首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Rice is the staple food crop for about 50% of the world's population. It is grown mainly under two ecosystems, known as upland and lowland. Lowland rice contributes about 76% of the global rice production. The anaerobic soil environment created by flood irrigation of lowland rice brings several chemical changes in the rice rhizosphere that may influence growth and development and consequently yield. The main changes that occur in flooded or waterlogged rice soils are decreases in oxidation–reduction or redox potential and increases in iron (Fe2+) and manganese (Mn2+) concentrations because of the reductions of Fe3+ to Fe2+ and Mn4+ to Mn2+. The pH of acidic soils increased and alkaline soils decreased because of flooding. Other results are the reduction of nitrate (NO3 ?) and nitrogen dioxide (NO2 ?) to dinitrogen (N2) and nitrous oxide (N2O); reduction of sulfate (SO4 2?) to sulfide (S2?); reduction of carbon dioxide (CO2) to methane (CH4); improvement in the concentration and availability of phosphorus (P), calcium (Ca), magnesium (Mg), Fe, Mn, molybdenum (Mo), and silicon (Si); and decrease in concentration and availability of zinc (Zn), copper (Cu), and sulfur (S). Uptake of nitrogen (N) may increase if properly managed or applied in the reduced soil layer. The chemical changes occur because of physical reactions between the soil and water and also because of biological activities of anaerobic microorganisms. The magnitude of these chemical changes is determined by soil type, soil organic-matter content, soil fertility, cultivars, and microbial activities. The exclusion of oxygen (O2) from the flooded soils is accompanied by an increase of other gases (CO2, CH4, and H2), produced largely through processes of microbial respiration. The knowledge of the chemistry of lowland rice soils is important for fertility management and maximizing rice yield. This review discusses physical, biological, and chemical changes in flooded or lowland rice soils.  相似文献   

2.
Lowland rice is a staple food for more than 50% world population. Iron toxicity is one of the main nutritional disorders, which limits yield of lowland rice in various parts of the world. The toxicity of iron is associated with reduced soil condition of submerged or flooded soils, which increases concentration and uptake of iron (Fe2 +). Higher concentration of Fe2 + in the rhizosphere also has antagonistic effects on the uptake of many essential nutrients and consequently yields reduction. In addition to reduced condition, increase in concentration of Fe2 + in submerged soils of lowland rice is associated with iron content of parent material, oxidation-reduction potential, soil pH, ionic concentration, fertility level, and lowland rice genotypes. Oxidation-reduction potential of highly reduced soil is in the range of –100 to –300 mV. Iron toxicity has been observed in flooded soils with a pH below 5.8 when aerobic and pH below 6.5 when anaerobic. Visual toxicity symptoms on plants, soil and plant tissue test are major diagnostic techniques for identifying iron toxicity. Appropriate management practices like liming acid soils, improving soil fertility, soil drainage at certain growth stage of crop, use of manganese as antagonistic element in the uptake of Fe2 + and planting Fe2 + resistant rice cultivars can reduce problem of iron toxicity.  相似文献   

3.
Abstract

Interrelations between soil pH and exchangeable sodium percentage (ESP) were examined using soils from the Burdekin River area in tropical Queensland. Highly significant correlations were found but the goodness of fit differed between groups of soil profile classes. In general, Typic Natrustalfs of the flood plains had better relationships (r2 = 0.85) between these soil properties than did the Chromusterts (r2 = 0.50). The regression ESP = 1.935 × 10‐5 pH6.205 (r2 = 0.61; n= 288) for all soils and depths underestimated ESP in Typic Natrustalfs groupings and overestimated this soil property in the Chromusterts.

By using the appropriate regression, pH levels associated with non‐sodic, sodic and strongly sodic horizons have been defined. Either laboratory or field determined estimates of pH may be used but the laboratory determined value is preferred. It is expected the predictive models will remain valid until soil ESP or pH levels are significantly modified as a consequence of agricultural development.  相似文献   

4.
The effectiveness of plantation wastes along with locally available organic materials in ameliorating acidic soil was studied by conducting an experiment with coconut husk, poultry manure, vermicompost, and compared with limestone. Application of organic amendments significantly increased the soil pH, and it was greatest in poultry manure–amended soils followed by vermicompost and coconut husk + poultry manure treatments. The relative liming efficiency was greatest for poultry manure through out the observation period of 180 days. The coconut husk alone showed the least liming effect and its liming efficiency had increased when applied in combination with poultry manure and or vermicompost. This increase in soil pH was mirrored by significant reductions in exchange acidity, exchangeable aluminum (Al3+), diethylenetriaminepentaacetic acid (DTPA)–extractable iron (Fe2+), and manganese (Mn2+) and increases in cation exchange capacity, exchangeable bases, especially calcium (Ca), and Olsen-extractable phosphorus (P) by addition of organic amendments and lime. This study indicated the potential of using coconut husk along with poultry manure for managing acidic soils in low-input agricultural systems, especially in tropical islands.  相似文献   

5.
G. Brümmer 《Geoderma》1974,12(3):207-222
Results of laboratory experiments with soil material saturated with sea water indicate that, as predicted by thermodynamics, manganese (III, IV)-oxides are first reduced to Mn2+-ions (beginning at about +450 mV at pH 6.1.; E7 ≈ +400 mV), next amorphous iron (III)-oxides are reduced to Fe2+-ions (beginning at about +220 mV at pH 6.0; E7 ≈ +160 mV), and finally sulphates are reduced to sulphides (beginning at about +10 mV at pH 6.0; E7 ≈ -50 mV). Direct quantitative relations between redox potentials, pH-values and Mn2+- (or Fe2+-) contents of water-saturated soils and sediments and calculated redox reactions of known manganese and iron systems could not be established.The influence of organic redox systems produced by microbial fermentation processes on the measured potentials and on the reduction of manganese and iron oxides is discussed.A reduction of the oxides by microbially formed sulphides, which themselves are oxidized by this process, seems also to be possible. Therefore, sulphides do not occur as stable sulphur phase in higher amounts before all available Fe-oxides are reduced to Fe2+-ions. Then formation of iron monosulphides takes place by precipitation of Fe2+- ions by sulphides (H2S, HS). In a sulphide-stabilized environment redox reactions of sulphur — especially the reaction H2Saq = S0 + 2 H+ + 2 e? — may determined the measured potentials.The results show that the dynamics and morphology of hydromorphic soils and sediments are strongly dependent on microbial processes.  相似文献   

6.
Accumulation of excess sodium (Na+) in a soil causes numerous adverse phenomena, such as changes in exchangeable and soil solution ions and soil pH, destabilization of soil structure, deterioration of soil hydraulic properties, and increased susceptibility to crusting, runoff, erosion and aeration, and osmotic and specific ion effects on plants. In addition, serious imbalances in plant nutrition usually occur in sodic soils, which may range from deficiencies of several nutrients to high levels of Na+. The structural changes and nutrient constraints in such soils ultimately affect crop growth and yield. The principal factor that determines the extent of adverse effects of Na+ on soil properties is the accompanying electrolyte concentration in the soil solution, with low concentration promoting the deleterious effects of exchangeable Na+ even at exchangeable sodium percentage (ESP) levels less than 5. Consequent to an increase in the use of poor quality waters and soils for crop production, the problems of sodic soils can be expected to increase in future. The mechanisms that explain sodic behaviour can provide a framework in which slaking, swelling and dispersion of clay together with nutrient constraints in sodic soils may be assessed so that the practices to manage such soils can be refined for long‐term sustainable agriculture. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

7.
LI Fa-Hu  R. KEREN 《土壤圈》2009,19(4):465-475
A laboratory lysimeter experiment was conducted to investigate the effects of forage corn (Zea mays L.) stalk application on the CO2 concentration in soil air and calcareous sodic soil reclamation. The experimental treatments tested were soil exchangeable sodium percentage (ESP) levels of 1, 11, and 19, added corn stalk contents of 0 to 36 g kg-1, and incubation durations of 30 and 60 days. The experimental results indicated that corn stalk application and incubation significantly increased CO2 partial pressure in soil profile and lowered pH value in soil solution, subsequently increased native CaCO3 mineral dissolution and electrolyte concentration of soil solution, and finally significantly contributed to reduction on soil sodicity level. The reclamation effciency of calcareous sodic soils increased with the added corn stalk. When corn stalks were added at the rates of 22 and 34 g kg-1 into the soil with initial ESP of 19, its ESP value was decreased by 56% and 78%, respectively, after incubation of 60 days and the leaching of 6.5 pore volumes (about 48 L of percolation water) with distilled water. Therefore, crop stalk application and incubation could be used as a choice to reclaim moderate calcareous sodic soils or as a supplement of phytoremediation to improve reclamation effciency.  相似文献   

8.
Subtropical recent alluvial soils are low in organic carbon (C). Thus, increasing organic C is a major challenge to sustain soil fertility. Biochar amendment could be an option as biochar is a C-rich pyrolyzed material, which is slowly decomposed in soil. We investigated C mineralization (CO2-C evolution) in two types of soils (recent and old alluvial soils) amended with two feedstocks (sugarcane bagasse and rice husk) (1%, weight/weight), as well as their biochars and aged biochars under a controlled environment (25 ±2 ℃) over 85 d. For the recent alluvial soil (charland soil), the highest absolute cumulative CO2-C evolution was observed in the sugarcane bagasse treatment (1 140 mg CO2-C kg-1 soil) followed by the rice husk treatment (1 090 mg CO2-C kg-1 soil); the lowest amount (150 mg CO2-C kg-1 soil) was observed in the aged rice husk biochar treatment. Similarly, for the old alluvial soil (farmland soil), the highest absolute cumulative CO2-C evolution (1 290 mg CO2-C kg-1 soil) was observed in the sugarcane bagasse treatment and then in the rice husk treatment (1 270 mg CO2-C kg-1 soil); the lowest amount (200 mg CO2-C kg-1 soil) was in the aged rice husk biochar treatment. Aged sugarcane bagasse and rice husk biochar treatments reduced absolute cumulative CO2-C evolution by 10% and 36%, respectively, compared with unamended recent alluvial soil, and by 10% and 18%, respectively, compared with unamended old alluvial soil. Both absolute and normalized C mineralization were similar between the sugarcane bagasse and rice husk treatments, between the biochar treatments, and between the aged biochar treatments. In both soils, the feedstock treatments resulted in the highest cumulative CO2-C evolution, followed by the biochar treatments and then the aged biochar treatments. The absolute and normalized CO2-C evolution and the mineralization rate constant of the stable C pool (Ks) were lower in the recent alluvial soil compared with those in the old alluvial soil. The biochars and aged biochars had a negative priming effect in both soils, but the effect was more prominent in the recent alluvial soil. These results would have good implications for improving organic matter content in organic C-poor alluvial soils.  相似文献   

9.
Anaerobic reoxidation of reduced products in paddy soils was investigated. Ferrous iron (Fe2+) and monosulfide ion (S2–) added to the soil chemically reduced MnO2 to Mn2+, and MnO2 and Fe(OH)3 to Mn2+ and Fe2+, respectively, where Fe2+ and S2– were considered to be oxidized to Fe3+ and S0. Elemental sulfur was oxidized to sulfate by anaerobic incubation with NO3 MnO2 and Fe(OH)3. A new conceptual model for the reduction processes in submerged paddy soil including the reoxidation processes of reduced products, in which soil heterogeneity in paddy fields was taken into consideration, was proposed based on the results. Received: 20 October 1996  相似文献   

10.
ABSTRACT

Soil degradation due to salinization and sodication is the paramount threat in Indo-Gangetic plains. The studies on reclamation and management of such soils can provide a pragmatic solution for improving fertility and productivity of these soils. Lack of organic matter and poor availability of nutrients are the major factors for low productivity of sodic soils. Rice-wheat is a major cropping system in Indo-Gangetic alluvial plain region even in reclaimed sodic soils and farmers used inorganic fertilizers only to get higher yields. In this study, we used different organic sources of amendments in conjunction with different nitrogen (N) doses supplied through inorganic fertilizers to investigate the combined effect of organic and inorganic amendments on soil fertility and the productivity of rice- wheat system in sodic soils. Salt tolerant varieties of rice and wheat were grown in sodic soil (pH: 9.30, EC: 1.12 dSm?1 and exchangeable sodium percentage, ESP: 52) during 2014–15 to 2016–17 in a field experiment with 13 treatment combinations of organic and inorganic amendments (T1- (control) 100% of recommended dose of N (RDN), T2-municipal solid waste compost (MSWC) @10 t ha?1 + 50%RDN, T3- MSWC @10 t ha?1 + 75% RDN,T4- MSWC @10 t ha?1 + 100%RDN, T5-Vermicompost (VC) @10 t ha?1 + 50% RDN, T6- VC @10 t ha?1 + 75% RDN, T7-VC@10 t ha?1 + 100% RDN, T8- Farm yard manure (FYM) @ 10 t ha?1 + 50% RDN,T9- FYM@10 t ha?1 + 75%RDN, T10- FYM@10 t ha?1 + 100% RDN, T11-Pressmud (PM) @10 t ha?1 + 50% RDN, T12-PM@10 t ha?1 + 75%RDN, and T13- PM @ 10 t ha?1 + 100% RDN). Use of organic amendments supplemented with reduced dose of N through inorganic fertilizer has significantly improved soil bio-physical and chemical properties. Application of VC@10 t ha?1 + 100% RDN (T7) decreased soil bulk density, pH, EC, ESP and Na content to 2.0, 4.2, 26.5, 42.8, and 56.6% respectively and increased soil organic carbon by 34.6% over control (T1). Soil fertility in terms of available N, P, K, Ca, and Mg increased by 20.5, 33.0, 36.4, and 44%, respectively, over control (T1). Soil microbial biomass carbon, nitrogen, and phosphorus also improved significantly due to combined use of organic amendments and inorganic fertilizers over the only use of inorganic fertilizers. Decreasing in soil sodicity and increasing soil fertility showed significant increase (P < 0.05) in crop growth, growth indices, and grain yields of rice and wheat. The study revealed that combined use of VC or MSW compost @10 t ha?1 in conjunction with 75% RDN through inorganic fertilizers in sodic soils proved sustainable technology for restoration of degraded sodic soils and improving crop productivity.  相似文献   

11.
Abstract. Sodic and saline–sodic soils are characterized by the occurrence of sodium (Na+) at levels that result in poor physical properties and fertility problems, adversely affecting the growth and yield of most crops. These soils can be brought back to a highly productive state by providing a soluble source of calcium (Ca2+) to replace excess Na+ on the cation exchange complex. Many sodic and saline–sodic soils contain inherent or precipitated sources of Ca2+, typically calcite (CaCO3), at varying depths within the profile. Unlike other Ca2+ sources used in the amelioration of sodic and saline‐sodic soils, calcite is not sufficiently soluble to effect the displacement of Na+ from the cation exchange complex. In recent years, phytoremediation has shown promise for the amelioration of calcareous sodic and saline–sodic soils. It also provides financial or other benefits to the farmer from the crops grown during the amelioration process. In contrast to phytoremediation of soils contaminated by heavy metals, phytoremediation of sodic and saline–sodic soils is achieved by the ability of plant roots to increase the dissolution rate of calcite, resulting in enhanced levels of Ca2+ in soil solution to replace Na+ from the cation exchange complex. Research has shown that this process is driven by the partial pressure of CO2 (PCO2) within the root zone, the generation of protons (H+) released by roots of certain plant species, and to a much smaller extent the enhanced Na+ uptake by plants and its subsequent removal from the field at harvest. Enhanced levels of PCO2 and H+ assist in increasing the dissolution rate of calcite. This results in the added benefit of improved physical properties within the root zone, enhancing the hydraulic conductivity and allowing the leaching of Na+ below the effective rooting depth. This review explores these driving forces and evaluates their relative contribution to the phytoremediation process. This will assist researchers and farm advisors in choosing appropriate crops and management practices to achieve maximum benefit during the amelioration process.  相似文献   

12.
Reforestation of saline sodic soil is increasingly undertaken as a means of reclaiming otherwise unproductive agricultural land. Currently, restoration of degraded land is limited to species with high tolerances of salinity. Biochar application has the potential to improve physical, biological and chemical properties of these soils to allow establishment of a wider range of plants. In a glasshouse trial, we applied biochar made from Acacia pycnantha (5 Mg ha−1) or no biochar to either a low (ECe 4·75 dS m−1, ESP 6·9), a moderate (ECe 27·6 dS m−1, ESP 29·3) or a high (ECe 49·4 dS m−1, ESP 45·1) saline sodic soil. The regional common reforestation species Eucalyptus viminalis and Acacia mearnsii were planted as tubestock in to the soils. Early establishment indicators, including growth, plant condition and nutrition, were assessed at the end of a simulated growing season, 108 days after biochar application. Application of biochar increased height, and decreased root : shoot and the concentration of Mn, N and S in plants of E. viminalis when grown in the highly saline sodic soil. Biochar application increased the concentration of B in leaves of E. viminalis and increased the concentration of P, K and S in leaves of A. mearnsii when grown in the low saline sodic soil. The results confirm that there is potential for biochar to assist in reforestation of saline sodic soils. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
ABSTRACT

In arid/semi-arid regions, soil salinization, sodification and contamination by heavy metals (HMs) are the main constrains to plant growth, crop production and human health. Biochar can affect soil behaviors, e.g. adsorption of HMs that is one of the most effective techniques for reducing their bioavailability. Effect of three levels (0%, 2% and 4% wt) of sugarcane bagasse-derived biochar and two cadmium (Cd) levels (0 and 50 mg Cd kg?1 soil as Cd(NO3)2) on Cd adsorption of saline, sodic, saline-sodic and normal soils were evaluated through studying adsorption isotherms. Six isotherm models were fitted to the data and the best model were chosen. The maximum Cd adsorption (694 mg kg?1) obtained in sodic soils without biochar treatment. Cadmium removal decreased when dosage of the applied biochar increased. The minimum Cd removal obtained as 17%, 21%, and 23% in control, 2% and 4% biochar-treated saline soils, respectively. Biochar increased Cd adsorption in salt-affected soils. Increasing pH in soil solution after biochar addition resulted in an increase in net negative surface charge and the affinity of soil particles for Cd adsorption. Consequently, 2% biochar could ameliorate Cd contamination. However, Cd adsorption decreased when dosage of the applied biochar increased from 2% to 4%.  相似文献   

14.
The study was carried out in sodic lands of Sultanpur District, Uttar Pradesh, India. The barren soils and the soils supporting 3‐, 6‐ and 9‐year‐old plantations of Prosopis juliflora (Swartz) D.C. and Dalbergia sissoo Roxb. Ex. D.C. plantations were examined to assess the rate and extent of changes undergone by physical and chemical properties of the soil. The study brought out that these species indicated the process of soil rehabilitation from the early stages of growth and the extent of rehabilitation increased with the age of the plantation. P. juliflora was found to be more efficient in reclaiming the soil in comparison to D. sissoo. The decline in soil pH and exchangeable sodium percentage (ESP) indicates the desodification and enrichment with organic C, N, P and K indicates improvement in nutrient status of the soil. After 9 years of planting the surface soil was completely desodified as indicated by pH (<8ċ5), ESP (<15) and sodium adsorption ration (<15). A significant increase in organic C, exchangeable Ca2+ and Mg2+ and decrease in exchangeable Na+ reveals that the nutrient status is attaining suitable balance. The physical attributes of the soil also underwent improvement in terms of increase in porosity, water‐holding capacity, field capacity and decline in bulk density. The flocculation of dispersed soil surface and improvement in soil structure was indicated by increased infiltration rate (cm h−1) and soil permeability (cm2). Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

15.
With a world‐wide occurrence on about 560 million hectares, sodic soils are characterized by the occurrence of excess sodium (Na+) to levels that can adversely affect crop growth and yield. Amelioration of such soils needs a source of calcium (Ca2+) to replace excess Na+ from the cation exchange sites. In addition, adequate levels of Ca2+ in ameliorated soils play a vital role in improving the structural and functional integrity of plant cell walls and membranes. As a low‐cost and environmentally feasible strategy, phytoremediation of sodic soils — a plant‐based amelioration — has gained increasing interest among scientists and farmers in recent years. Enhanced CO2 partial pressure (PCO2) in the root zone is considered as the principal mechanism contributing to phytoremediation of sodic soils. Aqueous CO2 produces protons (H+) and bicarbonate (HCO3). In a subsequent reaction, H+ reacts with native soil calcite (CaCO3) to provide Ca2+ for Na+ Ca2+ exchange at the cation exchange sites. Another source of H+ may occur in such soils if cropped with N2‐fixing plant species because plants capable of fixing N2 release H+ in the root zone. In a lysimeter experiment on a calcareous sodic soil (pHs = 7.4, electrical conductivity of soil saturated paste extract (ECe) = 3.1 dS m‐1, sodium adsorption ratio (SAR) = 28.4, exchangeable sodium percentage (ESP) = 27.6, CaCO3 = 50 g kg‐1), we investigated the phytoremediation ability of alfalfa (Medicago sativa L.). There were two cropped treatments: Alfalfa relying on N2 fixation and alfalfa receiving NH4NO3 as mineral N source, respectively. Other treatments were non‐cropped, including a control (without an amendment or crop), and soil application of gypsum or sulfuric acid. After two months of cropping, all lysimeters were leached by maintaining a water content at 130% waterholding capacity of the soil after every 24±1 h. The treatment efficiency for Na+ removal in drainage water was in the order: sulfuric acid > gypsum = N2‐fixing alfalfa > NH4NO3‐fed alfalfa > control. Both the alfalfa treatments produced statistically similar root and shoot biomass. We attribute better Na+ removal by the N2‐fixing alfalfa treatment to an additional source of H+ in the rhizosphere, which helped to dissolve additional CaCO3 and soil sodicity amelioration.  相似文献   

16.
稻壳基生物炭对生菜Cd吸收及土壤养分的影响   总被引:14,自引:1,他引:14  
探讨稻壳基生物炭对Cd污染土壤上叶菜吸收Cd和土壤Cd形态的影响作用,明确稻壳基生物炭对土壤Cd污染的调控效应,可为合理利用稻壳基生物炭降低叶菜Cd含量提供参考。采用盆栽试验,研究了稻壳基生物炭在不同用量水平下对2茬生菜地上部Cd含量、土壤养分含量及Cd赋存形态的影响。结果表明,在5~25 g-kg-1用量范围内,稻壳基生物炭显著降低了2茬生菜地上部和根系Cd含量,且在最大用量25 g-kg-1时效果最好,地上部Cd含量分别比未施稻壳基生物炭的对照处理降低了19.6%和45.8%,根系Cd含量分别降低了36.8%和28.0%。在25 g-kg-1用量水平下,稻壳基生物炭对土壤p H、有效磷、速效钾及有机质含量提升效果明显,但显著降低了土壤碱解氮含量。施加稻壳基生物炭对土壤有效态Cd含量及Cd化学形态也有不同影响。随着稻壳基生物炭用量的增加,土壤NH4OAc提取态Cd含量和弱酸提取态Cd含量显著降低,在用量为25 g-kg-1时,分别比对照降低17.9%和10.4%,可还原态Cd含量无显著变化,可氧化态Cd含量呈减低趋势,残渣态Cd含量增加17.6%。因此推测,提升土壤p H、降低土壤有效态Cd含量、增加残渣态Cd含量可能是稻壳基生物炭降低生菜体内Cd含量的主要原因。稻壳基生物炭可以作为土壤改良剂,抑制Cd污染土壤上叶菜对Cd的吸收,改善土壤养分状况。  相似文献   

17.
Equations are developed to predict the distribution of Fe2+ between solid and solution phases in a reduced soil undergoing oxidation at different pHs, based on cation-exchange equilibria and electrical neutrality in the solid and solution. The equations satisfactorily explained experimental results. They are incorporated in the model of Fe2+ diffusion and oxidation developed in Part II, and the model is also extended to allow for O2 consumption in processes other than Fe2+ oxidation. The resultant predictions are tested against measured profiles of Fe(II), Fe(III) and pH in cylinders of reduced soil exposed to O2 at one end. When oxidation rate constants measured in stirred soil suspensions were used to run the model, the predicted rates of O2 consumption were too great and the spread of the oxidation front too small. Satisfactory agreement was achieved for oxidation rate constant values about one-eighth of those measured in the stirred suspensions. The findings are consistent with the rate of Fe2+ oxidation in soil being controlled by access of O2 to Fe2+ sorption sites, as suggested in Part I. The revised model allows a study of the effects of Fe2+ oxidation on the mobility of other cations in reduced soils, e.g. nutrient cations in the rice rhizosphere. Fez+ oxidation and the accompanying acidification may greatly impede cation mobility in reduced soils.  相似文献   

18.
Abstract

Beets were grown on soils with various exchangeable sodium percentages (ESP). A saline non-sodic soil (SA, ESP = 3.2), a saline sodic soil (SO, ESP = 23), and a saline high sodic soil (HSO, ESP = 78) were prepared from Tottori sand dune soil (CO). K-type and Ca-type artificial zeolites (50 g kg?1) were applied to these soils in order to evaluate their effects on the chemical properties of saturation extracts of the soils, water deficit, cation uptake and transport, and cation balance of beet plants. In the zeolite-free treatments, beet growth was accelerated in SA and SO, but was suppressed in HSO compared with CO. The addition of both types of zeolites ameliorated plant growth in all the soils studied, especially HSO. The relative dry weight of the soils treated by the K-type zeolite to the zeolitefree soil was 189% for CO, 125% for SA, 130% for SO, and 222% for HSO. For the soils treated with the Ca-type zeolite, the values were 169, 116, 132, and 341%, respectively. In SA, SO, and HSO, the addition of the K-type zeolite increased the K uptake due to the increase of the K concentration of saturation extracts of soils. The addition of the Ca-type zeolite increased the Ca uptake due to the increase in the Ca concentration of the saturation extracts of soils which was accompanied by an increase in the K uptake. The increase in the uptake of K or Ca and decreased in the transport of Na by the addition of both types of zeolites improved the cation balance of the plants. The Ca-type zeolite did not increase the water deficit even though it increased the electric conductivity in all the soils. The results indicated that both types of artificial zeolites were able to improve the growth performance of beets in saline and sodic soils and that the K-type zeolite could be used as a K-fertilizer as well.  相似文献   

19.
The changes of Eh and pH in soil suspension (Ah-horizon of a Mollic Gleysol) and Mn2+ or Fe2+ concentrations in the equilibrium soil solution at different levels of glucose (0%, 0.5% and 1%) and MnO2 (0%, 0.025%, 0.05% and 0.1%) or Fe2O3 (0%, 0.025%, 0.05% and 0.1%) were examined. It was found that the degree of Mn- and Fe-reduction in soil depends mainly on the presence and the amount of an easily decomposable carbon source and to a minor degree on the content of native or added forms of MnOO2 or Fe2O3 in the soil. Theoretical relationships between the water soluble manganese and iron and the Eh and pH values have been verified, when the observed initial drop of Eh was eliminated. It was found that the water soluble manganese content was described best by the Mn2O3/Mn2+ redox system, and that of iron by the Fe3 (OH)3/Fe2+ system.  相似文献   

20.
磷肥肥粒对周围微域土壤pH的影响   总被引:1,自引:0,他引:1  
曹志洪  李庆逵 《土壤学报》1987,24(3):226-231
本文报告了常用的三种国产磷肥的饱和溶液的性质、组成及其施入土壤后对肥粒周围微域土壤pH的影响。普钙饱和溶液是强酸性的,pH为2.5左右,施入土壤后降低了所有供试土壤之微域pH值。钙镁磷肥饱和溶液则是强碱性的,pH为9.7左右,施入土壤后提高了所有供试土壤的微域pH值。而磷铵肥料的饱和溶液是中性的,pH为7.5左右,施入土壤后使黄土性土壤的微域pH下降但使中性水稻土和酸性红壤的微域pH上升。无论何种磷肥、何种土壤,其施肥前后微域pH变化值(△pH)之大小与土壤质地、缓冲性能及原来土壤pH值的高低有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号