首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
大豆高油相关QTL分子标记辅助选择研究   总被引:2,自引:1,他引:1  
选用高产大豆品系哈交5448-4和高油大豆品种黑农45为亲本杂交获得F2分离群体,进行大豆高油基因SSR分子标记.共筛选覆盖大豆全基因组的325对SSR引物,利用筛选出的63对在亲本间具有多态性的SSR引物对F2分离群体的120个单株进行SSR扩增,经电泳检测后,所得数据用于作图和定位分析.定位到高油QTL 1个,与satt160连锁,遗传距离为26.0cM,贡献率为23.20%,位于大豆公共遗传图谱的F连锁群.利用该引物在24份大豆材料中进行高油材料检测和筛选,在15份高油材料中筛选到11份,检出率达到73.33%.结果说明satt160具有一定的检测通用性,可以利用它对高油大豆材料进行分子标记辅助选择.  相似文献   

2.
图谱整合是弥补单个作图群体因分子标记多态性的局限性而难以构建高密度图谱的有效方法.利用具明显农艺性状差异的大豆品种间杂交组合(科丰1号×南农1138-2、南农87-23×NG94-156、苏88-M21×新沂小黑豆和皖82-178×通山薄皮黄豆甲)所衍生的重组自交系群体分别构建了含有560,223,195,133个分子标记的遗传连锁图谱.以各图谱共有SSR标记作为锚定标记,使用JoinMap3.0进行图谱整合,得到一张包含20个连锁群,795个分子标记,总遗传距离2 772.9 cM,平均间距3.49 cM的整合图谱.各连锁群的标记个数在24~69之间,遗传距离在77.1~224.7 cM之间.与Song等的公共图谱比较,标记在连锁群上的分布和位置高度吻合,并增加了5个公共图谱上没有的SSR标记,另有6个SSR标记定位在不同的连锁群上.通过整合图谱可将关联分析所获基因/QTL定位到连锁群区间;便于不同群体定位结果间的比较;并找寻与之连锁更紧密的邻近标记.鉴于本图谱所用作图群体的亲本与国内育种常用材料的遗传来源相近,将更便于国内育种性状的QTL定位研究.  相似文献   

3.
大豆高蛋白基因分子标记及其在大豆育种中的应用   总被引:2,自引:0,他引:2  
选用高蛋白大豆黑农35和高油大豆黑农45作为亲本杂交获得F2分离群体,进行大豆高蛋白基因SSR分子标记。共筛选覆盖大豆全基因组的251对SSR引物,其中40对SSR引物在亲本间具有多态性,用这40对SSR引物分别对F2分离群体进行扩增,用Mapmaker Exp3.0和Mapmaker QTL1.1软件进行作图和定位分析。定位得到高蛋白QTL 1个,与satt532连锁,遗传距离为0.2cM,贡献率为32.7%,位于大豆公共遗传图谱的D1a+Q连锁群。利用该引物在不同大豆材料中进行高蛋白材料检测和筛选,在56份高蛋白材料中筛选到47份,检出率达到83.93%。说明引物satt532具有一定的检测通用性,可以利用它筛选高蛋白大豆材料。  相似文献   

4.
豆卷叶螟是南京地区的主要食叶性害虫。以抗性亲本溧水中子黄豆和感性亲本南农493-1杂交组合正交F2群体为材料,在田间自然虫源条件下F2单株叶片损失率为抗性指标,利用已构建的SSR分子标记图谱和Windows QTL Cartographer V2.5软件包的复合区间作图法和多区间作图法,定位大豆对豆卷叶螟抗性的QTL。结果表明:利用复合区间作图法检测到位于D1b和K连锁群上的2个QTL;利用多区间作图法则检测到位于A2、D1b、K和N连锁群上的4个QTL和6个互作QTL;其中有两个共同的QTL,至少解释表型变异的19.2%。这些结果为抗性性状的遗传剖析和标记辅助育种提供理论依据。  相似文献   

5.
为了给后期冰草抗旱耐寒基因筛选及QTL图位克隆搭建平台,并为产量及相关性状QTL定位和分子标记辅助育种奠定基础,以航道冰草和蒙古冰草为亲本,杂交加倍后随机选取180个F2分离单株为作图群体,利用SRAP和SSR分子标记进行四倍体杂交冰草遗传连锁图谱的构建。结果表明,构建的图谱包含475个标记(240个SRAP标记和235个SSR标记),分布于14个连锁群,图谱全长为1 592.7 cM,标记间平均间距为3.35 cM,各连锁群长度范围为67.6~145.2 cM。该图谱密度较高、标记位点分布均匀且连锁群更加饱满。  相似文献   

6.
大豆遗传图谱的构建和含油量的QTL分析   总被引:5,自引:1,他引:4  
以大豆重组自交系soy01群体中的255个家系为作图群体,利用225个分子标记和2个形态标记构建了一张包含27个连锁群的大豆遗传连锁图谱,总遗传距离1315.46cM,平均标记间距5.79cM。在构建遗传图谱的基础上,采用复合区间作图法,检测到10个与含油量相关的QTL。这些QTL分别位于大豆遗传图谱的A2、C2、D1b、M和N连锁群,解释的遗传变异范围为4.0%~12.2%。这些QTL中,4个与soybase数据库中的QTL有可能是相同的位点,2个可能是新的位点,其余4个是否是新的位点还有待进一步验证。亲本中豆29和中豆32中均有增效基因分布,通过遗传重组可以提高大豆含油量。  相似文献   

7.
对不同环境条件下大豆脂肪酸主要组分进行QTL定位,为大豆脂肪酸分子标记辅助育种提供理论依据。以中黄13×东山69回交导入系群体BC2F2的100个家系为材料,分析回交群体的SSR标记多态性,结合气相色谱技术测定脂肪酸主要组分含量。构建了一张包含130个SSR标记的大豆遗传连锁图谱,图谱总长2433.29cM,包含19个连锁群,标记间平均遗传距离为18.86cM。共检测到与5种脂肪酸含量相关的QTL47个,其中有21个QTL被重复检测到;QTLqFA-C2-4、qFA-D1b-1、qSA-J-1和qFA-O-1连续3年均被检测到。其中QTLqFA-C2-4检测到与亚麻酸相关,QTLqFA-D1b-1和qSA-J-1均与硬脂酸相关,而QTLqFA-O-1同时检测到与油酸和亚油酸相关。QTLqFA-C2-4、qFA-D1b-1、qSA-J-1和qFA-O-1是本研究中新发现的QTL。此外,QTLqFA-D1a-1和qFA-C2-4是定位到的与多种脂肪酸相关的新QTL。  相似文献   

8.
以高油大豆东农46为母本,高蛋白大豆L-100为父本,建立F2、F2∶3、F2∶4、F2∶5代群体。应用SSR标记技术,对不同世代在不同地点条件下遗传群体的蛋白质、脂肪含量进行QTL分析。结果表明:不同世代群体的蛋白质含量、脂肪含量均接近于正态分布,其中群体脂肪含量偏向于东农46,蛋白质含量偏向于L-100。在F2∶4代检测到2个与蛋白质含量相关的QTL,分别位于D2和K连锁群,能够解释的表型变异率为1.92%~2.03%,其中位于Satt226附近的QTL在F2、F2∶3和F2∶5代能够稳定地被检测到。在F2∶4代检测到2个与脂肪含量相关的QTL,分别位于F和B2连锁群,能够解释的表型变异率为2.56%~6.98%,其中位于Satt577附近的QTL在F2∶3、F2∶5代能够稳定地被检测到。因此,本研究获得1个与蛋白质含量相关的稳定QTL和1个与脂肪含量相关的稳定QTL。  相似文献   

9.
为了解小麦穗长性状的遗传特性,并将其应用于分子标记辅助育种,以大穗材料高麦1号/密小穗的292个植株的F2群体为材料,利用SSR标记对穗长进行了QTL定位分析。结果表明,选用500对SSR引物对高麦1号和密小穗两个亲本进行多态性检测,共获得180对在双亲间有多态性的引物,多态性引物检出率为36.0%。利用这180对引物进一步进行F2群体筛选,有96对引物在群体中表现出多态性,占多态性标记的53.3%。利用QTL_IciMapping软件构建出小麦染色体组的8个连锁群图谱,并将96对SSR引物定位到遗传连锁图谱上。图谱全长1 383.29cM,标记间的平均遗传距离15.37cM。平均每个连锁群有11.25个标记,含有标记最多的是4A和6B染色体,各有17个标记,其次是3A和7B染色体,含有9~14个标记,1B和5D染色体含有的标记最少,只有5~7个。共检测出7个与穗长相关的QTL位点,包括6个加性QTL和1个加性+显性QTL。7个QTL的加性效应值均为正值,单个QTL的贡献率为2.04%~15.26%。其中3A染色体上的QTL位点距离其最近标记只有0.58cM,为连锁最紧密的一个位点,并且其加性效应值最大,可解释表型变异的15.26%。因此,3A染色体上存在控制穗长的主效基因。  相似文献   

10.
构建红麻遗传连锁图谱,为今后红麻重要农艺性状QTL定位、QTL图位克隆、优良基因筛选、分子标记辅助育种奠定良好的研究基础。对256对SRAP引物和64对棉花SSR引物进行了两次引物筛选,以泰红763×F71为作图群体亲本,150个F2代单株作为作图群体,构建红麻遗传连锁图谱。共筛选出条带清晰、多态性高的SRAP引物73对、SSR引物8对,构建的红麻遗传连锁图谱全长2155.43 c M,平均间距为16.09 c M,含有128个多态性标记,分布于18个连锁群。本研究初步证实了棉花SSR引物用于红麻是可行的,构建的红麻遗传连锁图谱密度较高,标记较为均匀,适合后续的QTL定位、QTL图位克隆等研究工作。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号