首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In Ustilago avenae sporidia, following the first doubling period of about 4 h, triadimenol (2 μg ml?1) affected sporidial multiplication more severely than other growth processes; daughter cells failed to separate from the parent sporidia resulting in chains of interconnected cells. Triadimenol incubated with the fungus for 8 h interfered neither with respiration nor with protein and nucleic acid synthesis but after 6 h the toxicant had induced a higher content of free fatty acids. Triadimenol markedly altered, both quantitatively and qualitatively, the sterols in sporidia of U. avenae. Incorporation of [14C]acetate (in the form of sodium acetate) into lipid fractions for a period of 2 h revealed that the toxicant powerfully inhibited the synthesis of the 4-demethyl sterol fraction (predominantly ergosterol), whilst the 4,4-dimethyl sterol fraction rapidly accumulated. This was confirmed by g.1.c. analysis of the sterols after 6 and 8 h incubation which showed that the amount of ergosterol, the major sterol in untreated sporidia, was diminished while simultaneously 4,4-dimethyl, 4-methyl and 14-methyl sterols increased. The accumulation of 14-methyl sterols suggests that triadimenol acts as a potent inhibitor of one of the metabolic steps involved in the demethylation at the 14-position during ergosterol biosynthesis.  相似文献   

2.
Flusilazole is a potent inhibitor of Ustilago maydis sporidial growth (I50= 20 μg liter−1). Incorporation of [14C]acetate into ergosterol of growing sporidia is inhibited 50% by 0.5 μg liter−1of the fungicide. Inhibition of ergosterol biosynthesis is concomitant with the accumulation of the precursors eburicol, obtusifoliol and 14α-methylfecosterol. A novel cell-free assay has been developed to measure the 14α-demethylation of [3H]dihydrolanosterol. Flusilazole inhibits the cell-free demethylation with an I50of 15 μg liter−1. These data provide strong evidence that the mode of action of flusilazole is by inhibiting ergosterol biosynthesis through direct inhibition of the 14α-demethylation of ergosterol precursors.  相似文献   

3.
Germination of sclerotia ofSclerotium rolfsii on agar nutrient medium was delayed or slightly inhibited by concentrations of propiconazole between 0.4 and 4.0 μg ml?1, but was strongly inhibited by 8 μg ml?1 and completely inhibited by 16 μg ml?1. On the other hand, growth of hyphae from the germinated sclerotia was strongly inhibited by propiconazole at 1 μg ml?1 or greater. Hyphal growth from agar discs on agar medium was about 8 times less sensitive than hyphal growth from the sclerotia or from hyphal inoculum in liquid media. Propiconazole at 0.25 and 1.0 μg ml?1 strongly inhibited ergosterol biosynthesis, but this was not associated with large accumulations of C-14 methyl sterols. The ratio of eburicol to ergosterol in hyphae grown in the presence of 0.25 μg ml?1 propiconazole for 16, 30 or 45 h was 0.11, 0.13 and 0.04, respectively, for the three intervals while for hyphae grown in the presence of 1 μg ml?1, the ratios were 0.29, 0.36 and 0.30, respectively, for the same intervals. In view of a ratio of 23.5 for14C-acetate incorporation into the two sterols during the initial 6 h growth period in the presence of propiconazole, it is believed that the lack of large accumulation of C-14 methyl sterols is due to the feedback inhibition by eburicol or to cell lysis when the content of ergosterol becomes too low in the actively growing cells.  相似文献   

4.
Triadimefon [1-(4-chlorophenoxy)-3,3-dimethyl-(1,2,4-triazol-1-yl)-2-butanone], 1.5–2.0 μ/ml, inhibited the multiplication of sporidia of Ustilago avenae more strongly than it did the increase of dry weight. The treated sporidia appeared swollen, multicellular, and branched. At concentrations of 1.5–100 μg of triadimefon/ml, the oxidation of glucose was not affected. Increase in dry weight and synthesis of protein, RNA, and DNA were inhibited slightly, whereas cell division was acutely arrested. After an incubation period of 9.5 hr, microscopic studies revealed that daughter cells of the treated sporidia also contained one nucleus. In sporidia treated for 6 hr with triadimefon, both the total lipid content and its composition of fatty acids were not appreciably altered. The treated cells, however, differed from control cells by a higher content of free fatty acids. Triadimefon markedly interfered in sterol biosynthesis in Ustilago avenae. Gas chromatographic (glc) analysis and [14C]acetate incorporation studies indicated that ergosterol biosynthesis was almost completely inhibited by triadimefon; on the other hand, sterol compounds representing precursors of ergosterol (probably 4,4-dimethyl and C-4-methyl sterols) accumulated in treated sporidia. As the results indicate, the inhibition of conversion of immediate sterol precursors to ergosterol may be regarded as the primary target for the action of triadimefon in Ustilago avenae.  相似文献   

5.
Fluotrimazole [BUE 0620; 1-(3-trifluoromethyltriphenyl) 1,2,4-triazole] (20 μg/ml of nutrient solution) and clotrimazole [Bay b 5097; bisphenyl(2-chlorophenyl)-1-imidazolyl methane] (5 μg/ml) did not inhibit dry weight increase and only slightly reduced multiplication of sporidia of Ustilago avenae during the first doubling period (about 4 hr). After 8 hr, both fluotrimazole and clotrimazole more strongly inhibited sporidia multiplication than dry weight increase. As a consequence of treatment with both fungicides the usually single-celled sporidia appear swollen, multicellular, and branched. Both chemicals at a concentration range of 5–100 μg/ml did not affect oxidation of glucose. The effect of fluotrimazole and clotrimazole on protein, DNA, and RNA synthesis was similar to that on dry weight. Following a 6-hr incubation period total lipid synthesis was quantitatively unaffected by both chemicals. As the analysis of major fatty acids of total lipids revealed fluotrimazole substantially induced the synthesis of 20:4 carbon fatty acids, while in clotrimazole-treated sporidia the pattern of fatty acids did not differ from that of control sporidia. Fluotrimazole and clotrimazole produced a higher quantity of free fatty acids in sporidia of U. avenae. Gas-liquid chromatographic analysis of sterol fractions in treated and control sporidia (6 hr) indicated that both fluotrimazole and clotrimazole seriously inhibited ergosterol biosynthesis and concomitantly caused an accumulation of immediate ergosterol precursors which represent C-4-methyl and 4,4-dimethyl sterols. Incorporation of [14C]acetate for 2 hr into various lipid fractions of sporidia of U. avenae also revealed that radioactivity in C-4-desmethyl sterols in both fluotrimazole- and clotrimazole-treated sporidia was drastically reduced, while the radioactivity of C-4-methyl and 4,4-dimethyl sterols distinctly increased. The data suggest that fluotrimazole and clotrimazole are specific inhibitors of the oxidative demethylation of the C-14-methyl group during ergosterol biosynthesis in U. avenae.  相似文献   

6.
T. KATAN 《EPPO Bulletin》1985,15(3):371-377
Field isolates of Botrytis cinerea with moderate levels of resistance to dicarboximide fungicides (ED50 1.0–4.9 μg ml?1) and to dicloran were obtained from glasshouses where vinclozolin and iprodione failed to control grey mould. From sensitive and moderatcly-resistant cultures, laboratory isolates were selected on dicarboximide-amended medium, which were highly resistant to these fungicides (ED50 125->3000 μg ml?1). Conidia of all the resistant isolates germinated well on media amended with 100 μg ml?1 of the dicarboximides vinclozolin, iprodione, procymidone and myclozolin and with 5 μg ml?1 of metomeclan. However, the spores of the moderately resistant isolates did not germinate on 100 μg ml?1 metomeclan while the spores of the highly resistant isolates germinated well. Using media with 100 μg ml?1 of metomeclan to distinguish between the two phenotypes, no highly resistant strain was detected among 312 resistant samples from five cucumber glasshouses with a high frequency of moderately resistant strains. From air-borne inoculum of five glasshouses with 100% resistant populations, 1604 colonies were recovered on vinclozolin-amended (100 μg ml?1) medium and none on metomeclan-amended (100 μg ml?1) medium. It is concluded that strains of B. cinerea highly resistant to dicarboximides are absent from field populations.  相似文献   

7.
The baseline sensitivity ofFusarium graminearum Schwade [teleomorph =Gibberella zeae (Schweinitz) Petch] to the fungicide JS399-19 (development code no.) [2-cyano-3-amino-3-phenylacrylic acetate] and the assessment of risk to JS399-19 resistancein vitro are presented. The mean EC50 values for JS399-19 inhibiting mycelial growth of three populations of wild-typeF. graminearum isolates were 0.102±0.048, 0.113±0.035 and 0.110±0.036 μg ml−1, respectively. Through UV irradiation and selection for resistance to the fungicide, we obtained a total of 76 resistant mutants derived from five wild-type isolates ofF. graminearum with an average frequency of 1.71 × 10−7% and 3.5%, respectively. These mutants could be divided into three categories of resistant phenotypes with low (LR), moderate (MR) and high (HR) level of resistance, determined by the EC50 values of 1.5–15.0 μg ml−1, 15.1–75.0 μg ml−1 and more than 75.0 μg ml−1, respectively. There was no positive cross-resistance between JS399-19 and fungicides belonging to other chemical classes, such as benzimidazoles, ergosterol biosynthesis inhibitors and strobilurins, suggesting that JS399-19 presumably has a new biochemical mode of action. Although the resistant mutants appeared to have comparable pathogenicity to their wild-type parental isolates, they showed decreased mycelial growth on potato-sucrose-agar plates and decreased sporulation capacity in mung bean broth. Nevertheless, most of the resistant mutants possessed fitness levels comparable to their parents and had MR or HR levels of resistance. As these studies yielded a high frequency of laboratory resistance inF. graminearum, appropriate precautions against resistance development in natural populations should be taken into account. http://www.phytoparasitica.org posting August 7, 2008.  相似文献   

8.
No registered fungicide controls Mucor piriformis, a cause of severe postharvest storage rot in pears, but the experimental fungicide RH 886 (active ingredients: 77% 5-chloro-2-methylisothiazol-3-(2H)-one and 23% 2-methylisothiazol-3-(2H)-one) has an ED50 of 23.1 μg ml?1 in 5 min exposure for germination of sporangiospores of M. piriformis and an ED50 of 9.9 μg ml?1 for mycelial growth. Mixing RH 886 into infested, amended soil at 8 mg g?1 soil or mixing copper sulfate into soil at 1 mg g?1 soil prevented sporulation of M. piriformis. Application of RH 886 to pear fruits prior to inoculation, or immersion of fruits in solutions of RH 886 containing sporangiospores of M. piriformis significantly reduced fruit infection.  相似文献   

9.
Seventeen field isolates of Botrytis cinerea were compared by determining their radial growth on synthetic media containing various amounts of 21 antifungal compounds. Twelve of these compounds were fungicides that are recommended for the control of Botrytis infections. There were marked differences between the isolates in their sensitivity to the compounds. Individual isolates displayed high levels of resistance to some of the fungicides, including benomyl, carbendazim, iprodione, thiabendazole, thiophanate-methyl, vinclozolin and zineb. The most potent growth inhibitors were benomyl and carbendazim (ED95 values for most isolates <0.1 μg fungicide ml?1 media), dichlofluanid, iprodione, nystatin, thiabendazole, thiophanatemethyl and vinclozolin (ED95 values for most isolates < 1.0 μg ml?1), and captan, chlorothalonil, dicloran and thiram (ED95 values for most isolates < 6.0 μg ml?1). Zineb was much less potent than the other recommended anti-Botrytis fungicides; it was no more effective than carboxin, dinocap and mancozeb (ED95 values for most isolates > 25 μg ml?1).  相似文献   

10.
Methods are described for the extraction and analysis by gas-liquid and high-pressure liquid chromatography of the fungicide imazalil, 1-(β-allyloxy-2, 4-dishlorophenethyl) imidazole, on potatoes. Before storage, over 80% was recovered from potatoes treated with 0.01–3.0 mg imazalil kg?1, with a detection limit of 2 μg kg?1. Imazalil applied to potatoes at 10 g t?1 before storage decreased the incidence of gangrene (Phoma exigua), silver scurf (Helminthosporium solani), skin spot (Polyscytalum pustulans) and black scurf (Rhizoctonia solani), and was at least as effective as thiabendazole applied at 40 g t?1. At 1 g t?1 it also decreased skin spot and silver scurf. Incidence of black dot (Colletotrichum coccodes) was unaffected by these fungicide treatments.  相似文献   

11.
Two bioassay methods are described which use detached tobacco leaves to measure the sensitivity of Peronospora tabacina to systemic fungicides. Tobacco leaves (13–15 cm2), treated with fungicides before or after detachment from the plant, were inoculated with sporangia in water drops and, after incubation in beakers and Petri plates, the disease severity and/or production of sporangia was determined 4–7 days after treatment with the fungicides. Of 15 systemic fungicides applied to detached leaves, eight N-phenylamides at 0.066?1.0 μg ml?1 controlled blue mould; metalaxyl was the most effective fungicide. Isolates of P. tabacina, collected in the field from tobacco plants grown in soil treated with metalaxyl, were not resistant to the fungicide applied to detached leaves prior to inoculation. The fungicide, applied to leaves before detachment, was used to measure the efficacy of five systemic N-phenylamide fungicides sprayed on the basal and unsprayed distal portions of the leaves. Blue mould was controlled on the basal portion of the leaf by all the fungicides at 0.66?1.0 μg ml?1, but it required the application of 3–30 times more chemical on the basal portion to achieve comparable blue mould control on the distal part of the leaf.  相似文献   

12.
The effects of atrazine were studied on growth, production of aflatoxin, and fatty acid and sterol biosynthesis by four isolates of Aspergillus in vitro. There was little effect of atrazine on Aspergillus spp. at concentrations up to 20 μg ml?1 but at 40 μg ml?1 or above, growth, production of aflatoxin, and fatty acid and sterol biosynthesis were remarkably reduced. Palmitic, stearic and linoleic acid synthesis were inhibited in three of the isolates tested at 60 μg ml?1. At 100 μg ml?1, except ergosterol, the cholesterol and 5, 7-ergostadienol synthesis was totally inhibited in all isolates. Effet de l'atrazine sur la croissance, la production d'aflatoxine, et la biosynthèse d'acides gras et de stérols par Aspergillus spp. Chez quatre isolats d'Aspergillus, les effets de l'atrazine sur la croissance, la production d'aflatoxine, et la biosynthèse d'acides gras et de stérols ont étéétudiés in vitro. Jusqu'à des concentrations de 20 μg ml?1, l'atrazine n'a eu que peu d'effets, mais à 40 μg ml?1 et au-dessus, la croissance, la production d'aflatoxine, et la biosynthèse d'acides gras et de stérols ont été nettement réduites. Les synthèses d'acides palmitique, stéarique et linoléique ont été inhibées chez trois des isolats, à 60 μg ml?1. A 100 μg ml?1, mis à part l'ergostérol, les synthèses de cholestérol et de 5, 7-ergostanediol ont été totalement inhibées chez tous les isolats. Die Wirkung von Atrazin aufdas Wachslum, die Bildung von Aflatoxin und die Fettsäuren- und Sterol-Biosynthese von Aspergillus spp. Bei vier Isolaten von Aspergillus wurde in vitro die Wirkung auf das Wachstum sowie auf die Bildung von Aflatoxin, Fettsäuren und Sterolen untersucht. Bei Atrazin-Konzentrationen bis zu 20 μg ml?1 war keine Wirkung zu beobachten, aber ab 40 μg ml?1 wurden das Wachstum und die Bildung von Aflatoxin, Fettsäuren und Sterolen deutlich herabgesetzt. Bei 60 μg ml?1 war bei drei Isolaten die Bildung von Palmitin-, Stearin- und Linolensäure gehemmt. Bei 100 μg ml?1 war bei alien Isolaten die Bildung von Cholesterol und 5, 7-Ergostadienol, aber nicht Ergosterol, unterbunden.  相似文献   

13.
A technique is described for testing isolates of Septoria tritici from winter wheat for resistance to benzimidazole fungicides. Secondary spores from 23 isolates were tested on Czapek Dox V-8 agar amended with benomyl at 1–10 μg ml. Twenty-one isolates were recovered from eight crops in England in 1984 and two (PBI isolates) were obtained in 1973. Thirteen isolates, including both PBI isolates, were sensitive to benomyl at 1 μg ml?1 and nine were resistant at 10 μg ml?1. The remaining isolate had a low proportion (1:3.7 x 104) of resistant spores. The minimum inhibitory concentration for sensitive isolates was 0.2–0.4 μg ml 1 benomyl and for resistant isolates was more than 1000 μg ml 1. Benomyl-resistant isolates were cross-resistant to carbendazim, thiabendazole and thiophanate-methyl, but not to 12 other fungicides with different modes of action. The implications of these findings are discussed.  相似文献   

14.
A combined TBZ — iprodione treatment was more effective in inhibiting growthin vitro ofBotrytis cinerea isolates obtained from decayed celery than either of the fungicides applied separately. This was exhibited for both TBZ-resistant and TBZ-sensitive isolates. TBZ at 500 (μg ml-1 plus iprodione at 1000 μg ml-1 reduced celery decay beyond the reduction obtained by each fungicide alone. When applied prior to inoculation, the combined treatment prevented decay by the TBZ-sensitive/iprodione-resistant isolates and reduced initial decay by the TBZ-resistant/iprodione-sensitive isolates to 3–10% of the level without treatment. Under natural infection conditions iprodione showed better decay control than TBZ, and at 1500 μg ml-1 it reduced initial decay during prolonged storage to 3% of the no-treatment level. Although TBZ (500 μg ml-1) or iprodione (1000 μg ml-1) applied separately reduced decay significantly, the combination of lower concentrations of each fungicide was sufficient to eliminate decay development almost totally. The combined treatment also inhibited decay bySclerotinia sclerotiorum, which contributed 3% of the total soft rot in stored celery.  相似文献   

15.
Fenpropimorph was found to be highly active against Penicillium italicum (EC50 0.01/μg ml?1). Conidia of P. italicum, treated with low concentrations of fenpropimorph, swelled in size and showed distorted germ tubes. During the initial stages of mycelial growth, fenpropimorph had little or no effect on the dry weight increase, which became strongly inhibited within 24 h after addition of the toxicant (0.05, 0.1 and 0.2 μg ml?1). Irregular deposition of β–1,3 and β–1, 4 polysaccharides, probably chitin, was observed after treatment with fenpropimorph or imazalil. Fenpropimorph (0.05 and 0.2 μ ml?1) caused the accumulation of a major demethyl-sterol that was different from ergosterol. It was identified as ergosta-8, 14, 24(28)-trien-3β-ol by mass, infrared, ultraviolet and proton nuclear magnetic resonance, spectrometric procedures. At both concentrations, the accumulation was already detected after incubation for 2 h. In contrast, imazalil (0.1 μg ml?1) caused the accumulation of several methyl- and dimethyl-sterols which were tentatively identified as eburicol (24-methylene-24, 25-dihydrolanosterol), 4, 14α-dimethylergosta-8, 24(28)-dien-3-one, 14α-methylergosta-8, 24(28)-dien-3-one and obtusifoliol (4, 14α-dimethylergosta-8, 24(28)-dien-3α-ol). The accumulation of ergosta-8, 14,24(28)-trien-3β-ol indicates inhibition of the Δ14-reductase in P. italicum in a similar manner to that found previously in Ustilago maydis.  相似文献   

16.
The plasmalemma of sporidia of Ustilago avenae has been investigated by means of the freezeetching technique after treatment with the fungicide, triadimenol (5 μg ml?1, 10 and 17 hr). The control samples are characterized in the exponential and stationary growth phases by homogeneous plasmatic fracture (PF) and extraplasmatic fracture (EF) faces with a random intramembrane particle (IMP) distribution. Treatment with triadimenol induces clusters of similar size IMPs in hexagonal arrangement. In between the flat clusters the plasmalemma is significantly deformed, showing hemispherical pits and protrusions on both membrane fracture halves. In the stationary growth phase no hexagonal clustering of the IMPs is observed under the described conditions.  相似文献   

17.
The antibiotic nucleoside tubercidin produced by Streptomyces viola-ceoniger was evaluated for in-vivo efficacy and in-vitro activity against Phytophthora capsici, Magnaporthe grisea and Colletotrichum gloeosporioides. Tubercidin was more effective against P. capsici and M. grisea than against C. gloeosporioides in inhibiting mycelial growth. The bioassay on TLC plates was the most sensitive method and allowed the evaluation of antifungal activity of tubercidin even at a low concentration of 0.1 μgml?1. As compared to the systemic fungicide metalaxyl, tubercidin was similar or somewhat higher in inhibition of mycelial growth of P. capsici. When applied to pepper stems, tubercidin was equally as effective as metalaxyl in the control of phytophthora blight in pepper plants, irrespective of application time and concentration. The treatment with 1000 μg ml?1 tubercidin induced phytotoxicity in pepper plants. No control efficacy of phytophtora blight was observed in pepper plants supplied with a soil drench of tubercidin. Treatment with tubercidin at 500 μg ml?1 completely protected pepper plants at first branch stage from phytophthora blight until four days after application. The control efficacy of tubercidin drastically declined seven days after application.  相似文献   

18.
Fluazifop-butyl applied in lung oil at rates of 4.4 to 0.5 g a.i. kg?1 soybean seeds was evaluated in the glasshouse for control of Eleuisine indica. Soybean seeds pretreated with herbicide at 4.4 to 2.1 g a.i. kg?1 gave 100% control of E. indica at the highest sowing rate of four seeds per pot and 90 to 80% control when sowed at one seed per pot. Soybeans were not injured by the seed treatment. Cotton seeds pre-treated with fluazifop at 2.2 g a.i. kg?1 seeds and sown 4 cm apart in a row across a 20 ± 20cm tray of soil containing seeds of Echinochloa crus-galli produced a weed-free band 12 cm wide centred on the row of cotton, without injury to cotton. CGA-82725 (2-propynyl 2-(4-((3, 5-dichloro-2-pyridinyl)oxy)phenoxy) propanoate) at 2–3 g a.i. kg?1 seeds was as effective as 4–4 g fluazifop-butyl in controlling E. indica. but growth of soybean was retarded. Sethoxydim gave less control than fluazifop butyl at comparable rates and did not injure soybeans.  相似文献   

19.
Triarimol (2 μg/ml) strongly inhibited multiplication of Ustilago maydis sporidia after one doubling, but growth continued and sporidia became abnormally large, branched and multicellular. Oxidation of glucose or acetate was not affected, and only slight limitations occurred in DNA, RNA and protein syntheses. The toxicant did not inhibit triglyceride synthesis but markedly increased the quantity and altered the quality of free fatty acids. Incorporation of [14C]acetate into ergosterol and an unidentified sterol was inhibited more than 90%, but incorporation into two other unidentified sterols was almost unaffected. Inhibition in the sterol biosynthetic pathway at a point preceeding ergosterol is regarded as a primary site of triarimol action in U. maydis.  相似文献   

20.
Imazalil differentially inhibited dry weight increase of 10-hour-old germlings of wild-type and DMI-resistant isolates ofPenicillium italicum in liquid malt cultures. EC50 values ranged from 0.005 to 0.27 μg ml?1. In all isolates ergosterol constituted the major sterol (over 95% of total sterols) in the absence of the fungicide. Therefore, DMI-resistance cannot be associated to a deficiency of the C-14 demethylation enzyme in the ergosterol biosynthetic pathway. Imazalil treatment at concentrations around EC50 values for inhibition of mycelial growth resulted in a decrease in ergosterol content and a simultaneous increase in 24-methylene-24,25-dihydrolanosterol content in all isolates. A correlation existed between the imazalil concentration necessary to induce such changes in sterol composition and the EC50 values for inhibition of mycelial growth of the different isolates. The reason for the differential effects of imazalil on sterol composition in the variousP. italicum isolates may be due to decreased accumulation of the fungicide in the mycelium and to other yet non-identified mechanisms of resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号