首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Nature and significance of anthropogenic urban soils   总被引:14,自引:9,他引:5  

Background, Aims and Scope

Anthropogenic and natural urban soils are of increasing significance in a world with accelerating urbanization. Thus, anthropogenic urban soils must be considered as an fundamental ecological asset for land-use planning. Furthermore, they are of interest for fundamental soil sciences, since there properties are rarely investigated and can differ substantially from landscape soils. Numerous studies on their properties exist, in particular with respect to contamination. It is argued that urban soils are ecological assets of cities, a point of view shared with the AKS (working group on urban soils within the German Soil Science Society). In this commentary, an overview of less recognized topics is presented with specific reference to topics such as ‘co-development of anthropogenic urban soils within their cities’ and the principles of ‘stock flow of anthropogenic urban soils forming materials’ are discussed to complete the pedological and ecological view on urban soils. Additionally, the significance of (anthropogenic) urban soils is highlighted to strengthen consideration in urban spatial planning.

Main Features

Historical and recent impacts on soils and parent materials are related with soil properties. Definitions and taxonomic terms for anthropogenic soils are presented. Furthermore, the context with the functionality of such soils is discussed. The principles of mapping and evaluation of anthropogenic urban soils are explained to stress the practicability of management tools for such soils.

Results and Discussion

A semi-quantitative consideration of parent material flows in anthropogenic urban soils indicates the enormous increase of the areas of supply of cities since the pre-industrial period. Since 1950, the inner-urban deposition of solid materials, including dust stopped to increase or increases slowly in the early industrialized regions. In contrast, the deposition and reuse of rubble, inorganic and organic waste as well as dust increases much in the late industrialized regions of the last decades.

Conclusions

The significance of anthropogenic urban soils in ecological soil management became obvious by numerous scientific studies. Moreover, it is recognized that management of different areas in urban environments must respect the functionality of their soils. It is therefore of importance that pedology is integrated with related disciplines such as archaeology, history and urban planning. The scientific knowledge, the appropriate methods and tools are now available to promote and support the management of anthropogenic urban soils.

Recommendations and Perspectives

It is recommended that research conducted over the past two decades should be introduced into soil management, especially with regard to the evaluation of soil quality. Accordingly, results of collaborative studies by soil scientists and city planners need to be integrated into political frameworks like the European Soil Strategy. It is also recognized that knowledge regarding anthropogenic urban soils in the tropics, the southern hemisphere and far north is lacking, a point which will need to be addressed in the future.

Dedication

This publication is dedicated to the 20th anniversary of the AKS (Arbeitskreis Stadtböden).
  相似文献   

2.

Purpose

The influence of human activities on the development and functioning of urban soils and their profile characteristics is still inadequately understood. Microbial communities can change due to anthropogenic disturbances and it is unclear how they exist along urban soil profiles. This study investigates the dynamic soil properties (DSPs) and the bacterial communities along the profiles of urban soils in New York City (NYC) with varying degree of human disturbances.

Materials and methods

Eleven pedons were investigated across NYC as well as one control soil in a nearby non-urban area. Six soils are formed in naturally deposited materials (ND) and five in human-altered and human-transported materials (HAHT). For each soil, the profile was described and each horizon was sampled to assess DSPs and the bacterial community composition and diversity.

Results and discussion

The development and the DSPs of NYC soils are influenced by the incorporation of HAHT materials and atmospheric deposits. The most abundant bacterial taxa observed in the NYC soils are also present in most natural and urban soils worldwide. The bacterial diversity was lower in some soils formed in ND materials, in which the contribution of low-abundance taxa was more restricted. Some differences in bacterial community composition separated the soils formed in ND materials and in dredged sediments from the soils formed in high artifact fill and serpentinite till. Changes in bacterial community composition between soil horizons were more noticeable in urban soils formed in ND materials than in those formed in HAHT materials which display less differentiated profiles and in the non-urban highly weathered soil.

Conclusions

The bacterial diversity is not linked to the degree of disturbance of the urban soils but the variations in community composition between pedons and along soil profiles could be the result of changes in soil development and properties related to human activities and should be consistently characterized in urban soils.
  相似文献   

3.

Purpose

The volume of dust deposition on the soil surface in Moscow is big enough and make several tens of grams per square meter annually. The role of dust as a soil-forming material is especially high in places with practically no other soil parent materials. It is necessary to consider solid atmospheric precipitation as a parent soil material in urban conditions and its impact on soil properties.

Materials and methods

Samples of two soil bodies were taken near two major highways of Moscow, and airborne solid deposit samples were collected from the roadside barrier in summer and from plant leaves after snowmelt. The fallout samples were studied by methods used for soil because of its silicate matrix (Si~30 % total). Main complex characteristics of samples were obtained by chemical analysis and with a scanning electron microscope with energy-dispersive X-ray spectrometer. Bulk elemental composition, available phosphorus and potassium, carbonates, organic carbon and oil hydrocarbon contents, pH, redox potential, magnetic susceptibility, and particle-size distribution of dust and soils were determined.

Results and discussion

Near the highways, where the process of dust transfer is activated, there are possibilities of dust inclusion into soil and formation of new soil horizons on these deposits. Pedofeatures are formed during a very short period of time. The soil-forming processes are connected with both soil organic matter and mineral compound transformation. Chemical properties of the studied soils correspond to those of usual Moscow soil horizons and dust samples studied previously by Prokofyeva et al. (2011) and Prokof’eva et al. (2015). It was established that atmospheric solid aerosol imports organic carbon, carbonates, and other salts; pollutants such as oil hydrocarbons; and heavy metals into the soil. Airborne deposits influence soil physical properties by enriching the soil with clay and coarse silt fractions.

Conclusions

Investigation of dust deposit composition provides data for characterizing material being continuously deposited on the urban soil surface. The atmospheric fallouts together with construction waste and natural rocks provide the common geochemical properties of urban soils.
  相似文献   

4.

Purpose

The aim of this study was to determine the mutual relations between polycyclic aromatic hydrocarbons (PAHs) originated from atmospheric emissions and enzymatic activity and humic substances in soils at differently urbanized area, on an example of the Lublin city, east Poland.

Materials and methods

The chosen areas represented three differently urbanized environments: old tenement houses and modern residential blocks, mixture of different building and rural landscape, and typical rural environment with smallholding farms, respectively. On each of the urban, suburban, and rural areas, one representative plot was chosen on fallow lands classified as luvisol derived from loess. The soil samples were collected from the top 25 cm layer. The following properties were determined: pH, organic carbon, total nitrogen, humic and fulvic acids, PAHs content (14 PAHs from US EPA list), and the activities of the following enzymes: dehydrogenases, acid phosphatase, alkane phosphatase, protease, and urease.

Results and discussion

Higher contents of organic C and total N were found in the rural soil samples. The share of humic acid was similar in all soils investigated, ranging from 19.38 to 25.27%, while fulvic acid values differ significantly between urban and rural areas. The urban soils indicated much lower share of fulvic acids (9.78–10.99%) than those of rural (29.02–29.32%). Consequently, the values of the CHA:CFA ratio of the urban soil were approximately two times higher than those of the rural soil. The results showed that both the rate of humification and the activity of dehydrogenases, acid phosphatase, alkaline phosphatase, and proteases in the soils increased in the following sequence: urban < suburban < rural.

Conclusions

The results showed that an increase of PAHs in the urbanized areas affect other soil properties. The phenanthrene/anthracene and fluoranthene/pyrene ratios pointed to coal combustion as the principal source of PAHs in the investigated soils. The PAH content in the urbanized area inhibit humification processes in the soil and the activity of dehydrogenases, acid phosphatase, alkaline phosphatase, and proteases.
  相似文献   

5.

Purpose

Despite the many studies of urban soils, a comparative analysis for cities of a similar size has not yet been conducted. Thus, the aim of this review paper was to compare the soil distribution patterns in the area of two medium-sized Polish cities (Toruń and Zielona Góra). The authors attempted to answer the question of how natural and technogenic factors contributed to the transformation of urban soils and what the similarities and differences are between these two studied cities.

Materials and methods

First, both the natural and the human-related (including historical) factors influencing the soil formation in the studied cities were analysed. Then, a comparison of the degree of transformation of the urban soil environment was presented. The data obtained by the authors during nearly two decades of research (over 200 soil profiles) were used.

Results and discussion

Intensive development of the built-up areas in Toruń brought heavy and long-term transformations of soils, which demonstrate the typical properties of Urbic Technosols, Ekranic Technosols and other technogenic soils. Zielona Góra showed a similar state of soil transformation over a considerably smaller area. Currently, the differences in the soil properties in many built up areas have been blurred, despite the habitat and historical base. The similarities of the soil properties concerned, in particular, a high content of skeletal remains (from a few to over 30%), elevated pH (in KCl) values (even above 8.0) and the artificial soil horizons formation. Both cities struggle with similar problems regarding the changes in the land use within the areas covered by these soils.

Conclusions

It was found that, despite the significant habitat and historical differences between the two studied cities, most of the urban soils, especially Urbic Technosols, Ekranic Technosols and Regosols (Relocatic and Technic), are characterised by similar morphology and properties. The most important differences are the time and scale of the area transformation, which influence the extent of Technosols and Anthrosols within the city borders. The most distinct differences concern the natural and slightly transformed soils, which are the results of various soil-forming factors.
  相似文献   

6.

Purpose

Field portable X-ray fluorescence (FPXRF) technology can offer a rapid and cost-effective determination of the total elemental concentrations in soils. The aims of this study were (i) to test the capability of FPXRF to predict the element concentrations of a very large soil sample set and (ii) to assess the influence of soil moisture, known to strongly affect the quality of FPXRF analyses.

Materials and methods

A large set of 215 soil samples were analysed for Ba, Ca, Cr, Cu, Fe, Mn, Pb, Rb, Sn, Sr and Zn by inductively coupled plasma atomic emission spectroscopy (ICPAES) after aqua regia digestion and with a FPXRF analyser using a short acquisition time. Soil samples were then saturated with ultrapure water to test the influence of soil water content on FPXRF signal.

Results and discussion

For all of the elements, the total concentrations obtained with ICPAES and FPXRF showed a very high degree of linearity, indicating that FPXRF can effectively predict element concentrations in soils. A Lambert-Beer law was successfully used to describe the decrease in the FPXRF concentrations with increasing soil moisture. The attenuation coefficient obtained for each element allowed us to satisfactorily predict the FPXRF concentrations of samples for water contents as high as 136.8 %.

Conclusions

These results show that the effect of water on signal attenuation can be corrected and that FPXRF may gradually replace chemical methods for the analysis of environmental samples.
  相似文献   

7.

Purpose

Urban soils’ variability in the vertical direction presumably affects hydrological parameters at the timescale. Moreover, horizontal soil alterations at small spatial scales are common in urban areas. This spatio-temporal variability and heterogeneity of soil moisture and the possible influencing factors were to be described and quantified, using data of a soil monitoring network in the city of Hamburg, Germany.

Materials and methods

Soil moisture data from ten observation sites within the project HUSCO was evaluated for two different years. The sites were located within districts with different mean groundwater table depths and characteristic urban soil properties. Soil hydrological simulations with SWAP were calculated for a selected site.

Results and discussion

The temporal evolution of soil water content and tension for the sites was very distinct, related to soil substrate, organic matter content, and groundwater table depth. Impacts of different vegetation rooting depths, the soil substrates’ type, and to some extent the degree of disturbance on soil water dynamics could be identified. An impact of groundwater table depth on the water content of the topsoil during low-precipitation periods could be assumed. The comparison of the results of soil hydrological simulations with empirical data indicated an overestimation of infiltration and percolation for the given soil substrates.

Conclusions

While soil properties are mainly determinant for the long-term progression of soil hydrology, local site factors affect the short-term regime. A shallow groundwater table contributes to more constant water dynamics while the relative decrease of water during a dry phase is diminished.
  相似文献   

8.

Purpose

The objective of this review is to survey critically the results obtained by the application of laser-induced fluorescence spectroscopy (LIFS) and laser-induced breakdown spectroscopy (LIBS) to the evaluation of the humification degree (HD) of soil organic matter (SOM) directly in untreated, intact whole soils.

Materials and methods

A large number of soils of various origin and nature, either native or under various cultivations, land use, and management, at various depths, have been studied to evaluate the HD of their SOM directly in intact whole samples. The LIFS spectra were obtained by either a bench or a portable argon laser apparatus that emits UV-VIS light of high power, whereas the LIBS spectra were obtained using a Q-switched Nd:YAG laser at 1064 nm.

Results and discussion

The close correlations found by comparing HLIF values of whole soil samples with values of earlier proposed humification indexes confirmed the applicability of LIFS to assess the HD of SOM in whole soils. The high correlation found between HDLIBS values and HLIF values showed the promising potential of LIBS for the evaluation HD of SOM.

Conclusions

The LIFS technique shows to be a valuable alternative to evaluate the HD of SOM by probing directly the whole solid soil sample, thus avoiding the use of any previous chemical and/or physical treatments or separation procedures of SOM from the mineral soil matrix. The emerging application of LIBS to evaluate the HD of SOM in whole soils appears promising and appealing due to its sensitivity, selectivity, accuracy, and precision.
  相似文献   

9.

Purpose

This study was to investigate the changes of heavy metals in the soils amended with different municipal sewage sludge hydrochars.

Materials and methods

Sewage sludge hydrochars prepared at either 190 or 260 °C, for 1, 6, 12, 18, or 24 h, respectively, were added to soil samples and then incubated for 60 days. Water-extractable organic carbon (WEOC) and CO2 evolution were determined during the incubation. The total quantities of heavy metals and their different fractions were analyzed by inductively coupled plasma spectrometry (ICP).

Results and discussion

Hydrochar-amended soils had much higher water-extractable carbon and more CO2 evolution than control soil, indicating that the added hydrochars contained a significant amount of WEOC and could be decomposed during the incubation. Hydrochar addition immediately and significantly increased the total heavy metals of the soil. Moreover, both oxidizable and residual fractions of all heavy metals were significantly higher in all the hydrochar-added soils than those in control soil. Both oxidable and residual fractions of heavy metals decreased in the hydrochar-amended soils during 60-day incubation. In contrary, both acid soluble and reducible fractions of heavy metals increased in the hydrochar-amended soils during incubation. It is thus obvious that the heavy metals in both oxidable and residual fractions may be released during hydrochar decomposition and then be adsorbed by soil matrix such as carbonates, iron oxides, and clays.

Conclusions

Municipal sewage sludge can be readily carbonized into hydrochar. However, it is watchful of applying the hydrochar into soil since hydrochar addition increases in both total and bioavailable heavy metals in soil. More work is particularly required to investigate the long-term impacts on soil and environment.
  相似文献   

10.

Purpose

The study aimed at comparing the effects of different water managements on soil Cd immobilization using palygorskite, which was significant for the selection of reasonable water condition.

Materials and methods

Field experiment was taken to discuss the in situ remediation effects of palygorskite on Cd-polluted paddy soils, under different water managements, using a series of variables, including pH and extractable Cd in soils, plant Cd, enzyme activity, and microorganism number in soils.

Results and discussion

In control group, the pH in continuous flooding was the highest under three water conditions, and compared to conventional irrigation, continuous flooding reduced brown rice Cd by 37.9%, and brown rice Cd in wetting irrigation increased by 31.0%. In palygorskite treated soils, at concentrations of 5, 10, and 15 g kg?1, brown rice Cd reduced by 16.7, 44.4, and 55.6%; 13.8, 34.5, and 44.8%; and 13.1, 36.8, and 47.3% under continuous flooding, conventional irrigation, and wetting irrigation (p < 0.05), respectively. The enzyme activity and microbial number increased after applying palygorskite to paddy soils.

Conclusions

Continuous flooding was a good candidate as water management for soil Cd stabilization using palygorskite. Rise in soil enzyme activity and microbial number proved that ecological function regained after palygorskite application.
  相似文献   

11.

Purpose

Phosphate (P) fertilizers are being widely used to increase crop yield, especially in P-deficient soils. However, repeated applications of P could influence trace element bioaccumulation in crops. The effects of 5-year P enrichment on trace element (Cu, Zn, Cd, Pb, As, and Hg) accumulation in Oryza sativa L. were thus examined.

Materials and methods

Two paddy soils with different initial P availabilities were amended with and without P fertilizer from 2009 to 2013. Trace elements and P levels in rice and soils were analyzed.

Results and discussion

In soil initially with limited P, P amendment enhanced grain Pb, As, and Hg concentrations by 1.8, 1.5, and 1.4-fold, respectively, but tended to decrease the grain Cd level by 0.73-fold, as compared to the control. However, in soil initially with sufficient P, P amendment tended to reduce accumulation of all examined elements in rice grain.

Conclusions

Phosphate amendment in initially P-limited and P-sufficient soils had different effects on trace element availability in soil (as reflected by extractable element) and plant physiology (growth and metal translocation), resulting in contrasting patterns of trace element accumulation in rice between the two types of soils. Our study emphasized the necessity to consider the promoting effects of P on Pb, As, and Hg accumulation in grain in initial P-deprived soil.
  相似文献   

12.

Purpose

Although the influences of urban land use on water quality have been widely investigated, the impacts of different urbanization patterns, particularly in Mediterranean environments, are not well understood. Focussing on a Portuguese peri-urban catchment with 40 % urban cover, this paper explores (1) the impact of areas with differing urban extent and storm drainage system on streamwater quality and (2) temporal variations driven by season and storm events of differing magnitude, intensity and antecedent weather.

Materials and methods

Water quality was assessed at the catchment outlet (E) and for three upstream tributaries: (1) Porto Bordalo (PB), 39 % urban with a new major road and piping of some overland flow from impervious surfaces directly into the stream; (2) Espírito Santo (ES), 49 % urban, mostly comprising detached houses surrounded by gardens, and with overland flow infiltrating into downslope pervious soils; and (3) Quinta (Q), 22 % urban with partial piping of overland flow from a recent enterprise park area. Water samples were collected at different stages in storm hydrograph responses to ten rainfall events from October 2011 to March 2013. The water quality variables analysed included chemical oxygen demand (COD), nutrients (Kjeldahl nitrogen [Nk-N], ammonium [NH4–N], nitrate [NO3–N] and total dissolved phosphorus (TDP) and heavy metals (Zn and Cu).

Results and discussion

Urban areas had great impact on COD, with the highest median concentrations in ES and the lowest in Q. In ES, fertilizing lawns and gardens may have been responsible for its higher median NO3–N concentrations. High concentrations of heavy metals were recorded in PB and Q, probably due to the piping of road runoff directly into the stream. Generally, higher pollutant concentrations were recorded in the first storm events after the summer drought due to the flushing of accumulated solutes and a lower dilution effect, with Nk-N and NH4–N exceeding water quality standards. Over the wet season, increasing soil moisture favoured greater flow connectivity between runoff processes from pollutant sources and the stream network, leading to a higher proportion of samples exceeding pollution thresholds.

Conclusions

No direct relationship was identified between urban extent and water quality, possibly due to the overriding impact of different storm drainage systems and flow connectivities of different urban patterns. Hydrological regime, linked to seasonal changes, also exerted a major influence on the water quality dynamics. Information on the spatiotemporal dynamics of pollutants, linked to different urban patterns and storm drainage systems, should help enable urban planners to minimize the adverse impacts of urbanization on aquatic ecosystems.
  相似文献   

13.

Purpose

Bacteria able to extracelluar respiration, which could be enriched in the anode of microbial fuel cells (MFCs), play important roles in dissimilatory iron reduction and arsenic (As) desorption in paddy soils. However, the response of the bacteria to As pollution is unknown.

Materials and methods

Using soil MFCs to investigate the effects of As on anode respiring bacteria (ARB) communities in paddy soils exposed to As stress. The soil MFC performances were evaluated by electrochemical methods. The bacterial community compositions on anodes were studied using Illumina sequencing.

Results and discussion

In wet 1 phase, polarization curves of MFCs showed cathode potentials were enhanced at low As exposure but inhibited at high As exposure. In the meantime, anode potentials increased with As levels. The dry-wet alternation reduced As levels in porewater and their impacts on electrodes microorganisms. Arsenic addition significantly influenced the anode microbial communities. After dry-wet cycles, Deltaproteobacteria dominated in the anode with high As.

Conclusions

The dynamic changes of the communities on cathodes and anodes of soil MFCs in paddy soils with different As addition might be explained by their different mechanisms for As detoxification. These results provide new insights into the microbial evolution in As-contaminated paddy soils.
  相似文献   

14.

Purpose

The objectives of this study were to investigate (i) how the changes in cultivation pattern of vegetable affect soil microbial communities and (ii) the relationships between soil physico-chemical properties and microbial community structure.

Materials and methods

Soil samples were collected from fields growing vegetable crops with various times of plastic-greenhouse cultivation (0, 1, 4, 7 and 15 years, respectively). Phospholipid fatty acid (PLFA) analysis was conducted to reveal the soil microbial community of the test soils.

Results and discussion

The open-field soil had the highest total PLFAs amount. Although the Shannon-Weaver index was also highest in the open-field soil, the difference was not significant. Plastic-greenhouse cultivation decreased PLFAs species diversity and richness. Cluster analysis and principal component analysis (PCA) of the PLFA profiles revealed distinct groupings at different times during plastic-greenhouse cultivation.

Conclusions

Ultimately, PLFA analyses showed that long-term plastic-greenhouse cultivation make the physiological status of soil microbial community worse and increased stress level of microorganisms. And soil microbial community was significantly affected by field water capacity and water-soluble organic carbon. The study highlights the potential risk of long-term plastic-greenhouse cultivation to soil microbial community.
  相似文献   

15.

Purpose

Sulfonamides are widely used for the prevention and treatment of bacterial infections, hard-degraded contaminants distributed in the environment if they are discharged into the soil and water. Biochar could probably influence the geochemical behavior of ionized antibiotics in the soils.

Materials and methods

To determine the sorption/desorption of three representative sulfonamides (SAs) in soils amended with biochar, we investigated the effects of water pH, Cu2+, and dissolved humic acid on the sorption of sulfamethoxazole (SMX), sulfamethazine (SMZ), and sulfadiazine (SD) onto two different soil samples (S1 pH?=?5.13 and S2 pH?=?7.33) amended with wheat straw-derived biochar (size 0.5~0.6 mm).

Results and discussion

Batch experiments showed that the sorption/desorption isotherms of SAs on soil with/without biochar followed the Freundlich model. The biochar had a strong adsorption potential for SMX, SMZ, and SD both in S1 and S2 at low water pH. Except for SMX, the presence of Cu2+ inhibited the sorption of SMZ and SD through competing hydrophobic adsorption region in soils. HA suppressed the sorption of three sulfonamides in soil S2 by electrostatic repulsion under alkaline condition. The soil leaching column experiments showed the SA transport in soils, and S1 and S2 amended with biochar (0.5 and 1.0 wt%) brought about 12–20 % increase in SMX, SMZ, and SD retention compared to the untreated soil.

Conclusions

The results indicated that the presence of biochar effectively mitigated the mobility of ionized antibiotics such as SMX, SMZ, and SD in soils, which helps us reconsider the potential risk of antibiotics in the environment.
  相似文献   

16.

Purpose

Standard assays for phytotoxicity provide a reductionist view on the performance of plants under toxic stress. To address two of the most prominent issues in plant toxicity studies, our aims were (1) to assess how well physiological and biochemical parameters complement standard toxicological endpoints when testing natural soils and (2) to assess the suitability of three commonly used control soils as comparative references.

Material and methods

We compared the performance of Zea mays and Helianthus annuus in three control soils (artificial Organisation for Economic Co-operation and Development (OECD) soil, standard LUFA 2.2 soil, and turf-perlite) against three natural soils representing a gradient of contamination (from a deactivated uranium mine). Standard endpoints (emergence and biomass) were estimated, along with pigment content, photosynthetic parameters, cellular injury, and proline content.

Results and discussion

The toxicological profile of natural soils was highly dependent on the control soil used as reference; also, plant physiological performance was influenced by the soils’ properties. We discuss the need to interpret and combine multiple lines of evidence as a way to increase the degree of confidence one classifies soils based on their ecotoxicity, and this is where the integration of physiological and biochemical parameters bring added value.

Conclusions

When facing large variability in soil characteristics, it is best to collect and integrate as much information possible to strengthen conclusions about phytotoxicity of natural soils. Obviously, this refutes reductionist views and places the final conclusion in the hands of expert judgment.
  相似文献   

17.

Purpose

Occlusion of carbon (C) within phytoliths, biogenic silica deposited in plant tissues and returned to the soil, is an important mechanism for long-term terrestrial biogeochemical C sequestration and might play a significant role in mitigating climate change.

Materials and methods

Subtropical and tropical soil profiles (to 100 cm depth) developed on granite and basalt were sampled using a mass-balance approach to explore the influence of climate and lithology on soil phytolith-occluded carbon (PhytOC) accumulation.

Results and discussion

Soil PhytOC storage in the subtropics was significantly greater than in the tropics, with the soil profiles developed on granite storing greater PhytOC than soils derived on basalt. Phytolith and PhytOC content decreased with depth in all soil profiles. Phytolith content showed a positive correlation with the soil bio-available silicon in the soil profiles developed on basalt, while a negative correlation was observed in soil profiles developed on granite.

Conclusions

Climate and lithology have a significant impact on soil PhytOC sequestration. The management of forests (e.g., afforestation and reforestation) and external silicon amendments (e.g., basalt powder amendment) in soils, especially those developed on granite, have the potential to enhance PhytOC accumulation in forest ecosystems.
  相似文献   

18.

Purpose

Biochar, the by-product of thermal decomposition of organic materials in an oxygen-limited environment, is increasingly being investigated due to its potential benefits for soil health, crop yield, carbon (C) sequestration, and greenhouse gas (GHG) mitigation.

Materials and methods

In this review, we discuss the potential role of biochar for improving crop yields and decreasing the emission of greenhouse gases, along with the potential risks involved with biochar application and strategies to avoid these risks.

Results and discussion

Biochar soil amendment improves crop productivity mainly by increasing nutrient use efficiency and water holding capacity. However, improvements to crop production are often recorded in highly degraded and nutrient-poor soils, while its application to fertile and healthy soils does not always increase crop yield. Since biochars are produced from a variety of feedstocks, certain contaminants can be present. Heavy metals in biochar may affect plant growth as well as rhizosphere microbial and faunal communities and functions. Biochar manufacturers should get certification that their products meet International Biochar Initiative (IBI) quality standards (basic utility properties, toxicant assessment, advanced analysis, and soil enhancement properties).

Conclusions

The long-term effects of biochar on soil functions and its fate in different soil types require immediate attention. Biochar may change the soil biological community composition and abundance and retain the pesticides applied. As a consequence, weed control in biochar-amended soils may be difficult as preemergence herbicides may become less effective.
  相似文献   

19.

Purpose

Exoelectrogens are important microorganisms playing crucial roles in the biogeochemistry of elements in paddy soils. But it remains unclear how the soil properties and geographical distances affect the exoelectrogen communities of Chinese paddy soils. So the objectives of this study were to investigate the diversity and composition of these microbial communities which were enriched on the anodes of soil microbial fuel cells (SMFCs) and to elucidate the links between the microbial community compositions and their driving factors.

Materials and methods

We used Illumina HiSeq sequencing to determine the bacterial community structures which were enriched on the anodes of SMFCs. Variance partitioning analysis (VPA) was used to obtain the contribution of soil properties and geographical distance to the variations of bacterial communities.

Results and discussion

Active bacterial community on anodes of the closed circuit SMFCs differs significantly from the control open circuit SMFCs. Anodes of all the closed circuit SMFCs were characterized by the presence of high numbers of Nitrospira and Anaerolineae. Taxonomic similarities and phylogenetic similarities of bacterial communities from different paddy soil samples across North and South China were found to be significantly correlated with geographical distances. The relationship between the similarities and the geographic distance exhibited a distance-decay relationship. VPA showed that both geographical distances and soil properties affect the structure of bacterial communities detected on anodes.

Conclusions

Our study gives a foundation for understanding the distribution and diversity of exoelectrogens in paddy soils and elucidates the links between the distribution and the diversity of extracellular respiring bacteria and their driving factors. Furthermore, this study also identifies the crucial factors which should be used to evaluate the response of exoelectrogens to environmental perturbations in Chinese paddy soils.
  相似文献   

20.

Purpose

Peatlands have an important role in methane cycling in the natural environment. Methane emissions as a result of methanogenesis and methanotrophy in soil are affected by several environmental factors such as temperature, oxygen and groundwater level. The objective of this study was to analyse methane cycling as a function of soil depth.

Materials and methods

In this study, methane cycling and soil organic matter mineralization were investigated in a drained fen grassland area of Ljubljana marsh, Slovenia that has been subjected to reclamation strategies for several centuries. Potential mineralization, methane production and methane oxidation rates were measured in slurry incubation experiments with soil samples from 10 sampling depths of a 1-m profile. In addition, the extent of iron reduction in the soil was determined.

Results and discussion

The potential for methane production was low in the investigated soil profile, even in constantly flooded layers below the water table fluctuations. During anaerobic incubations, the highest accumulated concentrations and production rates of methane were observed in the upper 10-cm layer and the lowest in deeper soil layers, indicating that plant exudates are the main source of energy for heterotrophic soil microbes and that methanogenesis in deeper layers is limited by the availability of appropriate organic substrates. Methane oxidation was on the other hand active throughout the soil profile, suggesting that the potentially active methane oxidizing community is present despite low methane production. The highest abundance and activity of methanotrophs was detected in the water table fluctuation layers.

Conclusions

Together, these findings have implications for understanding the biogeochemical function of drained peat soils and emphasize the influence of drainage on quality of soil organic matter and consequently on methane production even in flooded soils.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号