首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract– Habitat use and population dynamics in brown trout Salmo trutta and Arctic charr Salvelinus alpinus were studied in an oligotrophic lake over a period of 10 years. Previous studies showed that the species segregated by habitat during summer. While brown trout occupied the surface water down to a depth of 10 m, Arctic charr were found deeper with a maximum occurrence at depth 10–15 m. Following the removal of a large number of intermediate sized fish in 1988–89, habitat segregation between the species broke down and Arctic charr were found in upper waters, while brown trout descended to deeper waters. The following year, both species were most frequently found in surface waters at depths of 0–5 m. During the last four years, the species reestablished their original habitat segregation despite another removal experiment of intermediate-sized fish in 1992–1994. The removal of fish resulted in an increased proportion of large (≥ 25 cm) fish in both species. Furthermore, the charr stock responded by reduced abundance and increased size-at-age. The results revealed plasticity and strong resistance to harvest populations of brown trout and Arctic charr. This is probably due to internal mechanisms of intraspecific competition within each population, which result in differential mortality among size classes.  相似文献   

2.
Individual measurements of annual, or within‐season growth were determined from tag‐recaptured Arctic charr and examined in relation to summer sea surface temperatures and within‐season capture timing in the Ungava and Labrador regions of Eastern Canada. Differences between two years of growth (2010–2011) were significant for Ungava Bay Arctic charr, with growth being higher in the warmer year. Growth of Labrador Arctic charr did not vary significantly among years (1982–1985). Regional comparisons demonstrated that Ungava Arctic charr had significantly higher annual growth rates and experienced warmer temperatures than Labrador Arctic charr. The higher annual growth of Ungava Bay Arctic charr was attributed to the high sea surface temperatures experienced in 2010–2011 and the localised differences in nearshore productivity as compared to Labrador. Within‐season growth rates of Labrador Arctic charr peaked in June, declined towards August and were negatively correlated with the length of time spent at sea and mean experienced sea surface temperatures. A quadratic model relating growth rate to temperature best explained the pattern of within‐season growth. Collectively, results suggest that increases in water temperature may have profound consequences for Arctic charr growth in the Canadian sub‐Arctic, depending on the responses of local marine productivity to those same temperature increases.  相似文献   

3.
4.
To study the effects on a stunted freshwater population of Arctic charr, Salvelinus alpinus (L.), two groups of large (26–45 cm) individually tagged brown trout, Salmo trutta L., were released and recaptured with gillnets after 1, 7, 11 and 63 weeks. One group of trout was trained on a fish diet before release, and the other, reared on commercial dry pellets, served as a control. Specific growth rates in both groups were negative 1 week after release and approached zero after 63 weeks. Condition factor and internal fat content decreased during the experiment. Although only 11% of the trout stomachs examined contained fish prey, charr represented 79% of the total stomach weight content. Gillnet samples of charr before and 63 weeks after the release of trout indicated a decreasing population size of charr. Individual growth and mean length of charr increased after release of trout, especially for charr at age 4 years. After the release of trout, 35% of the charr were longer than 20 cm as compared with 6% before the release.  相似文献   

5.
Introduced fishes may have major impacts on community structure and ecosystem function due to competitive and predatory interactions with native species. For example, introduced lake trout (Salvelinus namaycush) has been shown to replace native salmonids and induce major trophic cascades in some North American lakes, but few studies have investigated trophic interactions between lake trout and closely related native Arctic charr (S. alpinus) outside the natural distribution of the former species. We used stomach content and stable isotope analyses to investigate trophic interactions between introduced lake trout and native Arctic charr in large subarctic Lake Inarijärvi in northern Finland. Both salmonids had predominantly piscivorous diets at >280 mm total length and were mainly caught from the deep profundal zone. However, lake trout had a more generalist diet and showed higher reliance on littoral prey fish than Arctic charr, whose diet consisted mainly of pelagic planktivorous coregonids. According to length at age and condition data, lake trout showed slightly faster growth but lower condition than Arctic charr. The results indicate that introduced lake trout may to some extent compete with and prey upon native Arctic charr, but currently have only a minor if any impact on native fishes and food web structure in Inarijärvi. Future monitoring is essential to observe potential changes in trophic interactions between lake trout and Arctic charr in Inarijärvi, as well as in other European lakes where the two salmonids currently coexist.  相似文献   

6.
Partial migration is a common phenomenon in many fish species. Trout (Salmo trutta) is a partially migratory species where some part of the population migrate to the marine environment, while another remains in freshwater. In the years 2008 and 2009, a total of 159 wild sea trout smolts were tagged with acoustic and PIT‐tags in the river Villestrup (Denmark) to study the initial postsmolt marine behaviour within a fjord system. We found that the strategies of the sea migrants vary: some stay in the fjord, while others migrate to the sea, suggesting that partial migration occurs even in the marine environments. Overall, a total of 53% of the tagged smolts migrated from the fjord to the sea, and 47% stayed (or potentially died) in the fjord. The ratios of fjord‐resident versus sea‐migrating postsmolts were consistent at the study times, and no differences between the early and late migration periods of the smolts were observed. The individual's size or body condition at the time of tagging did not affect survival or the migratory decisions in the fjord. High overall initial survival (74%) was found 30 days after the fjord entry. We suggest that within a continuum of migration to sea, there is a migratory decision point when sea trout postsmolts encounter a fjord system. At this point, postsmolts will assess the possibility of migration versus the alternative of fjord residency.  相似文献   

7.
From July 1989 to December 1994, an echo sounder provided monthly estimates, usually for both day and night, of pelagic salmonid densities in the North and South Basins of Windermere, the largest natural lake in England. Sampling was along contiguous transects, three in the North Basin and five in the South Basin. Records for Arctic charr (Salvelinus alpinus) could not be separated from those for brown trout (Salmo trutta), but previous sampling by gill-nets and anglers showed that charr formed over 90% of this mixed population in the North Basin and about 60–75% in the South Basin. Associated with the increasing eutrophication of the lake, there has been a decline in anglers' catches of charr and, since 1984, an increase in brown trout taken in the pelagic zone of the South Basin. The echo-sounder data showed that pelagic salmonid density in the North Basin was about two to five times that in the more eutrophic South Basin in 1989, 1990 and 1991. Since the start, in April 1992, of the reduction of phosphorus discharged from sewage works, this ratio has decreased, especially at night when the highest densities were recorded. This improvement was chiefly due to a significant (P<0.001) increase in the density of small fish (length <20 cm), in both the upper (depth <20 m) and deeper (depth >20 m) water layers. Although a similar improvement has still to be shown in the upper water layer by larger fish above the size limit for removal by angling (20 cm), there has been a significant increase (P<0.01) in the density of these fish in the deeper water layer of the South Basin. The increased density of small fish suggests that the stock available to charr anglers (fish >20 cm at water depths <20 m) should increase in the next few years, especially in the South Basin. It is therefore important to continue the monitoring program and thus ensure that there is advance warning of any marked changes in charr stocks.  相似文献   

8.
Abstract. Habitat use, food and spatial segregation in native and stocked brown trout, Salmo trutta L., and Arctic charr, Salvelinus alpinus (L.), were studied during summer 1989 and 1990 in the hydroelectric reservoir Lake Tunhovdfjorden. There was no difference in habitat use and feeding habits between wild and stocked brown trout. In epibenthic areas brown trout lived chiefly down to 2 Secchi disc units, whereas Arctic charr were most abundant between 1 and 4 Secchi disc units. In pelagic areas the catches were low for both species, and they were chiefly confined to surface waters down to 1 Secchi disc unit. The food segregation between brown trout and Arctic charr was almost complete. Both pelagic and epibenthic Arctic charr fed mainly on cladocerans ( Bosmina longispina and Daphnia galeata ), whereas surface insects of terrestrial origin and Arctic charr were the dominant food items for brown trout. Pelagic Arctic charr were significantly older, larger and more homogeneous in size than epibenthic charr. During calm weather schools of Arctic charr were observed cruising with the dorsal fin above the surface.  相似文献   

9.
Proliferative kidney disease (PKD), caused by the myxozoan endoparasite Tetracapsuloides bryosalmonae, is of serious ecological and economical concern to wild and farmed salmonids. Wild salmonid populations have declined due to PKD, primarily in rivers, in Europe and North America. Deep lakes are also important habitats for salmonids, and this work aimed to investigate parasite presence in five deep Norwegian lakes. Kidney samples from three salmonid species from deep lakes were collected and tested using real-time PCR to detect PKD parasite presence. We present the first detection of Tbryosalmonae in European whitefish in Norway for the first time, as well as the first published documentation of the parasite in kidneys of Arctic charr, brown trout and whitefish in four lakes. The observed prevalence of the parasite was higher in populations of brown trout than of Arctic charr and whitefish. The parasite was detected in farmed, but not in wild, charr in one lake. This suggests a possible link with a depth of fish habitat and fewer Tbryosalmonae-infected and PKD-affected fish. Towards a warmer climate, cold hypolimnion in deep lakes may act as a refuge for wild salmonids, while cold deep water may be used to control PKD in farmed salmonids.  相似文献   

10.
Abstract – Among the species in the family Salmonidae, those represented by the genera Salmo, Salvelinus, and Oncorhynchus (subfamily Salmoninae) are the most studied. Here, various aspects of phenotypic and life‐history variation of Atlantic salmon Salmo salar L., brown trout Salmo trutta L., and Arctic charr Salvelinus alpinus (L.) are reviewed. While many strategies and tactics are commonly used by these species, there are also differences in their ecology and population dynamics that result in a variety of interesting and diverse topics that are challenging for future research. Atlantic salmon display considerable phenotypic plasticity and variability in life‐history characters ranging from fully freshwater resident forms, where females can mature at approximately 10 cm in length, to anadromous populations characterised by 3–5 sea‐winter (5SW) salmon. Even within simple 1SW populations, 20 or more spawning life‐history types can be identified. Juveniles in freshwater can use both fluvial and lacustrine habitats for rearing, and while most smolts migrate to sea during the spring, fall migrations occur in some populations. At sea, some salmon undertake extensive oceanic migrations while other populations stay within the geographical confines of areas such as the Baltic Sea. At the other extreme are those that reside in estuaries and return to freshwater to spawn after spending only a few months at sea. The review of information on the diversity of life‐history forms is related to conservation aspects associated with Atlantic salmon populations and current trends in abundance and survival. Brown trout is indigenous to Europe, North Africa and western Asia, but was introduced into at least 24 countries outside Europe and now has a world‐wide distribution. It exploits both fresh and salt waters for feeding and spawning (brackish), and populations are often partially migratory. One part of the population leaves and feeds elsewhere, while another part stays as residents. In large, complex systems, the species is polymorphic with different size morphs in the various parts of the habitat. Brown trout feed close to the surface and near shore, but large individuals may move far offshore. The species exhibits ontogenetic niche shifts partly related to size and partly to developmental rate. They switch when the amount of surplus energy available for growth becomes small with fast growers being younger and smaller fish than slow growers. Brown trout is an opportunistic carnivore, but individuals specialise at least temporarily on particular food items; insect larvae are important for the young in streams, while littoral epibenthos in lakes and fish are most important for large trout. The sexes differ in resource use and size. Females are more inclined than males to become migratory and feed in pelagic waters. Males exploit running water, near‐shore and surface waters more than females. Therefore, females feed more on zooplankton and exhibit a more uniform phenotype than males. The Arctic charr is the northernmost freshwater fish on earth, with a circumpolar distribution in the Holarctic that matches the last glaciation. Recent mtDNA studies indicate that there are five phylogeographic lineages (Atlantic, Arctic, Bering, Siberian and Acadian) that may be of Pleistocene origin. Phenotypic expression and ecology are more variable in charr than in most fish. Weights at maturation range from 3 g to 12 kg. Population differences in morphology and coloration are large and can have some genetic basis. Charr live in streams, at sea and in all habitats of oligotrophic lakes, including very deep areas. Ontogenetic habitat shifts between lacustrine habitats are common. The charr feed on all major prey types of streams, lakes and near‐shore marine habitats, but has high niche flexibility in competition. Cannibalism is expressed in several cases, and can be important for developing and maintaining bimodal size distributions. Anadromy is found in the northern part of its range and involves about 40, but sometimes more days in the sea. All charr overwinter in freshwater. Partial migration is common, but the degree of anadromy varies greatly among populations. The food at sea includes zooplankton and pelagic fish, but also epibenthos. Polymorphism and sympatric morphs are much studied. As a prominent fish of glaciated lakes, charr is an important species for studying ecological speciation by the combination of field studies and experiments, particularly in the fields of morphometric heterochrony and comparative behaviour.  相似文献   

11.
Anadromous Arctic charr, Salvelinus alpinus (L.), was introduced to a sub‐Arctic river–lake system near the village of Kujjuuaq, Nunavik, and the stable isotope values and diets of key resident fish species were used to assess changes in feeding patterns. Stable isotope values for most species did not differ significantly between the pre‐ and post‐introduction periods, with observed shifts being within the bounds of expected natural variation. Lake chub, Couesius plumbeus (Agassiz), were the single species to show a difference between study periods, with a small but significant increase in δ15N. No significant post‐introduction changes were seen in lake trout, Salvelinus namaycush (Walbaum), omnivory or in any of the assessed quantitative food web metrics. Gut contents of major fish species similarly showed significant temporal overlap between the pre‐ and post‐introduction periods, and there was no significant change in species' weight–length relationships. The minor ecological impact was interpreted in relation to the availability of open niches exploitable by ecological generalists such as Arctic charr. The explanation accords with the known habitat and feeding flexibility of Arctic charr and the ecological immaturity of sub‐Arctic lakes known to have driven adaptive variation among Arctic charr. Findings suggest that anadromous Arctic charr may be introduced at moderate densities to other sub‐Arctic watersheds without major negative food web consequences for other resident fish species.  相似文献   

12.
Despite long‐standing interest in foraging modes as an important element of animal space use, few studies document and compare individual foraging mode differences among species and ecological conditions in the wild. We observed and compared foraging modes of 61 wild Arctic charr, Salvelinus alpinus, 42 brown trout, Salmo trutta, and 50 Atlantic salmon, Salmo salar, in their first growing season over a range of habitats in 10 Icelandic streams. We found that although stream salmonids typically sit‐and‐wait to ambush prey from short distances, Arctic charr were more mobile during prey search and prior to prey attack than Atlantic salmon, whereas brown trout were intermediate. In all three species, individuals that were mobile during search were more likely to be moving when initiating attacks on prey, although the strength and the slope of this relationship differed among species. Arctic charr also differed from salmon and trout as more mobile individuals travelled longer distances during prey pursuits. Finally, coupled with published data from the literature, salmonid foraging mobility (both during search and prior to attack) clearly decreased from still water habitats (e.g., brook charr), to slow‐running waters (e.g., Arctic charr) to fast‐running waters (e.g., Atlantic salmon). Hence, our study suggests that foraging mode of young salmonids can vary distinctly among related species and furthers our understanding of the behavioural mechanisms shaping the geographical distribution of wild salmonids.  相似文献   

13.
Abstract  – Brown trout ( Salmo trutta L.) and Arctic charr ( Salvelinus alpinus (L.)) use whitefish ( Coregonus lavaretus (L.)) as their main prey in the subarctic Lake Muddusjärvi. Brown trout dwelled in littoral and pelagic habitat, whereas Arctic charr lived only in epibenthic habitat. Both species shifted to whitefish predation at a length of 20–30 cm. At this size, brown trout fed on larger whitefish than Arctic charr. Whitefish occur in three sympatric forms, differing in their habitat, ecology and morphology. Both the predators preyed primarily upon the small-sized, densely rakered whitefish form (DR), which was the most numerous whitefish form in the lake. DR used both epibenthic and pelagic habitat, whereas two sparsely rakered whitefish forms dwelled (LSR and SSR) only in epibenthic habitat: LSR in littoral and SSR in profundal areas. Sparsely rakered whitefish forms had minor importance in predator diet.  相似文献   

14.
Satellite telemetry from 26 loggerhead (Caretta caretta) and 10 olive ridley (Lepidochelys olivacea) sea turtles captured and released from pelagic longline fishing gear provided information on the turtles’ position and movement in the central North Pacific. These data together with environmental data from satellite remote sensing are used to describe the oceanic habitat used by these turtles. The results indicate that loggerheads travel westward, move seasonally north and south primarily through the region 28–40°N, and occupy sea surface temperatures (SST) of 15–25°C. Their dive depth distribution indicated that they spend 40% of their time at the surface and 90% of their time at depths <40 m. Loggerheads are found in association with fronts, eddies, and geostrophic currents. Specifically, the Transition Zone Chlorophyll Front (TZCF) and the southern edge of the Kuroshio Extension Current (KEC) appear to be important forage and migration habitats for loggerheads. In contrast, olive ridleys were found primarily south of loggerhead habitat in the region 8–31°N latitude, occupying warmer water with SSTs of 23–28°C. They have a deeper dive pattern than loggerheads, spending only 20% of their time at the surface and 60% shallower than 40 m. However, the three olive ridleys identified from genetics to be of western Pacific origin spent some time associated with major ocean currents, specifically the southern edge of the KEC, the North Equatorial Current (NEC), and the Equatorial Counter Current (ECC). These habitats were not used by any olive ridleys of eastern Pacific origin suggesting that olive ridleys from different populations may occupy different oceanic habitats.  相似文献   

15.
The effects of induced water level fluctuations and introduction of the mysid Mysis relicta Lovén on population structure of brown trout, Salmo trutta L., and Arctic charr, Salvelinus alpinus (L.), were studied during 1953–1995 in Limingen hydroelectric reservoir, Norway. The main response was a marked reduction in catch‐per‐unit‐effort (CPUE) for trout and charr, probably caused by reduced recruitment following increased variation in water level. For both species, mean length decreased until 1967 and increased thereafter, whereas mean mass‐at‐length increased for the whole period. Both length and mass‐at‐length were negatively correlated with CPUE. The increases in mean length and mass‐at‐length were probably because of reduced competition following the reduced recruitment. Mysis relicta has become an important food item for charr but not for brown trout, but the increases in mean length and mass‐at‐length of charr started prior to the appearance of M. relicta in the charr diet.  相似文献   

16.
Abstract – Resource partitioning between Atlantic salmon parr, brown trout and Arctic charr was studied throughout the ice-free season in a north Norwegian lake. Juvenile salmon and trout (≤160 mm) utilized the littoral zone and juvenile charr the profundal, while adult trout and charr (>160 mm) were found in both. Juvenile salmon and trout had a similar diet, although trichopteran larvae were more important for the trout and chironomid pupae and three-spined sticklebacks for the salmon parr. Small salmon and trout parr (≤120 mm) had a higher diet overlap than larger parr (121–160 mm). The feeding habits of adult trout were similar to that of juvenile trout, but the former took larger prey items. At the population level, both salmon and trout were generalistic feeders with a broad diet, but at the individual level, both species had specialized on a single or a few prey categories. Juvenile charr were segregated from salmon and trout in both habitat and food utilization; they had a narrow diet consisting of chironomids and zooplankton, possibly reflecting their confinement to the profundal habitat which have a low diversity of potential prey. Larger charr also took zoobenthos and sticklebacks in the littoral zone. Note  相似文献   

17.
Nuclear insulin-like growth factor 2 gene (IGF-2), growth hormone 1 gene (GH-1) and internal transcribed spacer 1 (ITS-1) of the ribosomal DNA as well as the mitochondrial NADH-3 and NADH-4 dehydrogenase genes (ND-3/4) exhibited species-specific restriction fragment patterns and three microsatellite loci (Sfo18, Ssa85 and Ssa197) had non-overlapping allele size ranges in Arctic charr and brook trout and were used as diagnostic markers for testing genetic purity of hatchery stocks and wild populations of Arctic charr and brook trout in Bavaria, Germany. Screening of four wild populations (three in Arctic charr and one in brook trout) revealed only a single hybrid (back-cross to brook trout) individual in L. Starnberg. In contrast, in three (out of five) hatchery stocks of Arctic charr and in both hatchery stocks of brook trout hybrids were detected with the frequency from 3 to 100%. Three hatchery stocks (SS2, SA and BS1) represent a hybrid swarm because they contained a very high proportion of hybrids (from 83 to 100%) and most or all hybrid individuals had alien alleles at only one or a few of six unlinked diagnostic loci, indicating that post-F1 hybrids represent the majority of individuals in these stocks and introgression has taken place. Release or escape of introgressed individuals from hatcheries into natural water bodies should be avoided in order to protect the biological diversity and genetic integrity of native fish populations.  相似文献   

18.
Abstract— Habitat utilization of juvenile Atlantic salmon, brown trout and Arctic charr was investigated in two lakes in northern Norway during the icefree season. Both the vertical distribution and the distribution among different habitat types were studied by gillnetting with small mesh sized gillnets (8-15 mm) in different habitats. Salmon and trout were predominantly caught in the littoral and sublittoral zones (0-6 m depth). Access to shelter seemed to be the most important factor determining the horizontal distribution of small salmon and trout. Most of these fish were caught in stony or vegetated habitats, while few salmon and trout were caught on sandy locations or in the pelagic zone. In one of the lakes, there were significantly higher catch rates of salmon than of trout in the stony littoral (0-3 m), while in the other lake there were no significant differences in spatial distribution between these two species. Charr were primarily found in the profundal, sublittoral or pelagic zones of the lakes.  相似文献   

19.
The effect on growth of distributing feed over a few hours compared tomore frequent meals was tested on 1+ Arctic charr (Salvelinus alpinus L.) and 1+ rainbow trout (Oncorhynchus mykiss Walbaum). Triplicate hatchery groups for each treatment were fed at a ration level of 1%/dayeither with few meals (8 times per day divided into morning and evening)or with frequent meals (32 meals equally distributed during the day). Wefound an opposite effect of meal frequency on growth in the two species.Low feeding intensity (8 meals per day) had a significantly positive effecton growth in rainbow trout but a significantly negative effect on growth inArctic charr when compared to feeding the fish frequent meals. Theopposite response to meal frequency is likely to be an effect of thedifferences in activity during feeding. Rainbow trout feed much moreaggressively than charr which can result in feeding being a more stressfulevent. In this experiment, the specific growth rate was lower and the feedconversion ratio higher for Arctic charr compared to rainbow trout.  相似文献   

20.
Abstract – We explored the incidence of individual feeding specialisation among a naïve predator (non‐native rainbow trout postsmolts) and two native experienced predators (sea‐run Arctic charr and sea‐trout) in a subarctic Norwegian fjord. Interindividual foraging niche stability was obtained by combining information on stomach contents (recent dietary niche) with trophically transmitted parasite infestation (time‐integrated historical dietary niche) of individual predators. Individual fish showed a high degree of resource specialisation as prey items such as gammarids and small fish (both potential intermediate host of parasites) rarely co‐occurred in stomachs. In both naïve and veteran predators, positive associations between the intensity of a specific parasite species and the occurrence of their respective intermediate host (gammarids or fish) in the stomachs of individual predators demonstrated temporally interindividual feeding specialisations. Several behavioural phenotypes clearly co‐existed in both naïve and veteran predator populations, including gammaridivore (benthic feeders), piscivore (pelagic feeders) or insectivore (pleuston feeders) individuals. The likely mechanism of this observed interindividual resource specialisation in the non‐native naïve predators involves a behavioural component of which rapid learning seems to be a key factor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号