首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
还原容量(RC)是衡量胡敏酸(HA)还原特性的重要指标。采用饱和H2振荡法和土壤溶液法对HA分别进行化学和微生物预处理,分别以硝酸铁(Fe(NO3)3)、柠檬酸铁(FeCit)作电子受体,测定了三种HA(上海巨枫SH,天津光复TJ,缙云山JY)的本底还原容量(NRC),化学还原容量(CRC),微生物还原容量(MRC)。对不同电子受体条件下、不同初始状态和不同种类的胡敏酸的RC进行比较。结果表明:三种HA中,以缙云山土壤提取的胡敏酸RC值最高,还原容量最大,分别为20.21±0.26 mmolc mol-1 C(NRC)、26.02±1.12 mmolc mol-1 C(CRC)和29.29±1.56 mmolc mol-1 C(MRC)。两种电子受体中,采用Fe(NO3)3得到的RC明显高于在FeCit条件下。另外,溶液态HA的RC明显高于固态。由此证明胡敏酸还原容量是一个相对量;其容量大小不仅和自身结构、性质有关,也受到HA初始形态和不同电子受体的影响。对比三个还原容量指标发现CRC和MRC显著大于NRC,而CRC和MRC之间无明确大小关系,因此用CRC来表征HA被微生物还原后的还原容量(MRC)还需作进一步验证。  相似文献   

2.
胡敏酸吸附解吸Fe3+反应特征研究   总被引:6,自引:3,他引:6       下载免费PDF全文
王强  魏世强 《土壤学报》2006,43(3):414-421
采用C-25葡聚糖凝胶层析方法研究了在不同酸度、离子强度、温度条件下胡敏酸(HA)吸附解吸Fe3^+特征.结果表明,在相同离子强度、反应温度条件下,随着pH的升高,HA对Fe(Ⅲ)最大吸附量Smax和吸附平衡常数k增加,标准摩尔自由能变△Gom绝对值减小.相同pH和温度下,离子强度从0.00到0.10mol L^-1,HA对Fe(Ⅲ)最大吸附量Smax和吸附亲和力常数k增加,自由能变△G^o m绝对值减小,但离子强度从0.10 mol L^-1继续上升到0.15 mol L^-1,则上述特征常数变化刚好相反.温度升高,胡敏酸吸附Fe3^+的最大吸附量、吸附平衡常数k、自由能变△G^o m绝对值均较大幅度降低,表明升高温度对吸附反应不利.吸附反应的焓变△H^o m和熵变△S^o m均小于零,为放热反应,反应向更有序状态进行;在相同条件下,pH越大,焓变△H^o m和熵变△rS^θ m绝对值越大,表明pH越大,越有利于吸附反应的进行.随着pH的升高,Fe3^+被还原的百分率η减小,用幂函数方程拟合,相关系数达到显著水平.随着pH的降低,胡敏酸铁Fe3^+解吸率增大;对解吸率曲线进行拟合,线形方程具有显著的相关系数.胡敏酸吸附Fe3^+的反应为包括胡敏酸内部和外部结合的“两相”反应.  相似文献   

3.
不同种植年限设施菜地土壤有机质组成与结构变化   总被引:1,自引:1,他引:0  
《土壤通报》2016,(6):1386-1392
试验采集不同种植年限设施菜地土壤样品,测定土壤有机质(SOM)、可溶性有机碳(DOC)、胡敏酸(HA)、富里酸(FA)、微生物量碳(MBC)、微生物商(C_(mic)-to-C_(org))、C矿化和E4/E6值等指标,结合傅立叶变换红外光谱技术解析不同种植年限土壤有机质组成与结构变化的规律。结果显示,随着种植年限的增加,SOM、DOC、HA、HA/FA、MBC、C_(mic)-to-C_(org)、E4/E6值、C矿化率和CO_2释放速率均出现明显下降趋势,其中MBC、C_(mic)-to-C_(org)、C矿化率、CO_2释放速率和HA/FA在种植6 a时下降最明显,之后变化缓慢。与露天农田土壤(CK)相比,设施菜地呈现较高的SOM、DOC、Humus、HA、FA、HA/FA和E4/E6。胡敏酸红外光谱图谱显示设施菜地种植20 a处理土壤芳构化程度高,结构稳定,难以降解,其他三种种植年限(3 a、6 a和10 a)的芳构化程度相对较低,脂肪族成分相对较高。综上可知,设施菜地土壤有机质组成与结构随着种植年限的增加具有规律性变化,结果加深了对设施菜地土壤有机质演变规律的认知。  相似文献   

4.
不同处理牛粪对植菜土壤腐殖质结构特征的影响   总被引:5,自引:0,他引:5  
通过元素组成分析法、红外光谱分析法(IR)、核磁共振光谱分析法(13 C-NMR)等现代分析方法,研究施用新鲜牛粪、腐解牛粪和蛴螬牛粪2a后对植菜轮作土壤胡敏酸(HA)和富里酸(FA)的影响。结果表明,与单施化肥(CK)相比,不同牛粪处理对植菜土壤胡敏酸和富里酸的元素组成影响有较大的差异,各牛粪处理均引发植菜土壤胡敏酸C含量和C/H降低,O含量、O/C和(N+O)/C升高,富里酸C含量和C/N升高,N、O含量和O/C降低,降低了植菜土壤胡敏酸的缩合程度,升高了土壤胡敏酸的氧化程度和极性,降低了植菜土壤富里酸的氧化程度。不同牛粪处理使植菜土壤胡敏酸的脂肪族化合物减少,且均含有苯基碳、酚羟基C、芳香醚和(或)与O、N等取代基邻、对位的连H芳香C,使芳构化程度增加,富里酸的脂肪族化合物增加,芳香类、羧基类化合物减少,芳构化程度降低。不同牛粪处理的植菜土壤未改变土壤腐殖质的基本结构特征,只引起植菜土壤的结构单元和官能团数量上的差异。  相似文献   

5.
通过在棕壤、草甸土和水稻土上进行的田间和模拟试验表明,土壤有机培肥一般使胡敏酸(HA)的数均分子量、缩合度(C/H)、羧基含量和反应热下降。除草甸土外,土壤有机培肥还能使胡敏酸的氧化度(O/C)和高温与低温放热之比降低。说明胡敏酸变得简单化和年轻化。此外,施用猪粪可以增加胡敏酸的含氮量和降低酚羟基含量,玉米秸秆则相反。  相似文献   

6.
王强  魏世强  刘保峰 《土壤学报》2005,42(4):600-608
研究了Fe2O3、MnO2或Al2O3固体吸附剂对胡敏酸和富里酸的吸附机制和影响因素。结果表明:相同pH下,Fe2O3、MnO2或Al2O3固体吸附剂对腐殖酸的吸附量随着腐殖酸(胡敏酸HA和富里酸FA)有机碳浓度的增加而增加;不同pH下,对HA的吸附量依照pH3·0>pH5·0>pH7·0的顺序递减。相同pH下,随着HA有机碳浓度的增加,三种固体吸附剂对HA的吸附百分率减小。相同pH下,三种固体吸附剂对FA的吸附百分率呈单峰形,随着酸度的降低,峰位向添加的有机碳低浓度处迁移。吸附量用Langumuir方程拟合能得到极显著相关的方程,在相同pH下,三种固体吸附剂吸附HA的最大吸附量Smax和吸附亲和力常数K小于FA,而标准自由能变ΔGmo却略大于FA;298·2K温度下,三种固体吸附剂吸附胡敏酸和富里酸的ΔGmo<0,表明在等温等压不做非体积功情况下吸附是自发进行的反应。  相似文献   

7.
采用 17年不同施肥处理 (无肥、化肥、秸秆、厩肥 )土耕层土样 ,在对土壤胡敏酸性质研究的基础上 ,着重研究不同施肥处理土壤胡敏酸与Fe2+的络合特征 ,揭示络合作用与胡敏酸性质以及环境条件的关系。结果表明 ,不同施肥处理土壤胡敏酸与Fe2+的络合能力不同。和无肥处理相比 ,化肥处理胡敏酸的络合能力加强 ,logk值 (络合稳定常数 )增大 ,有机肥处理则使胡敏酸的络合能力下降 ,logk值减小。logk值大小与胡敏酸的羧基、酚羟基以及总酸度有关。pH值、温度、离子强度是影响络合稳定常数大小的环境因素 ,pH值由 4到 7,各处理胡敏酸的logk值增大 ,络合配位数也有增加趋势。温度升高 ,离子强度增大 ,logk值降低。胡敏酸与Fe2+络合反应是一个自发的放热反应 ,络合后整个体系的有序性增强 ,熵值减小。  相似文献   

8.
不同利用方式下土壤团聚体腐殖质组成及胡敏酸结构特征   总被引:6,自引:2,他引:6  
通过微区定位试验,研究了休闲地、耕地、裸地3种利用方式对土壤水稳性团聚体中腐殖质组成及胡敏酸(HA)结构特征的影响。结果表明:休闲地有利于团聚体中腐殖质的形成,其团聚体中的胡敏酸(HA)、富里酸(FA)含量均高于耕地和裸地。休闲地各级团聚体中HA的缩合度最低,脂族性最强;耕作会导致2mm和2~0.25mm团聚体中HA的芳香性增强,脂族性降低。  相似文献   

9.
有机物料腐解过程胡敏酸与Fe~(2+)的络合特征   总被引:3,自引:0,他引:3  
采用玉米秸、绿豆秸、猪粪、羊粪4种有机物料进行腐解试验,研究了腐解过程形成的胡敏酸在不同条件下(pH、离子强度)与Fe2+的络合特征,结果表明,在相同条件下,粪肥腐解形成的胡敏酸与Fe2+的络合能力相对比秸秆的强。腐解过程胡敏酸与Fe2+的络合能力呈动态变化,胡敏酸与Fe2+的络合稳定常数与其羧基、总酸度成极显著正相关。在碱性条件下(pH=8.0),各有机物料腐解形成的胡敏酸与Fe2+的络合能力下降。  相似文献   

10.
以4种不同来源的水稻土为材料,采用接种水稻土浸提液的厌氧培养试验,设置添加不同偏钒酸盐浓度和无定形氧化铁处理,测定培养过程中V(V)和Fe(Ⅱ)浓度的变化,探讨厌氧培养过程中V(V)和Fe(Ⅲ)还原之间的相互影响机制。结果表明,在厌氧环境下土壤微生物能够以V(V)作为电子受体,将其还原为低价态的钒,V(V)浓度随着培养时间增加呈降低趋势。以V(V)为唯一电子受体时,还原起始时间大体在2~15d之间;4种水稻土中的微生物群落对于V(V)的还原能力具有差异,V(V)还原率在汉中(HZ)和安康(AK)水稻土样品中分别达到92.82%~95.63%和81.15%~81.97%,而在邛崃(QL)和永吉(YJ)水稻土样品中分别为60.64%~62.19%和51.38%~53.41%,2种钒添加浓度处理间无明显差异。V(V)和Fe(Ⅲ)共同作为电子受体时,Fe(Ⅲ)可导致V(V)还原过程明显滞后15~20d,并且使还原率降低,分别为66.50%~75.26%(HZ),67.15%~69.22%(AK),48.14%~48.72%(YJ)及0~11.80%(QL)。不同处理的铁还原率均可达到100%,铁还原最大反应速率(Vmax)总体表现为:AKHZQLYJ样品;添加不同浓度V(V)后AK、HZ和YJ样品中出现明显促进铁还原过程的"协同效应",表现为Vmax增大,且最大还原速率对应的时间(TVmax)相应减小,但在QL样品中出现抑制铁还原的"拮抗效应",表现为随着V(V)浓度增加Vmax减小,且TVmax增大。推测的"协同效应"机理为:以发酵微生物的兼性还原为主导,V(V)还原产物强化了铁还原过程;而"拮抗效应"可能由于专性铁还原微生物的群落演替以及钒的毒性对发酵微生物产生抑制所致。  相似文献   

11.
溶液体系中非生物因素对胡敏酸还原汞的影响   总被引:1,自引:0,他引:1  
As a global pollutant process,the reduction of mercury(Hg)is especially important.One pathway is through an abiotic reduction with humic acids(HAs),which is controlled by different factors,including initial Hg and HA concentrations,pH,temperature and light.In this study,three humic acids were selected to illustrate the Hg~(2+)abiotic reduction mechanisms by HAs,and to identify the key limiting factors for reduction rates and amounts.In addition,the initial status of the HAs as a solid or in an aqueous solution were also compared,to help explain why HAs show different dominant characteristics(e.g.complexation or reduction)in the reaction process with Hg.Results indicated that HAs were able to reduce Hg abiotically.Higher initial Hg,higher HA concentrations and either high(8.1)or low(3.6)solution pH decreased the HA reduction capacity.In addition,Hg°production rates increased with increasing temperature,and the same trend was observed with light exposure.Humic acids added as an aqueous solution resulted in significantly greater Hg°production than addition as a bulk solid.Finally,the Hg reduction rate and capacity varied significantly(P0.05)with HAs from different sources.These findings helped to explain why HAs showed different dominant characteristics(e.g.complexation or reduction)in the reaction process with Hg,and evidentially demonstrated the existence of a possible pathway of Hg~(2+)reduction,which indicated that humic substances in natural environments,especially in water bodies,could act either as a sink or a source for Hg.  相似文献   

12.
The study of paramagnetic activity of humic substances in taiga and tundra soils of the Komi Republic and the assessment of the influence of soil hydromorphism on concentrations of free radicals in the structure of humic acids (HAs) and fulvic acids (FAs) have been performed. The concentration of free radicals in HA specimens was up to 11 times higher than that in FA specimens due to a higher content of aromatic and other condensed structures in HA molecules. This fact attests to the high capacity of HAs to polymerization and complexation reactions with participation of radicals. The average value of g-factor is higher for FA specimens than for HA specimens, which attests to a greater electron density shift of unpaired electron to oxygen atom in the structure of FAs because of its spin-orbital interaction with oxygen-containing functional groups, the concentrations of which are significantly higher in FAs than in HAs. An increase in the concentration of free radicals in the molecular structure of HAs is observed in taiga soils with an increase in the degree of their hydromorphism (from automorphic to semihydromorphic soils), which is related to the biohydrothermal conditions of humus formation in bog-podzolic soils with retarded biochemical processes and low degree of plant litter humification. As a result, HAs with the high content of free radicals in their structure are formed. An opposite situation is observed for HAs in tundra soils with a decrease in the content of unpaired electrons under conditions of the increased hydromorphism. The difference in the character of changes in the paramagnetic activity of HAs in taiga and tundra soils with different degrees of hydromorphism may be related to different natures of plant residues participating in humification processes. A tendency for a decrease in the paramagnetic activity in both HAs and FAs from the south to the north is observed, which may be related to a general decrease in the content of poly-conjugated systems in the structure of humic substances in tundra soils.  相似文献   

13.
Poly(gamma-glutamic acid) (gamma-PGA), a nontoxic and biodegradable macropolymer, was evaluated for its efficiency in binding three mutagenic heterocyclic amines (HAs), 2-amino-3,4-dimethylimidazo[4,5-f]quinoline (MeIQ), 2-amino-3,4,8-trimethylimidazo[4,5-f]quinoxaline (4,8-DiMeIQx), and 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-p-2), as affected by pH in a batch mode. The maximum HA sorption was attained for pH 3-7 and decreased sharply for pH less than 3. Binding isotherms obtained at pH 2.5 and 5.5 showed different isotherm shapes that belong to S and L types, respectively. The isotherm data at pH 2.5 were well described by a linear form of the Langmuir equation, while at pH 5.5 it showed two distinct curves, which were precisely fitted as multiple Langmuir curves. The deviation of linearity in Scatchard plot proved the multisite HA sorption. The Brunauer-Emmett-Teller equation also fitted better to isotherm data at pH 5.5, suggesting a multisite sorption caused by multimolecular HA layers on gamma-PGA. High HA sorption levels of 1250, 667, and 1429 mg/g at pH 2.5 and 1429, 909, and 1667 mg/g at pH 5.5 were observed for MeIQ, 4,8-DiMeIQx, and Trp-p-2, respectively. Among the HAs studied, the sorption capacity correlated directly with hydrophobicity of HAs and inversely with the number of methyl groups in HA molecules. The plausible binding mechanism of HAs on gamma-PGA may include a combination of hydrophobic, hydrogen-bonding, ionic, and dipole-dipole interactions.  相似文献   

14.
In the present work the kinetics of ferric reduction was investigated using dissimilatory ferric- and sulphate-reducing bacterial cultures. The effect of sulphate reduction on Fe(III) reduction was also studied. The study is an attempt to improve the biological reduction rate of Fe(III) as an alternative biotechnological way to the reduction step in steelmaking processing operations. The results obtained show that the reduction of ferric iron and sulphate took place in a successive way and none synergetic effect was detected. The simultaneous action of both metabolic activities did not enhance the process but slowed down the kinetics of ferric reduction. The reduction process of 3 g/L of soluble ferric and 3 g/L of sulphate lasted 25 days. Ferric iron was the first electron acceptor to be reduced in the first 15 days followed by the sulphate reduction in the following 10 days. That result suggests that ferric reduction is a preferential metabolic process over sulphate reduction when both electron acceptors coexist. None improvement in the kinetics was observed using an electron donor concentration in excess. In contrast, the total reduction of ferric ion (3 g/L) with adapted bacterial cultures was achieved in only 36 h. The presence of sulphate had no effect on the ferric reduction. Finally, an improved culture medium for ferric-reducing bacteria is also proposed.  相似文献   

15.
The potential anticlastogenic and antitoxic effects of a soil humic acid (HA), a peat HA and a peat fulvic acid (FA) on the mutagen maleic hydrazide (MH) have been investigated in two legume species, Vicia faba and Pisum sativum. Both HAs and FA were tested at two different concentrations, 20 and 200 mg l?1, either alone or after 24‐hour interaction with 10 mg l?1 of MH before addition to the legume seeds. Anticlastogenicity, i.e. an antimutagenic action defined as the capacity for minimizing chromosome breakages, was evaluated by counting both micronuclei (MN) and aberrant anatelophases (AAT) in root‐tip cells. Length and dry weight of the seedling primary root were measured to test the antitoxic activity of HA and FA on MH. The possible occurrence and extent of adsorption or desorption of MH onto or from HA were also investigated. The two species responded differently to the anticlastogenic tests, with V. faba showing a greater number of MN and AAT anomalies than P. sativum. Peat HA and FA exhibited anticlastogenic and antitoxic activities of similar intensity and greater than those of soil HA. The adsorption capacity of both HAs for MH was small, thus suggesting that adsorption is not a major mechanism responsible for the reduction of clastogenicity and antitoxicity of MH by HA.  相似文献   

16.
Abstract

An investigation was conducted on physico‐chemical properties of humic acids (HAs) in Venezuelan soils. The HAs were extracted by the NaOH method from a Banco‐Bajio‐Estero soil toposequence (local names for soils located at high, intermediate and low topographic levels), in the Venezuelan plains (Mantecal, Apure State). The extracted HAs were analyzed for elemental composition and characterized by fluorescence, Fourier transform infrared (FT‐IR) and electron spin resonance (ESR) spectroscopies. The results showed that free radical concentration of HAs increased from soils at the highest to soils at the lowest topographic position. High carbon (C), nitrogen (N), and carboxyl group contents, E4/E6 ratio, aliphatic character and concentration of free radicals, and low oxygen (O) and phenolic hydroxyl group contents and total acidity were typical of HA from soils at the lower relief position. The FT‐IR spectra indicated that the HA from the soil at the lowest topographic position tended to have a slightly higher content of carboxyl groups than the HAs from soils at higher topographic levels. The observed fluorescence was attributed to the presence of condensed aromatic moieties and/or conjugated unsaturated systems of various complexity in the HA macromolecules.  相似文献   

17.
The main physical and chemical properties of a composted mixture of sewage sludge and wood chips, the nonamended soil, and soils amended with two rates of the compost, in the presence or absence of barley, were determined. Humic acids (HAs) isolated from these materials were characterized by various methods including elemental analysis and Fourier Transform infrared (FTIR), fluorescence, and electron spin resonance spectroscopies. With respect to the nonamended soil HA, the compost HA was characterized by a prevalent aliphatic character, low oxygenated functional group content, high contents of S, N-containing groups and polysaccharide components, low free radical concentration, high molecular heterogeneity, and low degrees of ring polycondensation, polymerization and humification. Compost application at the low rate appeared to induce only limited modifications in the structural and chemical properties of HAs from amended soils, whereas apparent modifications of HA properties occurred where a high amendment rate was used. The absence or presence of barley cultivation appeared not to exert any measurable effect on the composition and properties of compost-amended soil HAs.  相似文献   

18.
To investigate the chemical heterogeneity of humic acids (HAs), we applied two-dimensional (2-D) electrophoresis to HAs from a compost and two types of soils. In this method, HAs are first separated by isoelectric focusing (IEF) and then separated by polyacrylamide gel electrophoresis (PAGE). IEF and PAGE were carried out in the presence of 7?M urea. Upon 2-D electrophoresis of HAs, dark-colored substances were spread out across the gel mainly in the isoelectric point (pI) range of 3.0–4.5. Green fluorescence was observed in the smaller molecular size region of the gel, especially in the pI range of 3.0–4.5, and the most intense fluorescence was found at the moving front. The gels were divided into 36 sections, and then HA constituents were extracted from the individual sections and recovered by precipitation with acid. The distribution of organic carbon (C) among the gel sections coincided with that of the dark-colored substances on the gel. The total C recoveries were only 43–50%, suggesting that a considerable amount of HA constituents was lost during the extraction from the gels and purification. High-performance size-exclusion chromatography confirmed that the constituents of HAs were separated based on their molecular sizes by PAGE. The measurement of diffuse reflectance infrared Fourier transform (DRIFT) spectra indicated that the chemical properties of the HA constituents differed depending on the position on the gels and were affected by the molecular size rather than the pI. The fractions of the compost HA were characterized by higher proportions of aliphatic, proteinous and polysaccharide moieties and by the presence of lignin-derived structures. For the soil HAs, the fractions were characterized by a high proportion of the carboxyl group and a low proportion of aliphatic moieties. The proportion of proteinous and polysaccharide moieties in the fractions of soil HAs decreased with decreasing molecular size. The chemical properties of the green fluorescent substances remained unclear, since there was not enough of the substances to measure the DRIFT spectra. The present study showed that 2-D electrophoresis in the presence of concentrated urea offers an effective method for fractionating and isolating the constituents of HAs.  相似文献   

19.
The impact of climate change on the greenhouse gas balance of peatlands is debated as they function both as sinks of carbon and significant sources of methane. To study redox transformations influencing methane production, we incubated two intact soil monoliths from a northern temperate fen and compared a permanently wet treatment to a treatment undergoing an experimentally induced drought for 50 days. Net turnover of dissolved inorganic carbon (DIC), methane (CH4) and electron acceptors in the saturated zone was calculated using a mass balance approach, and sulfate gross reduction rates were determined using a 35S radiotracer. Thermodynamic energy yield of different electron accepting processes was calculated and related to the observed respiration patterns. Permanently wet conditions lead to a depletion of electron acceptors within 50 days and onset of methanogenic conditions. During drought, electron acceptors were renewed and methanogenesis was temporarily suppressed in most of the peat for another 20-50 days after rewetting. Methanogenesis began, however, apparently locally before electron acceptors were fully depleted in the remainder of the peat, and iron and sulfate reduction occurred simultaneously. Anaerobic production of DIC could mostly but not fully be explained by reduction of nitrate, sulfate and ferric iron. Sulfate gross reduction rates of up to ∼450 nmol cm−3 d−1 determined with 35S-SO4 and potentially explained the surplus of 50-60 mmol m−2 of DIC production in one treatment; however, the sulfate pools were too small to sustain such rates beyond some hours to days. Furthermore, anaerobic DIC production proceeded at constant rates after depletion of dissolved inorganic electron acceptors, although not being balanced by methane production. An unknown electron acceptor was thus consumed, and sulfate and potentially other electron acceptors recycled, either by humic substances, by aerenchymatic oxygen transport, or by oxygen in the capillary fringe at low levels of air filled porosity.  相似文献   

20.
The Zhongdian swamp meadow in Zhongdian, China is well known as “Shangri-la”, where the peat has never been studied for its potential to interact with pollutants. Humic acid (HA) was extracted from Zhongdian peat using two methods, namely sodium pyrophosphate extraction (SPE) and dilute base extraction (DBE), and characterized for its functional groups and sorption property. The HAs extracted by both methods contained several active functional groups and had large external specific surface areas. The adsorption mechanism of methylene blue onto HAs was interpreted as Langmuir sorption. SPE-HA showed higher sorption capacity because of its larger specific surface area, whereas the extraction yield of DBE-HA was twice that of SPE-HA. Kinetics modeling indicated that the sorption of methylene blue was a two-component first order reaction. The component with the higher rate constant also showed higher sorption capacity. No pH effect was observed for methylene blue sorption on HA in our experimental design, and the sorption decreased as the temperature increased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号