首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
In vitro, high nitrate (NO3 ?) concentrations significantly inhibit N2O reductase activity. However, little information is available on the in situ temporal effects of excessive N fertilization on soil N2O reductase activity and the regulation of the N2O/(N2 + N2O) product ratio in agricultural soil. This study examined the monthly in situ dynamics of NO3 ? concentration, N2O reductase activity, and N2O/(N2 + N2O) product ratio for 2 years in loamy soil that had received either continuous N fertilizer at 400 kg N ha?1 year?1 for 15 years (N400) or no N fertilizers (CK). N2O reductase activity was significantly lower under the N400 treatment than under the CK and correlated negatively with soil NO3 ? concentration. The decrease in N2O reductase activity resulted in the N2O/(N2 + N2O) product ratio increasing. These results demonstrate that excessive N fertilization has the potential to increase N2O emissions by reducing N2O reductase activity in soils. These results highlight the need for N2O mitigation options to embrace the reduction of soil NO3 ? concentrations.  相似文献   

2.
In this investigation, the photocatalytic activity of α-Bi4V2O11 in the degradation of 2-naphthol under simulated solar light was evaluated. Bismuth vanadate α-Bi4V2O11 was synthesized by the solid-state reaction method and by co-precipitation in aqueous media, with the aim of comparing their performance in the photodegradation of the aromatic pollutant. The latter method (co-precipitation) has not been previously reported for the synthesis of α-Bi4V2O11. Structural evolution of the oxides precursors was determined by X-ray diffraction. Morphology and optical properties of the solids were analyzed by scanning electron microscopy (SEM) and UV-vis diffuse reflectance spectroscopy (UV-vis), respectively. The results showed that at 800 °C, only α-Bi4V2O11 was formed in both preparations. The SEM micrographs revealed that the powders were composed of agglomerates with sizes between 0.8–2 μm for those synthesized by co-precipitation and 2–10 μm for those obtained by solid-state reaction. The optical properties indicated that α-Bi4V2O11 was activated with visible light during the photocatalytic process. The photocatalytic degradation of 2-naphthol was largely influenced at basic pH, degrading 79% of the contaminant in 240 min, with the powder obtained by co-precipitation; meanwhile, for the solid-state preparation, the degradation reached only 55%.  相似文献   

3.
Titanium dioxide (TiO2)–silicon dioxide (SiO2) thin films were synthesized using the peroxo titanic acid approach (PTA) combined with the sol–gel method at low temperature around 100°C. The effects of type and amount of dopants of ferric (Fe3+) or thiourea (N-S) and co-dopants of Fe3+ and N-S on the films physicochemical properties and on the photocatalytic degradation of the methylene blue and formaldehyde under UV and visible light irradiation were investigated. Physicochemical properties of photocatalysts were characterized by X-ray diffraction, transmission electron microscopy, wavelength-dispersive X-ray fluorescence spectrometry, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and UV–Vis spectroscopy. The results showed that the TiO2 crystal phases obtained from this method were exclusively anatase and the needle-like crystals have an average diameter of 10–25 nm. Compared with the single dopant of 1.0 wt.% Fe3+ or 0.125 wt.% N-S that was the optimal concentration for photocatalytic degradation of methylene blue and formaldehyde, the co-dopants of 0.125 wt.% N-S + 1.0 wt.% Fe3+ furthermore increased the degradation efficiency. Co-dopants of 0.125 wt.% N-S + 1.0 wt.% Fe3+ in TiO2–SiO2 films were considered to play synergistic roles in narrowing TiO2 band gap resulting in the higher methylene blue and formaldehyde degradation efficiency. Since the crystal grain size of TiO2–SiO2 films synthesized by the PTA method is small, in the visible light region, the high transmittance was attainable to 80% with no-doped and dropped to 50–60% with doped thin films.  相似文献   

4.
In this study, a mesoporous chromium-functionalized γ-Al2O3 (Cr/γ-Al2O3) catalyst was prepared by an impregnation method, and the catalytic activity was evaluated by the degradation of organics wastewater. The prepared catalyst was characterized by X-ray photoelectron spectroscopy, X-ray diffraction, nitrogen adsorption-desorption experiments, and scanning electron microscopy. The characterization results confirmed that the pores in the Cr/γ-Al2O3 catalyst distributed broadly in the mesoporous region, and the active chromium species were highly dispersed on the catalyst surface. The catalytic activity tests showed that the Cr/γ-Al2O3 catalyst exhibited a superior performance for the degradation of organics wastewater with H2O2 assistance. And the methylene blue (MB) disappeared within 20 min and the COD removal reached 76.5% within 40 min for the MB-simulated wastewater; for the phenol-simulated wastewater, the phenol removal was above 95% and the corresponding COD removal reached 71% within 40 min. Such an excellent catalytic performance demonstrates that the Cr/γ-Al2O3 catalyst has a potential application in the degradation of complex organics wastewater simultaneously.  相似文献   

5.
The textile industries are characterized as one of the biggest consumers of potable water and chemical products throughout its process, being responsible for the elevated wastewater generation with intense coloration and wide polluting potential. In this context, the present study proposes the development and application of a new coagulant material for textile wastewater treatment. The proposed coagulant (α-Fe2O3-MO) was composed by hematite nanoparticles (α-Fe2O3) obtained by a simple non-pollutant methodology, associated with Moringa oleifera (MO) seeds saline extract compounds. Coagulation/flocculation (CF) efficiency was evaluated by removal of physicochemical parameters such as apparent color, turbidity, and compounds with absorption at UV254nm (UV254nm) through CF tests carried out on Jar test equipment and sedimentation carried out in the presence and absence of external magnetic field (600 k Am?1). Kinetics sedimentation was from 0 to 90 min. The use of this new coagulant allowed the removal of 92.37% for apparent color, 91.43% for turbidity, and 46.09% for UV254nm, indicating that the proposed coagulant association was efficient in the treatment of this type of wastewater under external magnetic field with only 10 min of sedimentation. In addition, the resulting sludge from CF process was tested as base material for a new coagulant synthesis, demonstrating great reuse potential. Therefore, the new proposed coagulant, composed of α-Fe2O3 and the compounds present in the seed extract of MO, has applicability for textile wastewater treatment demonstrating high removal rate for all evaluated parameters with cost reduction in the proposed treatment for this wastewater.  相似文献   

6.
Nitrogen dioxide (NO2) is one of the major atmospheric pollutants, and the concentration of NO2 is regarded as one of the indicators of air quality. In the past decades, China has experienced rapid economic growth and severe NO2 pollution to match. We evaluate the trends and spatiotemporal patterns of tropospheric NO2 over mainland China from 2005 to 2014 using vertical column density (VCD) datasets retrieved from the Ozone Monitoring Instrument (OMI). Results show that from 2005 to 2014, NO2 pollution regions have enlarged at the national scale, and high NO2 VCDs are mainly concentrated over highly populated regions in eastern China. The year 2011 is the turning point. Tropospheric NO2 VCDs first significantly increase by 0.19?×?1015 molec cm?2?year?1 (R 2?=?0.94, P?=?0.002) from 2005 to 2011, and then decrease by 0.21?×?1015 molec cm?2?year?1 (R 2?=?0.97, P?=?0.016) from 2011 to 2014. Since 2011, tropospheric NO2 VCDs over central-east China decrease remarkably. Tropospheric NO2 VCDs is higher in November (3.630?×?1015 molec/cm2), December (4.758?×?1015 molec/cm2), and January (4.863?×?1015 molec/cm2), while lower in July (1.684?×?1015 molec/cm2), August (1.627?×?1015 molec/cm2), and September (1.703?×?1015 molec/cm2), indicating that winter and spring are the most polluted seasons. Due to the huge gap in population density and industry development between western and eastern China, the spatial pattern of tropospheric NO2 VCDs shows large west-east difference.  相似文献   

7.
Increasing organic matter stocks in soils reduce atmospheric carbon dioxide (CO2), but they may also promote emissions of nitrous oxide (N2O) by providing substrates for nitrification and denitrification and by increasing microbial O2 consumption. The objectives of this study were to determine the effects of fertilization history, which had resulted in different soil organic matter stocks on (1) the emission rates of N2O and CO2 at a constant soil moisture content of 60% water-holding capacity, (2) the short-term fluxes of N2O and CO2 following the application of different fertilizers (KNO3 vs. farmyard manure from cattle) and (3) the response to a simulated heavy rainfall event, which increased soil moisture to field capacity. Soil samples from different treatments of three long-term fertilization experiments in Germany (Methau, Spröda and Bad Lauchstädt) were incubated in a laboratory experiment with continuous determination of N2O and CO2 emissions and a monitoring of soil mineral N. The long-term fertilization treatments included application of mineral N (Methau and Spröda), farmyard manure + mineral N (Methau and Spröda), farmyard manure deposition in excess (Bad Lauchstädt) and nil fertilization (Bad Lauchstädt). Long-term addition of farmyard manure increased the soil organic C (SOC) content by 55% at Methau (silt loam), by 17% at Spröda (sandy loam) and by 88% at Bad Lauchstädt (silt loam; extreme treatment which does not represent common agricultural management). Increased soil organic matter stocks induced by long-term application of farmyard manure at Methau and Spröda resulted in slightly increased N2O emissions at a soil moisture content of 60% water-holding capacity. However, the effect of fertilization history and SOC content on N2O emissions was small compared to the short-term effects induced by the current fertilizer application. At Bad Lauchstädt, high N2O emissions from the treatment without fertilization for 25 years indicate the importance of a sustainable soil organic matter management to maintain soil structure and soil aeration. Emissions of N2O following the application of nitrate and farmyard manure differed because of their specific effects on soil nitrate availability and microbial oxygen consumption. At a soil moisture content of 60% water-holding capacity, fertilizer-induced emissions were higher for farmyard manure than for nitrate. At field capacity, nitrate application induced the highest emissions. Our results indicate that feedback mechanisms of soil C sequestration on N2O emissions have to be considered when discussing options to increase soil C stocks.  相似文献   

8.
Gene flow between cultivated and their wild relatives is one of the main ecological concerns associated with the introduction genetically modified (GM) cultivars. GM sorghum cultivar has been developed and its commercial production may be possible in the near future. The rate of gene flow depends on the fitness of wild × cultivated sorghum hybrids. The study aimed at estimating adaptive values of wild × cultivated sorghum hybrids in generations F1, F2, and F3 compared to their parents. Artificial crosses of four wild sorghums, five cultivated sorghums, and two male sterile lines were made to produce the F1 generation, which were advanced to F2 and F3. Each hybrid generation and their respective parents were evaluated for their adaptive value at two sites in a randomised complete block design with seven replicates. The resulting progenies did not show serious fitness penalties. Some hybrids were as fit as their respective wild parents and no consistent differences exist between the three generations studied. Thus, the resultant wild × cultivated hybrids may act as avenue for introgression.  相似文献   

9.
The stocks of organic carbon and mean rates of the CO2 emission during the growing season (May–September) and the entire year were estimated in a sequence of grass ecosystems along the transect encompassing chestnut and meadow-chestnut steppe soils, marsh and meadow alluvial soils, and a haloxerophytic community on a typical solonchak. The total stocks of organic carbon comprised 6.17–9.70 kg С/m2 in steppe, 7.41–10.04 kg С/m2 in floodplain, and 4.74 kg С/m2 in haloxerophytic ecosystems. The portion of humus carbon in the upper 50-cm-thick soil layer comprised 79–92% of the total carbon stock. The mean daily CO2 emission (С–CO2/(m2 day)) from alluvial soils was moderate (3.3–4.9) or low (1.5–2.5). The dependence of the CO2 emission on the moistening of steppe soils, temperature of alluvial soils, and temperature and moistening of solonchak was revealed. In comparison with the CO2 emission from the zonal chestnut soil, its mean values during the growing season and the entire year were 1.2 times higher for the meadowchestnut soil, 3.3 times higher for the marsh alluvial soil, 2.3 times higher for the meadow alluvial soil, and 1.7 times higher for the solonchak. The portion of the CO2 emission beyond the growing season in the mean annual emission averaged 19.8–24.2% and depended on the type of grass ecosystem and on weather conditions of particular years. The sink of carbon in the grass ecosystems exceeded carbon emission, especially in the steppe ecosystems.  相似文献   

10.

Purpose  

Polycyclic musk compounds (PMC) are used as fragrances in cosmetics and detergents and enter rivers via domestic wastewater and sewage treatment plants. Soils can be contaminated by PMC through application of sewage sludge. Accumulation of PMC occurs in sediments and biota due to their persistence and lipophilicity. Dissolved organic matter (DOM) is of special relevance for their transport and behavior in the environment as it acts as solubilizer and carrier in aquatic and terrestrial systems. With the distribution coefficient KDOC, one can predict their affinity to DOM. Different approaches exist to determine KDOC, resulting in a range of coefficients for a number of organic pollutants. The objective of this study was to determine KDOC values for PMC using solid-phase microextraction (SPME).  相似文献   

11.
A study was carried out to investigate the potential gross nitrogen (N) transformations in natural secondary coniferous and evergreen broad-leaf forest soils in subtropical China. The simultaneously occurring gross N transformations in soil were quantified by a 15N tracing study. The results showed that N dynamics were dominated by NH4+ turnover in both soils. The total mineralization (from labile and recalcitrant organic N) in the broad-leaf forest was more than twice the rate in the coniferous forest soil. The total rate of mineral N production (NH4+ + NO3) from the large recalcitrant organic N pool was similar in the two forest soils. However, appreciable NO3 production was only observed in the coniferous forest soil due to heterotrophic nitrification (i.e. direct oxidation of organic N to NO3), whereas nitrification in broad-leaf forest was little (or negligible). Thus, a distinct shift occurred from predominantly NH4+ production in the broad-leaf forest soil to a balanced production of NH4+ and NO3 in the coniferous forest soil. This may be a mechanism to ensure an adequate supply of available mineral N in the coniferous forest soil and most likely reflects differences in microbial community patterns (possibly saprophytic, fungal, activities in coniferous soils). We show for the first time that the high nitrification rate in these soils may be of heterotrophic rather than autotrophic nature. Furthermore, high NO3 production was only apparent in the coniferous but not in broad-leaf forest soil. This highlights the association of vegetation type with the size and the activity of the SOM pools that ultimately determines whether only NH4+ or also a high NO3 turnover is present.  相似文献   

12.
This study was conducted to investigate the effect of inorganic nitrogen (N) and root carbon (C) addition on decomposition of organic matter (OM). Soil was incubated for 200 days with nine treatments (three levels of N (no addition (N0) = 0, low N (NL) = 0.021, high N (NH) = 0.083 mg N g−1 soil) × three levels of C (no addition (C0) = 0, low C (CL) = 5, high C (CH) = 10 mg root g−1 soil)). The carbon dioxide (CO2) efflux rates, inorganic N concentration, pH, and potential activities of β-glucosidase and oxidative enzyme were measured during incubation. At the beginning and the end of incubation, the native soil organic carbon (SOC) and root-derived SOC were quantified by using a natural labeling technique based on the differences in δ 13C between C3 and C4 plants. Overall, the interaction between C and N was not significant. The decomposition of OM in the NH treatment decreased. This could be attributed to the formation of recalcitrant OM by N because the potentially mineralizable C pool was significantly lower in the NH treatment (3.1 mg C g−1) than in the N0 treatment (3.6 mg C  g−1). In root C addition treatments, the CO2 efflux rate was generally in order of CH > CL > C0 over the incubation period. Despite no differences in the total SOC concentration among C treatments, the native SOC in the CH treatment (18.29 mg C g−1) was significantly lower than that in the C0 treatment (19.16 mg C g−1).  相似文献   

13.
A standard method for the detection and isolation of microplastics is required to adequately investigate plastic ingestion by juvenile fish. Dissections of juvenile fish guts require precise handling, which can affect the processing time if sample numbers are high. To investigate the efficacy of nitric acid (HNO3) in aiding the isolation of microplastics using whole fish, we digested juvenile glassfish, Ambassis dussumieri (Cuvier, 1828), at room temperature and at 80 °C. For a complete digestion, overnight incubation in 10 mL of 55% analytical-reagent (AR) HNO3 was sufficient for a whole fish of 1 g at room temperature. When coupled with elevated temperature, the digestion time is shortened to a few minutes and larger fish of 3 g can be digested in 30 min. Four of the five types of plastic survived the process, with nylon being the exception. This is a shortfall to the method; however, until a better method replaces it, we still value the use of HNO3 for its simple, inexpensive, swift and complete digestions of whole fish. Four fish species from two feeding guilds were digested using this method to validate its use. The number of plastic particles ingested did not differ between benthic and pelagic species and microplastic fibres comprised the majority of the plastic types found.  相似文献   

14.
Amine-grafted MSU-3 mesoporous silica samples were synthesized from pure and waste silica sources and their CO2 adsorption performances were evaluated. The obtained samples were characterized using X-ray diffraction (XRD), thermogravimetric analysis (TGA), N2 adsorption–desorption isotherm analysis, Fourier transform infrared (FTIR), and transmission electron microscopy (TEM). CO2 adsorption capacities of the samples at different temperatures were determined by TGA. The amine-modified MSU-3 synthesized from waste exhibited the highest CO2 adsorption capacity of 1.32 mmol/g at 25 °C and 1 bar, depending essentially on the porous texture and the amine content of the material. The CO2 adsorption isotherms of the synthesized samples were measured by a static volumetric method. Adsorption isotherm indicated that the amine-modified samples presented significantly higher CO2 adsorption capacity than the pure samples. The Avrami kinetic model fitted the experimental data well and suggested that complex reaction mechanism or the appearance of multiple reaction pathway occurred in the CO2 adsorption.
Graphical Abstract CO2 uptake capacities and TEM images of the amine modified samples
  相似文献   

15.

Purpose

The objective of this research is to detect abiotic sources of soil CO2 above a subterranean cave in the Slovenian karst region.

Materials and methods

The research was performed in the forest above Pisani rov (Postojna Cave) near the town of Postojna (SW Slovenia) and also in the cave. Soil gas, atmospheric air and cave air carbon stable isotope composition (δ13CCO2) and CO2 concentration were measured. Sampling and measurements were performed bi-monthly at the test and control sites above the cave. The abiotic source of soil CO2 was estimated using a stable isotope mass balance calculation.

Results and discussion

Similar seasonal patterns of soil CO2 and δ13CCO2 values were observed at both the test and control sites until spring, with higher levels of CO2 observed in summer and lower in winter. The δ13CCO2 showed the opposite trend, i.e. lower values (?26 to ?20 ‰) in summer and higher values (up to ?17 ‰) in winter and early spring. In spring, the soil CO2 concentration decreases and the δ13CCO2 value increases only at the control site. A time series of a modelled “isotopically light” endmember revealed large shifts in the data values, due to the presence of an abiotic CO2 source. Results suggest that the subterranean CO2 pool and its ventilation is the main source of soil CO2, accounting for up to 80 % of the soil gas during cold periods.

Conclusions

Ventilation from subterranean cavities is an important source of soil CO2 in karstic areas and should be taken into account during carbon cycling studies.
  相似文献   

16.
The growing contamination from the use of endocrine deregulator (EDs) has made the scientific community come worrying, because of this, studies to eliminate these pollutants in the water resources have intensified. Among the processes used, ‘Advanced Oxidative Processes’ (AOP’s) stands out, by means of heterogeneous photocatalysis for the removal of these organic pollutants present in the environment. The paper’s main point is on the synthesis of photocatalysts WO3-SBA-15 in the molar ratios Si/W (10, 25, 50, and 75) and the photocatalytic activity in the degradation process of 17α-ethynylstradiol (EE2), present in several water contaminants. The catalysts prepared were characterized by XRD, XRF, Raman, FTIR, UV-vis, adsorption, and desorption of nitrogen, and to determine the photocatalytic activity, frequency of turnover (TOF) was used. Through the characterizations, it can be observed that insertion of nanoparticles in WO3 did not cause changes in the mesoporous structure of the SBA-15 and there is presence of monoclinic, triclinic, and orthorhombic phases of WO3. The photocatalytic activity showed to be dependent on the calcination temperature and the molar ratio of the catalysts WO3-SBA-15, being the sample WO3-SBA-15(50) at 600 °C which presented the greatest degradation potential in the degradation of 17α-ethynylstradiol, with 98%, using ultraviolet radiation, for 4 h. Moreover, reuse of the catalyst did not show significant losses after 4 cycles, with 82% in EE2 degradation.  相似文献   

17.
We here isolate fulvic acids from vermicompost to prepare and characterize novel fulvic acid-coated magnetite nanoparticles. UV-A irradiation of suspensions of the nanoparticles under different experimental conditions led to photo-reduction of Cr(VI). In anoxic conditions in the presence of formic acid, after 60 min of irradiation ca. 100% of Cr(VI) was reduced. Under these conditions, the carbon dioxide radical anions, CO2 .- , mediated the photo-reduction of Cr(VI). However, the high reduction potential of Cr(VI) and the variety of reactive species generated upon UV-A irradiation make this nanomaterial also suitable for Cr(VI) photo-reduction also under aerobic conditions in the presence of formic acid or under anoxic conditions without the addition of formic acid. The possible photodegradation routes involved are discussed in detail.  相似文献   

18.
Species that belong to the genus Triticum L. and the genetically related Aegilops L. genus are important genetic and economic resources because they have an evolutionary relationship with the two main agricultural crops T. aestivum (bread wheat) and T. durum (durum wheat). Therefore, it is important to understand the genetic relationships among the cultivated wheat species and their wild relatives. The latter have a great role in the improvement of cultivated wheat. Molecular markers are the best choice and most reliable means to study these relationships accurately. In this study, we compared the efficiency of the biochemical methods A–PAGE and SDS–PAGE on seed storage proteins and the molecular methods RAPDs and ISSRs to explore the genetic relationships among seven species of Triticum and 20 Aegilops species. Three phylogenetic trees obtained in this study were compared with available classifications and phylogenetic trees constructed earlier for these species. It was noted that the tree based on ISSRs data was the most congruent with those classification and trees. This may be attributed to the fact that ISSRs is more specific, and therefore more reliable. This study is the first to study genetic relationships among all species studied here using biochemical and molecular techniques.  相似文献   

19.

Purpose  

Iron’s fluctuation between the II (ferrous) and III (ferric) oxidation states has been coined as the “FeIII–FeII redox wheel.” Numerous studies have coupled the “iron redox wheel” with the biogeochemical cycle of carbon (C), nitrogen (N), sulfur (S), or phosphorus (P) individually in soils or sediments, but evidence suggests that the FeIII–FeII redox wheel drives the biogeochemical cycles interactively in a fluctuating redox microenvironment. The interactions of the FeIII–FeII redox wheel with the biogeochemical cycles of C, N, S, and P in the fluctuating redox environments were reviewed in this paper.  相似文献   

20.
A total of sixty-five accessions from the Spanish region of Castilla y León including those authorized in the VQPRD areas were characterized for six SSR loci. All the samples but one unknown were identified by comparison to other databases. Thirty synonymous samples and three cases of homonymy were found out, confirming in most cases ampelographic expectations. Five unique genotypes belonging to local varieties in risk of extinction were detected. Several parameters were calculated to assess the usefulness of the chosen loci in this work. A dendrogram representing the genetic similarities among the accessions was constructed using the neighbor-joining method to investigate possible parentage relationships in the sample, and to explain them from an historical and cultural point of view.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号