上的分布随距污染源的远近而有小到大变化;垂直方向上的分布则是:NH4 -N随沉积深度的增加含量增大,NO3--N随沉积深度的增加含量减小,而NO2--N随沉积深度的变化不明显。  相似文献   

4.
为研究环境因子对生物膜水质净化效果,对爆炸棉为滤料的生物滤器进行了试验。采用优势菌种挂膜后,在不同水温、溶氧(DO)、盐度、p H条件下,研究生物滤器对人工加富的海水养殖废水水质的净化效果。结果显示,水温28℃时,化学需氧量(CODMn)、氨氮(NH4+-N)、亚硝酸盐氮(NO2--N)、磷酸盐(PO43--P)去除率分别为69.3%、93.7%、93.7%、19.4%;DO 6.00 mg/L时,CODMn、NH4+-N、NO2--N、PO43--P去除率分别为72.8%、91.7%、97%、15.6%;盐度25时,CODMn、NH4+-N、NO2--N、硝酸盐氮(NO3--N)、PO43--P去除率分别为57.1%、98.4%、99.9%、100%、42%;p H 7.5时,CODMn、NH4+-N去除率分别为72.8%、93.3%。研究表明,水温28℃、DO 6.00mg/L、盐度25和p H 7.5为该生物滤器最适水质净化条件,此时生物膜净化效率较高,出水水质较好。  相似文献   

5.
于高温多雨季节对广东省清远市鳜(Siniperca chuatsi)养殖基地的6个鳜及饵料鱼养殖池塘发病、用药情况及水质进行调查分析。结果表明,单独施用抑菌类药物,鳜出血病容易复发,而同时施用增强动物免疫力与减少应激行为药物及抑菌类药物,鳜出血病不易复发。鳜及饵料鱼塘发病期间,水中氨氮(NH4+-N)质量浓度始终高于1.0 mg.L-1,亚硝酸盐氮(NO2--N)质量浓度高于0.18 mg.L-1,氮磷比(N/P)也有偏高的情况发生,而所调查的6个池塘硝酸盐氮(NO3--N)质量浓度均随养殖时间延长而逐渐下降。NH4+-N与NO2--N质量浓度过高可能预示鳜的细菌性疾病即将发生。可按实际情况种植浮萍等植物吸收过量NH4+-N;开增氧机保持水中高溶解氧(DO)以降低NO2--N质量浓度或投放减少动物应激行为的药物。N/P过高可适当释放磷肥以调节水质。  相似文献   

6.
通过对黄颡鱼养殖池塘水体主要水质因子周年变化的测定与比较,探讨黄颡鱼养殖对水体环境的影响。研究主要测定了水体总磷(TP)、磷酸盐(PO4-P)、硝酸盐氮(NO3-N)、亚硝酸盐氮(NO2-N)和氨氮(NH4-N)含量。结果表明:养殖水体TP全年变化范围为0.08~1.17mg/L,5月份TP含量最低。PO4-P全年变化范围为0.02~0.27mg/L,10-12月份PO4-P含量较高为0.24~0.27mg/L。NO3-N全年变化范围为0.02~11.67mg/L,8月和11月份形成2个峰值;NO2-N全年变化范围为0.02~0.48mg/L,10月份呈现最高值0.48±0.01mg/L。NH4-N全年变化范围为0.06~2.02mg/L,5月份呈现峰值。溶解态无机氮(DIN)全年含量为0.43~11.76mg/L,且从全年氮平均含量进行考察,NO3-N、NH4-N和NO2-N分别占DIN的78.16%、16.72%和5.12%,N/P比值在5月和11月份出现2个峰值。黄颡鱼养殖池塘的水体氮和磷营养含量受光照、水温和鱼体活动等因素影响。  相似文献   

7.
硝氮(NO3--N)和氨氮(NH4+-N)是水体中无机氮的主要形态。利用15N稳定同位素技术研究了斜生栅藻(Scendesmus obliquus)对NO3--N和NH4+-N的吸收特征。结果显示,在相同浓度条件下,斜生栅藻对NH4+-N的吸收速率显著高于对NO3--N的吸收率,在180min的试验中,对15NH4+-N的吸收速率为0.62~1.15μmol/(g·min);对15NO3--N的吸收速率为0.08~0.15μmol/(g·min)。在NO3--N和NH4+-N2种形态氮源同时存在的混合组中  相似文献   

8.
固定床生物膜反应器(fixed-bed biofilm bioreactor, FBBR)和移动床生物膜反应器(moving- bed biofilm reactor, MBBR)在养殖水体氨氮(NH4+-N)和亚硝酸氮(NO2–-N)污染控制中已有较为广泛的研究,然而相关研究大多是在实验室完成的,目前尚缺乏实际生产的循环水养殖系统(recirculating aquaculture system, RAS)中FBBR和MBBR水体净化效能的对比研究。因此,本研究将FBBR (弹性毛刷滤料)和MBBR (PVC多孔环滤料)并联接入实际生产的墨瑞鳕(Macculochella peeli) RAS中,实现二者的同步连续运行(35 d),考察了其出水水质变化和微生物群落结构。出水水质变化表明,FBBR和MBBR中氨氧化能力的形成快于亚硝氮氧化能力,硝化能力渐趋成熟,可以有效控制养殖水体中的NH4+-N和NO2–-N浓度,但会导致养殖水体中硝酸氮(NO3–-N)积累和pH下降;单因素方差分析表明,FBBR出水中NH4+-N、NO2–-N、NO3–-N浓度和pH与MBBR出水无显著差异,两反应器的硝化效率相似。FBBR和MBBR在微生物群落上的相同点在于:优势菌门为变形菌门(Proteobacteria) (相对丰度分别为69.42%和86.92%),优势菌纲为γ-变形菌纲(γ-Proteobacteria) (40.71%和63.36%)和α-变形菌纲(α-Proteobacteria) (26.58%和21.74%),优势菌属为不动杆菌属(Acinetobacter) (27.50%和53.29%);硝化菌由亚硝化单胞菌属(Nitrosomonas)和硝化螺菌属(Nitrospira)构成;硝化螺菌属的相对丰度远高于亚硝化单胞菌属,两反应器中可能存在完全氨氧化菌。两反应器在微生物群落上的不同点在于FBBR微生物群落的丰富度和多样性以及硝化菌的相对丰度均高于MBBR。本研究可以为RAS养殖水体净化提供技术支撑,助推循环水养殖模式的推广应用。  相似文献   

9.
微生物群落是养殖池塘生态系统的重要组成部分,了解环境微生物群落结构和功能,可有针对性地进行养殖环境微生态调控。在不同季节采集尼罗罗非鱼(Oreochromis niloticus)和斑点叉尾鮰(Ictalurus punctatus)池塘水样,分析硝酸盐氮(NO3-N)、亚硝酸盐氮(NO2-N)、氨氮(NH4-N)、总氮(TN)和总磷(TP)等理化指标,利用Biolog-Eco微平板技术分析水体中微生物对各类碳源代谢的平均颜色变化率,利用高通量测序技术分析其菌群结构。结果表明,1月淡水养殖池塘水质和菌群结构不同于其他采样时间,养殖鱼类种类对池塘理化指标和微生物菌群结构影响不大。不同采样时间的池塘理化指标差异显著,同一采样时间不同养殖鱼类池塘的理化指标之间无显著差异。其中,1月尼罗罗非鱼池塘中的NH4-N含量高于其他月份,且显著高于4月和7月(P<0.05);1月TP含量显著高于4月、7月和10月(P<0.05)。1月斑点叉尾鮰池塘的TP和NO3-N含量显著高于其他3个月份(P<0.05)。Biolog-Eco微平板技术检测到尼罗罗非鱼和斑点叉尾鮰池塘中的微生物群落对碳...  相似文献   

10.
珠三角地区密养淡水鱼塘水质状况分析与评价   总被引:4,自引:0,他引:4  
池塘养殖是珠三角地区淡水渔业生产的主要形式。2012年5月~12月对草鱼(Ctenopharyngodon idellus)、云斑尖塘鳢(Oxyeleotris marmoratus)、大口黑鲈(Micropterus salmoides)和乌鳢(Channa argus)等该地区几种主要密养淡水品种鱼塘水质进行监测,分析水体理化环境因子,并选取pH、溶解氧(DO)、非离子氨(NH3)、氨氮(NH4^+-N)、硝酸盐氮(NO3^--N)、亚硝酸盐氮(NO2^--N)、总氮(TN)、总磷(TP)、高锰酸盐指数(CODMn)和透明度等10项因子,采用单项污染指数和负荷比对监测参数进行单项评价,用综合污染指数法对各池塘水质进行整体评价。结果表明4种密养淡水鱼塘营养盐负荷高问题突出,NH3、NO3^--N、NO2^--N、TN和TP为池塘中的主要污染因素;草鱼池塘主要污染物为NH3和TN,其污染负荷合计为37.58%;云斑尖塘鳢池塘主要污染物为NH3、NO3^--N和TN,其污染负荷达59.37%;大口黑鲈池塘的主要污染物为NH3、TN、NO3^--N和NO2^--N,其污染负荷高达66.80%;乌鳢池塘的主要污染物为TN、NO3^--N、TP和NH3,其污染负荷达59.43%;对CODMn的分析与评价结果显示,池塘水体中还原性有机质含量高;由综合污染指数判定,所有池塘水体均为"重污染"等级,并超出警戒水平。  相似文献   

11.
皮坤  张敏  李保民  李庚辰 《水产学报》2018,42(2):246-256
为了探讨不同主养模式池塘养殖期间沉积物—水界面氮磷营养盐通量变化特征以及与环境因子之间的相互关系,利用沉积物—水界面营养盐扩散通量的原位观测装置,分析了2013年4—10月主养草鱼和主养黄颡鱼池塘沉积物—水界面营养盐交换通量,并探讨了影响营养盐交换通量的因素。结果发现:(1)在养殖初期,各种形态氮磷在养殖池塘沉积物—水界面主要表现为从上覆水向沉积物的沉积,养殖中后期,由于温度升高以及池塘沉积物中营养物质的大量累积,各种形态氮磷表现为以沉积物向上覆水扩散为主,表明池塘沉积物是氮磷营养盐的源与汇;(2)两种不同主养模式池塘氮磷通量的统计结果表明,沉积物—水界面-N、-N和-P通量变化无显著差异,而-N、TN和TP通量有显著差异;(3)上覆水中DO含量的升高显著促进界面间-N和-N释放通量,而-N和-P释放通量与上覆水DO浓度成显著负相关;温度的升高对各种无机形态的氮磷通量有显著的促进作用。  相似文献   

12.
Four experiments were conducted in order to determine the optimum dosageof Azotobacter chroococcum vis-a-vis organic fertilizer(cow-dung) required for optimum pond productivity. Hydrobiological parameters ofpond water, Azotobacter survival (viable counts), netprimary productivity (NPP) and fish growth were monitored. Studies have revealedthat irrespective of the treatments, dissolved oxygen (DO) levels weresignificantly (P < 0.05) lowered on inoculating the ponds withAzotobacter. Alkalinity, O-PO4,NO3-N, turbidity, NPP, plankton population and fish growth weresignificantly (P < 0.05) enhanced in ponds inoculated withAzotobacter @ 100.0 ml pond–1w–2 in combination with cow-dung @ 10000 kgha–1 y–1. At higher or lower dosages offertilizers, the values in most of these parameters remained low. On the otherhand, total kjeldahl nitrogen and NH4-N increased continuously. Ingeneral, viable bacterial counts decreased with increase in pH, however, therate of nitrogen fixation was not affected. Multivariate analysis of the data revealed a significantpositive correlation of nutrients (Total kjeldahl Nitrogen, NO3-N andO-PO4), with NPP and plankton populations. NH4-N, however,showed a significant negative correlation with DO, NPP and plankton populations.Highest fish biomass and SGR also coincided with the highest NPP and planktonpopulations, revealing that a dose of 100.0 ml pond–1w–2 (for 25 m3 ponds) ofAzotobacter along with 10000 kg ha–1y–1 of cow-dung appears to be optimum for obtainingoptimum pond productivity and fish yield. Nutrients in the sediment(NO3-N and O-PO4) also followed similar trend. On theother hand, organic carbon increased continuously with each increase in thedosage of fertilizers. A decline in fish biomass and pond productivity at higherfertilizer dosages has been attributed to low DO, high NH4-N and BOD.  相似文献   

13.
凡纳滨对虾养殖塘叶绿素a与水质因子的多元回归分析   总被引:3,自引:0,他引:3  
2009年4-9月期间,对上海市奉贤区某凡纳滨对虾养殖场22个养殖池塘水体叶绿素a、水温、pH、溶解氧、透明度、悬浮物(SS)、总有机碳(TOC)、五日生化需氧量(BOD5)、高锰酸盐指数(CODMn)等15项水质因子进行测定。取164组测定数据,进行描述性统计,分析叶绿素a与各项因子的相关性系数。分析结果显示,与叶绿素a呈极显著线性正相关的水质因子为SS、TOC、BOD5、CODMn、TN、TP;呈显著正相关的为DO;而叶绿素a与透明度呈极显著线性负相关,与PO3-4-P呈显著线性负相关;与水温、pH、NO-2-N、 NO-3-N、NH3-N则未呈现显著相关性。根据多元线性回归选择自变量的原则,选择了TOC、TN、PO3-4-P和TP4项水质因子,建立了叶绿素a与4项水质因子的逐步回归模型:Chl.a =-0.054 5+0.0034 9 TOC+0.015 3 TN-0.418 PO3-4-P+0.276 TP(r=0.715 5)。利用偏回归系数检验各水质因子对叶绿素a的影响,结果表明,对叶绿素a影响从大到小依次是TP、TOC、PO3-4-P和TN。研究结果对进一步探讨养殖池塘生态系统的变化规律及水环境质量保护提供了依据。  相似文献   

14.
采用低频率运转循环水处理系统(含粗滤器、臭氧仪、气液混合器,蛋白分离器、暗沉淀池等)联用池内设施(微泡曝气增氧机与净水网)开展凡纳滨对虾室内集约化养殖实验。研究了养虾池以水处理系统调控水质效果及氮磷收支。结果表明,养虾水经系统处理后,NO2-N(53.4%~64.5%)、CODMn(53.4%~94.4%)与TAN(31.6%~40.4%)被显著去除,有效改进虾池水质;养殖周期内未换水与用药,虾池主要水化指标均控制在对虾生长安全范围,7号实验池(100 d)与8号对照池(80 d)主要水化指标变化范围:DO分别为 5.07~6.70 mg/L和4.38~6.94 mg/L,TAN 0.248~0.561 mg/L和0.301~0.794 mg/L,NO2-N 0.019~0.311 mg/L和0.012~0.210 mg/L,CODMn 10.88~21.22 mg/L和11.65~23.34 mg/L。7号池对虾生长指数优于8号池(80 d虾病暴发终止),单位水体产量分别为1.398 kg/m2与0.803 kg/m2。氮磷收支估算结果:7号与8号池饲料氮磷分别占总收入:氮93.70%与92.37%,磷98.77%与99.09%;初始水层与虾苗含氮共占总收入6.30%与7.63%,磷共占1.23%与0.91%。总水层(含排污水)氮磷分别占总输出:氮56.45%与59.86%,磷53.26%与55.79%;收获虾体氮磷分别占总输出:氮37.07%与31.94%,磷21.37%与13.11%。7号池饲料转化率较高;池水渗漏与吸附等共损失氮磷分别占总输出:氮7.00%与9.34%,磷25.37%与31.10%。实验结果表明,虾池以低频率运转循环水处理系统联用池内设施可有效控制水质与虾病,具较高饲料转化率。  相似文献   

15.
The aims of this experiment were (1) toquantify the ability of grass carp to processduckweed and (2) to assess indirect changes inwater chemistry and phytoplankton community,caused by grass carp feeding. Yearling grass carp sized 126 ± 7.7 mm (TL) and19.6 g in weight were kept in 9 laminate tanksof 1 m3 for 14 days. Two stockingdensities (2 and 6 fish per m3) anda control without fish were used. Standard growthrate (SGR) of grass carp fed exclusively onduckweed was 0.70% body weight (BW) d–1and food conversion ratio (FCR) reached 2.0(average water temperature =21.1 ± 3.8 °C). Daily food intakewas 0.2 g of duckweed dry weight (DW), i.e.,1% of average BW of grass carp. SGR ofduckweed growing in 20 × 20 cm floatingenclosures, differed significantly[F(6,2) = 417.9; p = 0.002] between the twostocking densities of grass carp and thecontrol tanks (without fish). Mean SGR ofduckweed was 0.02 g g–1 day–1 and thehighest SGR was recorded in the control tanks.Both decrease in NH4-N and increase inNO2-N concentrations differedsignificantly between the treatments[F(2,2) = 45.3; p = 0.02 and F(2,2) = 19.2; p = 0.04 respectively]. Changes in other nitrogenand phosphorus components (NO3-N, TN, TPand PO4-P) caused by stocking of grasscarp were not significant. Biomass ofphytoplankton, dominated by filamentous algaeand blue-greens, increased proportionately tostocking density of grass carp. Althoughduckweed has a large potential for nutrientremoval, the most common pathway for thenutrients released through grass carp grazingif duckweed cover is loose is theirincorporation into phytoplankton biomass.  相似文献   

16.
厌氧氨氧化和反硝化作用是底泥生物脱氮的主要过程,碳源是调控厌氧氨氧化和反硝化作用的关键因子。本研究以褐煤为对象,对褐煤的静态碳释情况及其对池塘底泥中脱氮作用的影响进行了研究。结果显示,褐煤在室温条件下的碳释放规律符合二级动力学方程,具备作为反硝化碳源的可行性;在脱氮实验中,发现褐煤对底泥上覆水体中的亚硝酸盐氮(NNO2--N)的去除具有促进作用,NNO2--N的去除率随褐煤浓度的增加而升高,当褐煤质量浓度为40 g/L时,N\${\rm{O}}_2^ - $\-N去除率最高达99.61%,此时硝酸盐氮(NO3--N)的浓度也最低;同时发现,水体中氨氮(NH4+-N)氧化的最适褐煤质量浓度为10 g/L,其去除率达99.39%;对底泥中的厌氧氨氧化菌群进行Illumina高通量测序发现,其中浮霉菌门占比最大(39.6%~71.8%),优势菌属为Candidatus Brocadia (13.9%~35.8%)和Desulfovibrio (17.1%~34.8%),添加褐煤组Candidatus Scalindua菌属比例高于未添加组;荧光定量PCR得出,随着褐煤质量浓度升高,底泥中的反硝化菌丰度呈增长趋势,而厌氧氨氧化菌丰度则低于无褐煤添加组,表明添加褐煤对底泥反硝化有促进作用,而对厌氧氨氧化有一定的抑制作用。研究表明,褐煤具备作为反硝化碳源的条件,可用于池塘养殖底泥脱氮作用。  相似文献   

17.
鱼蚌混养对池塘水质、藻相结构及三角帆蚌生长的影响   总被引:2,自引:1,他引:1  
2012年4月26日—2012年12月12日通过在鲢鳙鱼养殖池塘中放养不同密度的三角帆蚌,研究不同三角帆蚌放养比例对鲢鳙鱼养殖池塘中水质、藻相结构及三角帆蚌生长的影响。实验中,鲢鳙放养比例统一为3∶7,总密度为1.5尾/m3。三角帆蚌放养密度则设置4个水平,分别为单养鲢鳙鱼池塘(0只/m3),低密度三角帆蚌混养池塘(0.8只/m3),中密度三角帆蚌混养池塘(1.0只/m3)和高密度三角帆蚌混养池塘(1.2只/m3)。结果显示,混养三角帆蚌池塘的水化指标(TP、PO4-P、NH3-N、NO2-N和NO3-N)均显著低于单养鱼池塘。中密度三角帆蚌混养池塘除NH3-N和化学需氧量(COD)与低密度三角帆蚌混养池塘无显著差异外,其他各项水化指标均显著低于其他3个池塘,并且极显著低于单养鲢鳙鱼池塘。单养鲢鳙鱼池塘藻类平均密度均极显著高于鱼蚌混养池塘,其中在鱼蚌混养池塘中浮游植物密度与三角帆蚌密度成负相关关系。单养鲢鳙鱼池塘的浮游植物生物量均极显著低于中、高密度鱼蚌混养池塘,并且显著低于低密度混养池塘。浮游植物生物量与三角帆蚌密度成正相关关系,鱼蚌池塘中绿藻和裸藻的生物量在养殖过程中上升显著。低、中密度三角帆蚌混养池塘三角帆蚌存活率均显著高于高密度三角帆蚌混养池塘;低密度混养池塘中蚌湿重、壳长及壳宽相对增长率均为最大,显著高于中、高密度三角帆蚌混养池塘。研究表明,养鱼池塘混养三角帆蚌不仅能改善养殖池塘的水质,还能控制藻类数量,促使绿藻和裸藻等大型藻类的生长,提高养殖水体浮游植物的生物量总量,最终还能有效提高三角帆蚌的存活率及生长率。从改善水质,藻相结构,蚌成活率及生长等指标角度考虑,在鲢鳙鱼养殖池塘中,三角帆蚌最佳放养密度为1.0只/m3。  相似文献   

18.
Channel catfish were fed five diets containing 24, 28, 32, 36 or 40% protein in intensively stocked earthen ponds over a 141 d growing season. Mean standing crop at harvest was 7,559 kg/ha, and maximum daily feed allowance was 105 kg/ha. Dietary protein concentration had a negative linear effect on weight gain. Total ammonia-nitrogen (TAN) in pond water increased linearly as dietary protein concentration increased and was positively correlated with total protein fed. However, unionized ammonia-nitrogen (NH3-N) was not influenced by dietary protein concentration. Dietary protein had a positive linear effect on nitrite-nitrogen (NO1-- -N) concentration, which was positively correlated with total protein fed and TAN. There was no significant correlation between NO2---N and fish weight gain, although there was a significant positive correlation between NO2-- -N/Cl-molar ratio in pond water and concentration of methemoglobin in the fish. Results from this study indicate that when the feeding rate is as high as 100 kg/ha/d, or 3,000 kg protein/ha/season, dietary protein concentrations of 36% and above can result in harmful concentrations of NO2---N when Cl concentration in the ponds is 2–3 mg/L. Although the NO2---N/Cl- ratio in the ponds increased to harmful levels with protein concentration of the diets, this might not be the major cause of the reduction in fish growth rate as dietary protein increased because the greatest difference in weight gain occurred at the lower protein concentrations and the greatest difference in NO2---N occurred at the higher dietary protein concentrations.  相似文献   

19.
鲢鳙混养对三角帆蚌生长和养殖水质影响的围隔实验   总被引:2,自引:1,他引:1  
2008年4月23日—9月21日通过围隔实验,研究了不同鲢鳙混养比例对三角帆蚌生长及水化学指标的影响。实验中鲢鳙混养比例设置了6个水平,分别为0/0(对照组),100/0,70/30,50/50,30/70和0/100。实验开始和结束时测量三角帆蚌湿重,壳长和壳宽。每个月上下旬测量围隔水化学指标包括NO3N、NO2N、NH3N、TN、TP、PO4P和COD。实验结果表明,鲢鳙混养比例100/0的围隔蚌壳长相对生长率显著低于混养比例0/0,50/50和0/100的围隔(P<0.05),而不同混养比例下蚌的成活率、蚌壳宽及蚌重增长均无显著差异(P>0.05)。从水质来看,混养比例30/70围隔TP显著低于100/0(P<0.05),COD显著低于100/0及70/30(P<0.05),NH3N显著低于100/0(P<0.05)以及PO4P显著低于70/30(P<0.05)。因此,综合蚌生长及水质指标,混养比例30/70围隔对三角帆蚌养殖最有利。  相似文献   

20.
To compare the growth performance of koi carp, Cyprinus carpio var. koi, produced in concrete tanks (2.13 × 0.91 × 1.22 m; capacity: 2,000 l each) and earthen ponds (9.1 × 6.10 × 1.07 m; capacity: 59650 l each), fish larvae (stocking size: 0.12 ± 0.008 g) were cultured for 11 weeks and individual weight gain, survival rate and number of marketable fish produced were compared among four management regimes for each culture system: (1) live zooplankton fed to fish larvae in ponds (PLF) and tanks (TLF); (2) application of poultry manure in ponds (PPM) and tanks (TPM); (3) application of cow manure in ponds (PCD) and tanks (TCD); and (4) a control treatment for ponds (PC) and tanks (TC), where a commercial feed was applied. There were three replicates for each treatment. Weight gain of koi carp was highest in the PLF treatment, followed in decreasing order by TLF, PPM, PCD, TPM, TCD, PC and TC treatments (P < 0.05). There was a significant difference in the survival of koi carp among the treatments, ranging from 67.83% in TC to 95.50% in PLF. The number of marketable fish produced was highest in the PLF treatment, followed in decreasing order by TLF, PPM and PCD treatments. However, none of the fish produced in the TPM, TCD, PC and TC treatments attained marketable size. Significantly higher (P < 0.05) values of pH and dissolved oxygen (for water samples collected weekly at 9 A.M.) were obtained in the live food and control treatments (for both tanks and ponds), compared to the manured treatments. The concentration of total alkalinity, BOD, PO4-P, NO3-N and specific conductivity were significantly higher (P < 0.05) in PPM and PCD, compared to other treatments. NO2-N and NH4-N values were significantly higher (P < 0.05) in TPM and TCD, than other treatments. The results suggest that introduction of live zooplankton into culture units result in higher growth of koi carp larvae compared to manure based systems. Earthen ponds appeared to be better alternative to concrete tanks for manure application through maintenance of better water quality due to their higher assimilatory capacity and greater abundance of plankton which resulted in better growth of cultured fish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号