首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The relative contributions of sources of carbon in soils, such as throughfall, litter, roots, microbial decay products and stable organic fractions, to dissolved organic C are controversial. To identify the origin of dissolved organic C, we made use of a 4‐year experiment where spruce and beech, growing on an acidic loam and on a calcareous sand, were exposed to increased CO2 that was depleted in 13C. We traced the new C inputs from trees into dissolved organic C, into water‐extractable organic C, and into several particle‐size fractions. In addition, we incubated the labelled soils for 1 year and measured the production of dissolved organic C and CO2 from new and old soil C. In the soil solutions of the topsoil, the dissolved organic C contained only 5–10% new C from the trees. The δ13C values of dissolved organic C resembled those of C pools smaller than 50 µm, which strongly suggests that the major source of dissolved organic C was humified old C. Apparently, throughfall, fresh litter and roots made only minor contributions to dissolved organic C. Water‐extractable organic C contained significantly larger fractions of new C than did the natural dissolved organic C (25–30%). The δ13C values of the water‐extractable organic C were closely correlated with those of sand fractions, which consisted of little decomposed organic carbon. The different origin of dissolved and water‐extractable organic C was also reflected in a significantly larger molar UV absorptivity and a smaller natural 13C abundance of dissolved organic C. This implies that the sampling method strongly influences the characteristics and sources of dissolved organic C. Incubation of soils showed that new soil C was preferentially respired as CO2 and only a small fraction of new C was leached as dissolved organic C. Our results suggest that dissolved organic C is produced during incomplete decomposition of recalcitrant native C in the soils, whereas easily degradable new components are rapidly consumed by microbes and thus make only a minor contribution to the dissolved C fraction.  相似文献   

2.
The dynamics of incorporation of fresh organic residues into the various fractions of soil organic matter have yet to be clarified in terms of chemical structures and mechanisms involved. We studied by 13C‐dilution analysis and CPMAS‐13C‐NMR spectroscopy the distribution of organic carbon from mixed or mulched maize residues into specific defined fractions such as carbohydrates and humic fractions isolated by selective extractants in a year‐long incubation of three European soils. The contents of carbohydrates in soil particle size fractions and relative δ13C values showed no retention of carbohydrates from maize but rather decomposition of those from native organic matter in the soil. By contrast, CPMAS‐13C‐NMR spectra of humic (HA) and fulvic acids (FA) extracted by alkaline solution generally indicated the transfer of maize C (mostly carbohydrates and peptides) into humic materials, whereas spectra of organic matter extracted with an acetone solution (HE) indicated solubilization of an aliphatic‐rich, hydrophobic fraction that seemed not to contain any C from maize. The abundance of 13C showed that all humic fractions behaved as a sink for C from maize residues but the FA fraction was related to the turnover of fresh organic matter more than the HA. Removal of hydrophobic components from incubated soils by acetone solution allowed a subsequent extraction of HA and, especially, FA still containing much C from maize. The combination of isotopic measurements and NMR spectra indicated that while hydrophilic compounds from maize were retained in HA and FA, hydrophobic components in the HE fraction had chemical features similar to those of humin. Our results show that the organic compounds released in soils by mineralization of fresh plant residues are stored mainly in the hydrophilic fraction of humic substances which are, in turn, stabilized against microbial degradation by the most hydrophobic humic matter. Our findings suggest that native soil humic substances contribute to the accumulation of new organic matter in soils.  相似文献   

3.
Dissolved organic matter is important in translocation and export of nutrients from forest ecosystems. Its mobility in soil is restricted by sorption to mineral surfaces which depends on its chemical properties. Carboxyl and hydroxyl groups form strong bondings to mineral surfaces, whereas the role of N‐containing functional groups in the sorption process is less well understood. We examined in laboratory experiments the binding of dissolved organic matter from the forest floor to amorphous Al(OH)3, goethite, kaolinite, and illite and to subsoils in order to compare the sorption and desorption of dissolved organic C with that of dissolved organic N. The mineral samples were equilibrated with acidic solutions of organic matter at pH 4. In the equilibrium solutions organic C and N and their contribution to two operationally defined fractions, namely the so‐called hydrophilic and hydrophobic fractions, were determined. We measured neutral and acidic amino sugars to discover the nature of the binding of organic N. Within the hydrophilic and hydrophobic fractions, the sorption and desorption of organic C and N did not differ, indicating that there was no preferential binding of N‐containing compounds. The hydrophilic fraction contained more N and sorbed less than the hydrophobic fraction, and so the overall retention of organic N by the mineral phases and subsoils was smaller than that of organic C. Among the amino sugar compounds, muramic acid was preferentially removed from the solution, whereas the neutral amino sugars were sorbed similar to organic C. The results suggest that the sorption of N‐containing compounds is favoured by acidic groups and not by amino groups.  相似文献   

4.
In highly weathered tropical conditions, soil organic matter is important for soil quality and productivity. We evaluated the effects of deforestation and subsequent arable cropping on the qualitative and quantitative transformation of the humic pool of the soil at three locations in Nigeria. Cultivation reduced the humic pool in the order: acetone‐soluble hydrophobic fraction (HE) > humic acid (HA) > humin (HU) > fulvic acid (FA), but not to the same degree at all three sites. The C and N contents, as well as the C/N ratios of humic extracts, were large and not substantially influenced by land use. The δ13C values of the humic extracts were invariably more negative in forested soils thereby showing a dilution of δ13C signature with cultivation from C3 to C4 plants. The δ13C values of apolar HE fractions were generally more negative, indicating a reduced sensitivity compared with other humic fractions to turnover of crop residues. The contents of hydrophobic constituents (alkyl and aromatic C), as revealed by cross‐polarization magic angle spinning (CPMAS) 13C‐NMR spectroscopy, in HA, FA and HU were generally < 50%, with the exception of larger hydrophobicity in HU in the forested soil at Nsukka and HA in that at Umudike. The HE fraction contained significantly more apolar constituents, and consequently had a larger intrinsic hydrophobicity than the other humic fractions. The larger reduction of apolar humic constituents than of the less hydrophobic humic fractions, when these soils were deforested for cultivation, indicates that at those sites the stability of accumulated organic matter is to be ascribed mainly to the selective preservation of hydrophobic compounds.  相似文献   

5.
Although considerable research has been conducted on the importance of recent litter compared with older soil organic matter as sources of dissolved organic carbon (DOC) in forest soils, a more thorough evaluation of this mechanism is necessary. We studied water‐extractable organic carbon (WEOC) in a soil profile under a cool‐temperate beech forest by analysing the isotopic composition (13C and 14C) of WEOC and its fractions after separation on a DAX‐8 resin. With depth, WEOC became more enriched in 13C, which reflects the increasing proportion of the hydrophilic, isotopically heavier fraction. The 14C content in WEOC and its fractions decreased with depth, paralleling the 14C trend in soil organic matter (SOM). These results indicate a dynamic equilibrium of WEOC and soil organic carbon. The dominant process maintaining the WEOC pool in the mineral soil appears to be the microbial release of water‐soluble compounds from the SOM, which alters in time‐scales of decades to centuries.  相似文献   

6.
The retention of dissolved organic matter in soils is mainly attributed to interactions with the clay fraction. Yet, it is unclear to which extent certain clay‐sized soil constituents contribute to the sorption of dissolved organic matter. In order to identify the mineral constituents controlling the sorption of dissolved organic matter, we carried out experiments on bulk samples and differently pretreated clay‐size separates (untreated, organic matter oxidation with H2O2, and organic matter oxidation with H2O2 + extraction of Al and Fe oxides) from subsoil horizons of four Inceptisols and one Alfisol. The untreated clay separates of the subsoils sorbed 85 to 95% of the dissolved organic matter the whole soil sorbed. The sorption of the clay fraction increased when indigenous organic matter was oxidized by H2O2. Subsequent extraction of Al and Fe oxides/hydroxides caused a sharp decrease of the sorption of dissolved organic matter. This indicated that these oxides/hydroxides in the clay fraction were the main sorbents of dissolved organic matter of the investigated soils. Moreover, the coverage of these sorbents with organic matter reduced the amount of binding sites available for further sorption. The non‐expandable layer silicates, which dominated the investigated clay fractions, exhibited a weak sorption of dissolved organic matter. Whole soils and untreated clay fractions favored the sorption of ”︁hydrophobic” dissolved organic matter. The removal of oxides/hydroxides reduced the sorption of the lignin‐derived ”︁hydrophobic” dissolved organic matter onto the remaining layer silicates stronger than that of ”︁hydrophilic” dissolved organic matter.  相似文献   

7.
8.
Soil physical structure causes differential accessibility of soil organic carbon (SOC) to decomposer organisms and is an important determinant of SOC storage and turnover. Techniques for physical fractionation of soil organic matter in conjunction with isotopic analyses (δ13C, δ15N) of those soil fractions have been used previously to (a) determine where organic C is stored relative to aggregate structure, (b) identify sources of SOC, (c) quantify turnover rates of SOC in specific soil fractions, and (d) evaluate organic matter quality. We used these two complementary approaches to characterize soil C storage and dynamics in the Rio Grande Plains of southern Texas where C3 trees/shrubs (δ13C=−27‰) have largely replaced C4 grasslands (δ13C=−14‰) over the past 100-200 years. Using a chronosequence approach, soils were collected from remnant grasslands (Time 0) and from woody plant stands ranging in age from 10 to 130 years. We separated soil organic matter into specific size/density fractions and determined their C and N concentrations and natural δ13C and δ15N values. Mean residence times (MRTs) of soil fractions were calculated based on changes in their δ13C with time after woody encroachment. The shortest MRTs (average=30 years) were associated with all particulate organic matter (POM) fractions not protected within aggregates. Fine POM (53-250 μm) within macro- and microaggregates was relatively more protected from decay, with an average MRT of 60 years. All silt+clay fractions had the longest MRTs (average=360 years) regardless of whether they were found inside or outside of aggregate structure. δ15N values of soil physical fractions were positively correlated with MRTs of the same fractions, suggesting that higher δ15N values reflect an increased degree of humification. Increased soil C and N pools in wooded areas were due to both the retention of older C4-derived organic matter by protection within microaggregates and association with silt+clay, and the accumulation of new C3-derived organic matter in macroaggregates and POM fractions.  相似文献   

9.
Because of its insolubility, heterogeneity and structural complexity, humin is the least understood among the three fractions of soil humic substances. This research aimed to evaluate the long‐term effect of combined nitrogen and phosphorus (NP) fertilizer addition on the chemical structure of humin under maize (Zea mays L.) monoculture in a Typic Hapludoll of northeast China. Soil samples were collected 12 and 25 years after the initiation of the fertilizer treatment. Soil humin was isolated using NaOH‐Na4P2O7 extraction to remove humic and fulvic acids, which was followed by HF‐HCl treatment to remove most of the inorganic minerals. Solid‐state 13C cross‐polarization magic angle spinning nuclear magnetic resonance (13C CPMAS NMR) spectroscopy was used to characterize the chemical structure of the humin isolates. Results showed that the organic carbon (C) content of humin increased after NP fertilizer addition, compared with a no‐fertilizer (CK) treatment. 13C CPMAS NMR indicated that O‐alkyl C and aromatic C of humin decreased, while alkyl C and the ratios of alkyl C/O‐alkyl C, aliphatic C/aromatic C and hydrophobic C/hydrophilic C all increased in the NP fertilizer treatment. The long‐term application of NP fertilizer changed the molecular structure of soil humin to be more alkyl and hydrophobic, and was thus beneficial to the sequestration and stability of organic C in soil.  相似文献   

10.
The objective of this study was to investigate the effects of mono‐ and polyvalent cations on sorption of the two hydrophobic compounds nonylphenol (NP) and phenanthrene (Phe). To this end, exchange sites of a sandy soil were saturated with either Na+, Ca2+, or Al3+ and excess salts were removed by washing. The samples were then sterilized and either stored moist, dried at room temperature, or at 20°C, 60°C, or 105°C in a vented oven. Saturation with Na+ led to an increase of dissolved organic C (DOC) concentration in the soil water extracts, whereas the polyvalent cations Ca2+ and Al3+ decreased it. The 1H‐NMR relaxometry analyses showed that Al3+ restricted the mobility of water molecules that are confined within the SOM structure to a higher extent than Ca2+ or Na+. According to contact‐angle (CA) analyses, cation treatment did not significantly change the wetting properties of the samples. Batch sorption–desorption experiments showed no clear salt‐treatment effects on the sorption and desorption equilibria or kinetics of NP and Phe. Instead, the sorption coefficients and sorption hysteresis of NP and Phe increased in dry soil. With increasing drying temperature the CA of the soils and the sorption of both xenobiotics increased significantly. We conclude that structural modifications of SOM due to incorporation of polyvalent cations into the interphase structure do not modify the sorption characteristics of the soil for hydrophobic compounds. Instead, increasing hydrophobization of organic soil constituents due to heat treatment significantly increased the accessible sorption sites for nonpolar organic compounds in this soil.  相似文献   

11.
This study tested the hypothesis that, like dissolved organic nitrogen (N), dissolved organic phosphorus (P) and sulphur (S) are more mobile in soil than is organic carbon (C). To do so, I compared the sorption of organic P and S to subsoil materials with that of organic C. Soil samples were equilibrated with water‐soluble organic matter from the forest floor at pH 4 and in the equilibrium solutions organic C, P, and S, and their distributions between the hydrophilic and hydrophobic fraction were determined. Sorption of C within the organic matter did not differ from that of P and S. However, the hydrophilic fraction contained the vast majority of P and S and sorbed far less than the hydrophobic fraction. So the overall retention of organic P and S was smaller than that of organic C. This result suggested that dissolved organic matter is more important in the loss of plant nutrients than in the release of C from soil.  相似文献   

12.
Sorption of organic chemicals in soil is affected by the properties and availability of surfaces. These surfaces are composed of diverse mineral, organic and biological components, forming a soil's ‘biogeochemical interface’. Phenanthrene was used to probe the hydrophobic sorptive capacity of the interface of an arable soil. Batch sorption experiments were carried out with the bulk soil as well as the fine (0.2–6.3 µm) and coarse (6.3–63 µm) particle size fractions of two arable topsoil samples with different organic matter (OM) contents from a Eutric Cambisol. The specific surface area (SSA) of the bulk soil and particle size fractions was determined by BET‐N2 and EGME sorption. OM composition was characterized by solid‐state 13C NMR spectroscopy. No clear relationship was found between phenanthrene sorption and SSA. We conclude that phenanthrene probes a specific fraction of the soil interface that is not well represented by the traditional methods of SSA detection such as BET‐N2 and EGME sorption. The sorption behaviour of phenanthrene may therefore provide a useful additional tool to characterize the specific affinity of the soil biogeochemical interface for hydrophobic molecules. Sorption capacity for phenanthrene increased after particle‐size fractionation, indicating that the reduced availability of the interface caused by the aggregated structure is important for the sorptive capacity of a soil. This should be considered when projecting data obtained from extensively treated and fractionated samples to the actual interaction with biogeochemical interfaces as they are present in soil.  相似文献   

13.
A broader knowledge of the contribution of carbon (C) released by plant roots (exudates) to soil is a prerequisite for optimizing the management of organic matter in arable soils. This is the first study to show the contribution of constantly applied 13C‐labelled maize and wheat exudates to water extractable organic carbon (WEOC), microbial biomass‐C (MB‐C), and CO2‐C evolution during a 25‐day incubation of agricultural soil material. The CO2‐C evolution and respective δ13C values were measured daily. The WEOC and MB‐C contents were determined weekly and a newly developed method for determining δ13C values in soil extracts was applied. Around 36% of exudate‐C of both plants was recovered after the incubation, in the order WEOC < MB‐C < CO2‐C for maize and MB‐C < WEOC < CO2‐C for wheat. Around 64% of added exudate‐C was not retrieved with the methods used here. Our results suggest that great amounts of exudates became stabilized in non‐water extractable organic fractions. The amounts of MB‐C stayed relatively constant over time despite a continuous exudate‐C supply, which is the prerequisite for a growing microbial population. A lack of mineral nutrients might have limited microbial growth. The CO2‐C mineralization rate declined during the incubation and this was probably caused by a shift in the microbial community structure. Consequently, incoming WEOC was left in the soil solution leading to rising WEOC amounts over time. In the exudate‐treated soil additional amounts of soil‐derived WEOC (up to 110 μg g−1) and MB‐C (up to 60 μg g−1) relative to the control were determined. We suggest therefore that positive priming effects (i.e. accelerated turnover of soil organic matter due to the addition of organic substrates) can be explained by exchange processes between charged, soluble C‐components and the soil matrix. As a result of this exchange, soil‐derived WEOC becomes available for mineralization.  相似文献   

14.
Labile soil dissolved organic carbon (DOC) and heat-extracted carbon (HEC) are sensitive indicators of changing soil organic carbon (SOC) stocks. Isotope ratio mass spectrometry (IRMS) is an important tool for studying SOC turnover and soil biological function. Several complications are involved in measuring DOC/HEC, for example salt ionic strength; solution pH; and anionic damage to elemental analyzer-IRMS. We evaluated a method for DOC/HEC analysis with 0.1 M potassium phosphate buffer (PPB). This method was strongly correlated with commonly used carbon (C) extractants for C quantification. Carbon-13 comparisons between DOC/HEC extracted with Milli-Q water and PPB were similar. The δ13C (‰) values of particulate OC and DOC were similar, whereas the relationship between humic OC and HEC was soil specific. An incubation experiment demonstrated that DOC/HEC δ13C (‰) successfully explained respired microbial carbon dioxide over 90 days. We conclude that this method represents an alternative for DOC/HEC quantification and δ13C (‰) analyses.  相似文献   

15.
The minor isotopes of carbon (13C and 14C) are widely used as tracers in studies of the global carbon cycle. We present carbon‐isotope data for the 0–5 cm layer of soil on a transect from 49.6°N to 68°N, from mature forest and tundra ecosystems in the boreal‐arctic zone of interior western Canada. Soil organic carbon in the < 2000 μm fraction of the soil decreases from 3.14 kg m?2 in the south to 1.31 kg m?2 in the north. The 14C activity of the organic carbon decreases as latitude increases from 118.9 to 100.7 per cent modern carbon (pMC). In addition, the 14C activities of organic carbon in the particle‐size fractions of each sample decrease as particle size decreases. These results suggest that organic carbon in the 0–5 cm layer of these soils transfers from standing biomass into the coarsest size fractions of the soil and is then degraded over time, with the residue progressively transferred into the more resistant finer particle sizes. We calculate residence times for the coarsest size fractions of 21 years in the south to 71 years in the north. Residence times for the fine size fractions (< 63 μm) are considerably longer, ranging from 90 years in the south to 960 years in the north. The δ13C of the organic carbon decreases from ?26.8 ± 0.3‰ in soil under forest in the south to ?26.2 ± 0.1‰ for tundra sites in the north. At all sites there is an increase in δ13C with decreasing particle size of 0.7–1.6‰. These changes in δ13C are due to the presence of ‘old’ carbon in equilibrium with an atmosphere richer in 13C, and to the effects of microbial degradation.  相似文献   

16.
While dissolved organic matter (DOM) in soil solution is a small but reactive fraction of soil organic matter, its source and dynamics are unclear. A laboratory incubation experiment was set up with an agricultural topsoil amended with 13C labelled maize straw. The dissolved organic carbon (DOC) concentration in soil solution increased sharply from 25 to 186 mg C L−1 4 h after maize amendment, but rapidly decreased to 42 mg C L−1 and reached control values at and beyond 2 months. About 65% of DOM was straw derived after 4 h, decreasing to 29% after one day and only 1.3% after 240 days. A significant priming effect of the straw on the release of autochthonous DOM was found. The DOM fractionation with DAX-8 resin revealed that 98% of the straw derived DOM was hydrophilic in the initial pulse while this hydrophilic fraction was 20-30% in control samples. This was in line with the specific UV absorbance of the DOM which was significantly lower in the samples amended with maize residues than in the control samples. The δ13C of the respired CO2 matched that of DOC in the first day after amendment but exceeded it in following days. The straw derived C fractions in respired CO2 and in microbial biomass were similar between 57 and 240 days after amendment but were 3-10 fold above those in the DOM. This suggests that the solubilisation of C from the straw is in steady state with the DOM degradation or that part of the straw is directly mineralised without going into solution. This study shows that residue application releases a pulse of hydrophilic DOM that temporarily (<3 days) dominates the soil DOM pool and the degradable C. However, beyond that pulse the majority of DOM is derived from soil organic matter and its isotope signature differs from microbial biomass and respired C, casting doubt that the DOM pool in the soil solution is the major bioaccessible C pool in soil.  相似文献   

17.
The chemical composition of waste-material-derived dissolved organic matter (DOM) was characterized by chemolytic analyses and 1H, 13C and 31P nuclear magnetic resonance (NMR) spectroscopy. Dissolved organic matter was extracted by water from an aerobic fermented urban waste compost, a sewage sludge and a pig slurry and then fractionated using the XAD-8 method. The amount of water-extractable dissolved organic carbon (DOC) ranged from 3% in the sewage sludge to 22% in the pig slurry. Dissolved organic matter isolated from pig slurry was equally distributed between hydrophilic and hydrophobic DOC, whereas in the sewage-sludge-derived material the hydrophobic fraction was predominant. Dissolved organic C from the urban waste compost was mainly within the hydrophilic fraction. Wet-chemical analysis and 1H- and 13C-NMR spectra showed that both DOM fractions from the urban waste compost were low in neutral, acidic and amino sugars as well as in lignin-derived compounds. In turn, the materials were rich in low-molecular-weight aliphatic compounds. The chemical structure of both fractions is probably the result of the intensive transformation of urban waste compost during its fermentation. The hydrophilic fractions of DOM from sewage sludge and pig slurry contained considerable amounts of carbohydrates but were also rich in low-molecular-weight aliphatics. The respective hydrophobic fractions had the largest contents of CuO-extractable phenols which may in part derive from sources other than lignin. By contrast with the other materials, the hydrophobic fraction from the pig slurry seemed to contain polymeric rather than low-molecular-weight material. The 31P-NMR spectrum of the hydrophilic DOM fraction from urban waste compost did not show signals of inorganic or organic P compounds while the spectrum of the hydrophobic fraction revealed traces of monoester P, diester P, and orthophosphate. 31P-NMR spectroscopy suggested that both the hydrophobic and hydrophilic fractions from pig slurry did not contain organic P. The hydrophilic DOM fraction from sewage sludge contained orthophosphate, organic monoester P and a little pyrophosphate. The hydrophobic fraction contained mainly organic diester P and smaller amounts of teichoic acids and organic monoester P. Considering that water-soluble fractions of urban waste compost contained no easily plant-available P and a low content of labile organics, we conclude that this material contains less labile nutrients and is more refractory than the soluble constituents of pig slurry and sewage sludge.  相似文献   

18.
Sterilized soil is often used, for example in degradation studies, sorption experiments, microbiological tests and plant test systems, to distinguish between microbial processes and abiotic reactions. The most commonly used technique for sterilization is autoclaving of the soil. Another technique is irradiation with high‐level gamma radiation (γ‐radiation). One major drawback of sterilization procedures is the possible alteration of the structure of soil components, for example the organic matter. A change in the chemical structure of the soil organic matter can cause different reactions in the above‐mentioned experiments and hence interfere with the aim of clearly distinguishing between biotic and abiotic processes. Two soils (Gleyic Cambisol and Orthic Luvisol) were sterilized by two γ‐irradiation procedures (4 kGy hour?1 for 9 hours and 1.3 kGy hour?1 for 27 hours) and repeated autoclaving at 121°C. Gentle physical aggregate fractionation of the sterilized soils revealed a decrease in the aggregation of the soil, which was reflected in an increase of the clay fraction. Subsequent analysis of the aqueous phase revealed much more dissolved organic matter (DOM) in the γ‐sterilized and autoclaved soils than in the untreated soils. Ultraviolet (UV) and fluorescence spectra of the DOM showed a decrease in the aromaticity and polycondensation of the dissolved organic carbon (DOC). 13C cross‐polarization/magic‐angle spinning nuclear magnetic resonance (13C‐CP/MAS NMR) spectra of the unfractionated soils and their respective soil fractions before and after sterilization showed that the most important change occurred in the carbohydrate and N‐alkyl region, the main components of microorganisms. In general, the impact of the sterilization method was stronger for autoclaving. The γ‐sterilized soils and fractions displayed both fewer and smaller changes in the soil organic matter.  相似文献   

19.
Ageing reactions can reduce trace metal solubility and can explain natural attenuation of contaminated soils. We modelled ageing reactions in soil with an assemblage model that considers slow reactions in Fe‐oxyhydroxides and reversible sorption on organic matter and clay minerals. Metal adsorption kinetics on Fe‐oxyhydroxides was obtained from data with synthetic oxyhydroxides. Metal solubility and isotopic exchangeability data were obtained from 28 soils amended with Ni, Zn, Cu and Cd metal salts and monitored for 850 days. The assemblage model was constructed in WHAM 6.0 and used soil properties and dissolved organic matter as input data. The model was first validated to predict dissolved metal concentrations, based on the concentration of isotopic exchangeable metals. The model overestimated metal solubility without parameter adjustment by mean factors of 4–7, and successful fits were obtained by increasing the specific surface area of Fe‐oxyhydroxides from measured values of synthetic systems to a value of 600 m2 g?1 recommended by other authors. The effect of ageing on the isotopic exchangeable metal fraction was subsequently modelled starting from the predicted fraction of metals present on Fe‐oxyhydroxides immediately after soil spiking. The observed isotopic exchangeable metal fractions of Ni, Zn and Cd agreed reasonably well with predicted values. The model predicts that ageing reactions are more pronounced at higher pH because metal sorption is increasingly directed to oxyhydroxide surfaces with increasing soil pH. Modelling fixation of Cu requires more information on fixation of that metal in organic matter.  相似文献   

20.
Dissolved organic matter (DOM) is important for the cycling and transport of carbon (C) and nitrogen (N) in soil. In temperate forest soils, dissolved organic N (DON) partly escapes mineralization and is mobile, promoting loss of N via leaching. Little information is available comparing DOC and DON dynamics under tropical conditions. Here, mineralization is more rapid, and the demand of the vegetation for nutrients is larger, thus, leaching of DON could be small. We studied concentrations of DOC and DON during the rainy seasons 1998–2001 in precipitation, canopy throughfall, pore water in the mineral soil at 5, 15, 30, and 80 cm depth, and stream water under different land‐use systems representative of the highlands of northern Thailand. In addition, we determined the distribution of organic C (OC) and N (ON) between two operationally defined fractions of DOM. Samples were collected in small water catchments including a cultivated cabbage field, a pine plantation, a secondary forest, and a primary forest. The mean concentrations of DOC and DON in bulk precipitation were 1.7 ± 0.2 and 0.2 ± 0.1 mg L–1, respectively, dominated by the hydrophilic fraction. The throughfall of the three forest sites became enriched up to three times in DOC in the hydrophobic fraction, but not in DON. Maximum concentrations of DOC and DON (7.9–13.9 mg C L–1 and 0.9–1.2 mg N L–1, respectively) were found in samples from lysimeters at 5 cm soil depth. Hydrophobic OC and hydrophilic ON compounds were released from the O layer and the upper mineral soil. Concentrations of OC and ON in mineral‐soil solutions under the cabbage cultivation were elevated when compared with those under the forests. Similar to most temperate soils, the concentrations in the soil solution decreased with soil depth. The reduction of OC with depth was mainly due to the decrease of hydrophobic compounds. The changes in OC indicated the release of hydrophobic compounds poor in N in the forest canopy and the organic layers. These substances were removed from solution during passage through the mineral soil. In contrast, organic N related more to labile microbial‐derived hydrophilic compounds. At least at the cabbage‐cultivation site, mineralization seemed to contribute largely to the decrease of DOC and DON with depth, possibly because of increased microbial activity stimulated by the inorganic‐N fertilization. Similar concentrations and compositions of OC and ON in subsoils and streams draining the forested catchments suggest soil control on stream DOM. The contribution of DON to total dissolved N in those streams ranged between 50% and 73%, underscoring the importance of DOM for the leaching of nutrients from forested areas. In summary, OC and ON showed differences in their dynamics in forest as well as in agricultural ecosystems. This was mainly due to the differing distribution of OC and ON between the more immobile hydrophobic and the more easily degradable hydrophilic fraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号