首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
2.
OBJECTIVE: To compare cardiac output (CO) measured by use of the partial carbon dioxide rebreathing method (NICO) or lithium dilution method (LiDCO) in anesthetized foals. SAMPLE POPULATION: Data reported in 2 other studies for 18 neonatal foals that weighed 32 to 61 kg. PROCEDURES: Foals were anesthetized and instrumented to measure direct blood pressure, heart rate, arterial blood gases, end-tidal isoflurane and carbon dioxide concentrations, and CO. Various COs were achieved by administration of dobutamine, norepinephrine, vasopressin, phenylephrine, and isoflurane to allow comparisons between LiDCO and NICO methods. Measurements were obtained in duplicate or triplicate. We allowed 2 minutes between measurements for LiDCO and 3 minutes for NICO after achieving a stable hemodynamic plane for at least 10 to 15 minutes at each CO. RESULTS: 217 comparisons were made. Correlation (r = 0.77) was good between the 2 methods for all determinations. Mean +/- SD measurements of cardiac index for all comparisons with the LiDCO and NICO methods were 138 +/- 62 mL/kg/min (range, 40 to 381 mL/kg/min) and 154 +/- 55 mL/kg/min (range, 54 to 358 mL/kg/min), respectively. Mean difference (bias) between LiDCO and NICO measurements was -17.3 mL/kg/min with a precision (1.96 x SD) of 114 mL/kg/min (range, -131.3 to 96.7). Mean of the differences of LiDCO and NICO measurements was 4.37 + (0.87 x NICO value). CONCLUSIONS AND CLINICAL RELEVANCE: The NICO method is a viable, noninvasive method for determination of CO in neonatal foals with normal respiratory function. It compares well with the more invasive LiDCO method.  相似文献   

3.
Objective: To compare the partial CO2 rebreathing method (non‐invasive cardiac output [NICO]) and the lithium dilution method (lithium dilution cardiac output [LiDCO]) for cardiac output (CO) measurement in anesthetized dogs. Design: Prospective study. Setting: College of Veterinary Medicine, University of Florida. Animals: Six adult dogs (weight range 22–25.4 kg). Interventions: All animals were instrumented for CO determinations using the LiDCO and NICO methods. Direct blood pressure, heart rate, arterial blood gases, end‐tidal isoflurane (ETI), and CO2 concentrations were monitored throughout the study. CO was manipulated with dobutamine and isoflurane to allow for intermediate, low, and high CO determinations in that order using LiDCO and NICO. Measurements and main results: A 1.5% ETI produced the intermediate rate of CO, a constant‐rate infusion of dobutamine (1–4 μg/kg/min) and 1.1% ETI, the highest rate, and 2.5–3% ETI, the lowest rate. Measurements were obtained in duplicate or triplicate for the LiDCO and continuously for the NICO method after achieving a stable hemodynamic plane for at least 15 minutes at each level of CO, allowing 5 minutes between measurements. Forty‐seven comparisons were determined. The correlation coefficient (r) between the 2 methods was 0.888 for all determinations. The mean LiDCO and NICO from 47 measurements were 155.9±78.7 mL/kg/min (range, 49.6–303.2) and 146.6±62.9 mL/kg/min (50–290.3), respectively. The bias between LiDCO and NICO estimations was 9.3 (?60.7 to +79.4) mL/kg/min (mean and 95% confidence interval). The mean (mL/kg/min) of the differences of LiDCO–NICO was 1.11 × NICO. The relative error was 2.4±24.7%. As CO increased, the relative difference between the methods also increased. Conclusions: The NICO is a viable non‐invasive method for CO determination in the dog and compares well with the LiDCO.  相似文献   

4.
Objective – To compare the determination of cardiac output (CO) via arterial pulse pressure waveform analysis (FloTrac/Vigileo) versus lithium dilution method. Design – Prospective study. Setting – University teaching hospital. Animals – Six adult dogs. Interventions – Dogs were instrumented for CO determinations using lithium dilution (LiDCO) and FloTrac/Vigileo methods. Direct blood pressure, heart rate, arterial blood gases, and end‐tidal isoflurane (ETIso) and CO2 concentrations were measured throughout the study while CO was manipulated with different depth of anesthesia and rapid administration of isotonic crystalloids at 60 mL/kg/h. Measurements and Main Results – Baseline CO measurements were obtained at 1.3% ETIso and were lowered by 3% ETIso. Measurements were obtained in duplicate or triplicate with LiDCO and averaged for comparison with corresponding values measured continuously with the FloTrac/Vigileo method. For 30 comparisons between methods, a mean bias of ?100 mL/kg/min and 95% limits of agreement between ?311 and +112 mL/kg/min (212 mL/kg/min) was determined. The mean (mL/kg/min) of the differences of LiDCO?Vigileo=62.0402+?0.8383 × Vigileo, and the correlation coefficient (r) between the 2 methods 0.70 for all CO determinations. The repeatability coefficients for the individual LiDCO and FloTrac/Vigileo methods were 187 and 400 mL/kg/min, respectively. Mean LiDCO and FloTrac/Vigileo values from all measurements were 145 ± 68 mL/kg/min (range, 64–354) and 244 ± 144 mL/kg/min (range, 89–624), respectively. The overall mean relative error was 48 ± 14%. Conclusion – The FloTrac/Vigileo overestimated CO values compared with LiDCO and the relative error was high, which makes this method unreliable for use in dogs.  相似文献   

5.
OBJECTIVE: To evaluate the use of a lithium dilution cardiac output (LiDCO) technique for measurement of CO and determine the agreement between LiDCO and thermodilution CO (TDCO) values in anesthetized cats. ANIMALS: 6 mature cats. PROCEDURE: Cardiac output in isoflurane-anesthetized cats was measured via each technique. To induce different rates of CO in each cat, anesthesia was maintained at > 1.5X end-tidal minimum alveolar concentration (MAC) of isoflurane and at 1.3X end-tidal isoflurane MAC with or without administration of dobutamine (1 to 3 microg/kg/min, i.v.). At least 2 comparisons between LiDCO and TDCO values were made at each CO rate. The TDCO indicator was 1.5 mL of 5% dextrose at room temperature; with the LiDCO technique, each cat received 0.005 mmol of lithium/kg (concentration, 0.015 mmol/mL). Serum lithium concentrations were measured prior to the first and following the last CO determination. RESULTS: 35 of 47 recorded comparisons were analyzed; via linear regression analysis (LiDCO vs TDCO values), the coefficient of determination was 0.91. The mean bias (TDCO-LiDCO) was -4 mL/kg/min (limits of agreement, -35.8 to + 27.2 mL/kg/min). The concordance coefficient was 0.94. After the last CO determination, serum lithium concentration was < 0.1 mmol/L in each cat. CONCLUSIONS AND CLINICAL RELEVANCE: Results indicated a strong relationship and good agreement between LiDCO and TDCO values; the LiDCO method appears to be a practical, relatively noninvasive method for measurement of CO in anesthetized cats.  相似文献   

6.
Objective – To determine if metatarsal artery pressure (COmet) is comparable to femoral artery pressure (COfem) as the input for transpulmonary pulse contour analysis (PiCCO) in anesthetized dogs, using the lithium dilution method (LiDCO) as a standard for cardiac output (CO) measurement. Design – Prospective randomized study. Setting – University research laboratory. Animals – Ten healthy purpose‐bred mixed breed dogs were anesthetized and instrumented to measure direct blood pressure, heart rate, arterial blood gases, and CO. Interventions – The CO was measured using LiDCO and PiCCO techniques. Animals had their right femoral and left distal metatarsal artery catheterized for proximal (COfem) and distal (COmet) PiCCO analysis, respectively. Measurements were obtained from each animal during low, normal, and high CO states by changing amount of inhalant anesthetics and heart rate. Measurements were converted to CO indexed to body weigh (CIBW=CO/kg) for statistical analysis. Agreement was determined using Bland and Altman analysis and concordance correlation coefficients. Measurements and Main Results – Thirty paired measurements were taken. The LiDCO CIBW (± SD) was 68.7 ± 30.3, 176.0 ± 53.0, and 211.1 ± 76.5 mL/kg/min during low, normal, and high CO states, respectively. There was a significant effect of CIBW state on bias and relative bias with COmet (P<0.001 and P=0.003, respectively). Bias of the COmet method (± SD) was ?116.6 (70.5), 20.1(76.4), and 91.3 (92.0) mL/kg/min at low, normal, and high CIBW, respectively. Bias of the COfem (± SD) was ?20.3 (19.0), 8.6 (70.9), and ?2.9 (83.0) mL/kg/min at low, normal, and high CIBW, respectively. The mean relative bias for COfem was ?6.7 ± 44% (limits of agreements: ?81.2 to 67.9%). Conclusion – Compared with lithium dilution, the pulse contour analysis provides a good estimation of CO, but requires femoral artery catheterization in anesthetized dogs.  相似文献   

7.
OBJECTIVE: To compare cardiac output (CO) obtained by the lithium dilution method (LiDCO) with CO calculated from the Fick principle (FickCO), in horses maximally exercising on a high-speed treadmill. ANIMALS: 13 Thoroughbreds. PROCEDURES: In part 1 of the study, 5 horses performed a warm-up (walk, trot, and canter) and exercise test (walk, trot, canter, and gallop [90% to 100% maximum oxygen consumption [{[Formula: see text]O(2)max}]) with measurements of LiDCO and FickCO obtained simultaneously after 60 seconds at each exercise level, for a total of 7 measurements. In part 2 of the study, 8 horses performed a warm-up (walk, trot, and canter) followed by an exercise test (walk and gallop [90% to 100% [Formula: see text]O(2)max], repeated twice). Measurements of LiDCO and FickCO were obtained 60 seconds into the first walk and each gallop of the exercise tests, for a total of 3 measurements. RESULTS: Cardiac output increased significantly with increasing speeds by use of both methods. In part 1, lithium dilution significantly overestimated CO, compared with the Fick principle, during the exercise test (as both injection number and exercise intensity increased). Mean +/- SD bias was 246 +/- 264 mL of blood/min/kg in part 1 and 67 +/- 100mL of blood/kg/min in part 2. Three injections of lithium (part 2) did not result in the same degree of overestimation of LiDCO that was observed with 7 injections (part 1). CONCLUSIONS AND CLINICAL RELEVANCE: Lithium dilution may be an acceptable substitute for the Fick principle as a means to measure CO in maximally exercising client-owned horses.  相似文献   

8.
Newer techniques for cardiac output (Q) determinations that are minimally invasive remain to be validated in neonatal foals against other accepted techniques such as the lithium technique (LiDCO). This study compares Q determinations using the partial CO2 rebreathing technique (NICO) with LiDCO in anesthetized neonatal foals. Ten foals were instrumented for NICO and LiDCO determinations. For each foal low, intermediate and high levels of cardiac output were achieved in that order using an end‐tidal isoflurane (ETI) concentration of 1.3 – 2.1% for the lowest rate; an ETI of 0.85–1.4% and a constant‐rate infusion of dobutamine (1–3 ?g/kg/min) for the intermediate rate; and an ETI of 0.83–1% and dobutamine (2–6 ?g/kg/min) for the highest rate. Four foals also received IV intermittent doses (total cumulative dose of 1.1–1.7 mg) of phenylephrine at the highest rate of Q. The measurements were obtained in duplicate or triplicate for each Q technique after achieving a stable hemodynamic plane for at least 15 minutes at each rate of Q. For the lithium technique, all foals received 1.1–1.9 mL (0.16–0.28 mmol) of lithium. A Bland‐Altman analysis was used to compare the bias and precision of the two techniques. Eighty seven comparisons were determined between the two techniques. Eight were excluded due to more than 20% variation between the LiDCO determinations or technical errors at the time of determination. The correlation coefficient between the two methods was 0.67 for all Q determinations. Mean LiDCO and NICO values from 79 measurements were 130 ± 40 mL–1 kg minute–1 (range, 68– 237) and 152 ± 31 mL–1 kg minute–1 (89 – 209), respectively. The mean ( mL–1 kg minute–1) of the differences of LiDCO – NICO was = –0.7248 + 0.8602 NICO. The precision (1.96 SD) of the differences between LiDCO and NICO was 58.9 mL–1 kg minute–1 (–80.9–+36.9) with a mean difference of –22 mL–1 kg minute–1 (bias; 95% CI – 15.2 to ‐28.7). In conclusion, given the small bias compared to the limits of agreement, the NICO technique for determining Q deserves further consideration for adoption into clinical practice in neonatal foals.  相似文献   

9.
The objective of this study was to assess 2 noninvasive methods of measuring cardiac output (CO) in neonatal foals by comparing results to that of the lithium-dilution method. Ten neonatal foals were anesthetized and CO was manipulated by varying the depth of anesthesia and infusion of dobutamine. Concurrent CO measurements were obtained by lithium dilution (reference method), partial carbon dioxide (CO2) rebreathing, volumetric echocardiography (cubic, Teichholz, Bullet, area-length, and single and biplane modified Simpson formulas), and transthoracic Doppler echocardiography. Thirty pairs of lithium-dilution/noninvasive CO measurements were taken from the 10 foals. For each method, relative bias was calculated as a percentage of the average CO. Lithium determinations of CO ranged between 3.09 and 1 1.1 L/min (mean +/- SD = 6.39 +/- 2.1 L/min), resulting in cardiac indices ranging between 79.0 and 209 mL/kg/min (mean +/- SD = 131 +/- 35.9 mL/kg/min). Relative bias of Doppler echocardiography significantly increased (P < .05), whereas that of partial CO2 rebreathing significantly decreased (P = .03) with increasing CO. Other methods were not influenced by the level of CO. Among methods not influenced by the level of CO, relative bias of the Bullet method (-4.2 +/- 20.9%; limits of agreement -45.2 to 36.7%) was significantly lower (P < .05) than that of each of the other noninvasive methods evaluated. Volumetric echocardiography using the Bullet method provides an accurate and noninvasive estimate of CO in anesthetized neonatal foals and warrants investigation in critically ill conscious foals.  相似文献   

10.
Background: Norepinephrine increases arterial blood pressure but may have adverse effects on renal blood flow. Fenoldopam, a dopamine-1 receptor agonist, increases urine output in normotensive foals. The combination of norepinephrine and fenoldopam may lead to improved renal perfusion compared with an infusion of norepinephrine alone. The combined effects of these drugs have not been reported in the horse.
Hypothesis: Norepinephrine will alter the hemodynamic profile of foals without affecting renal function. Addition of fenoldopam will change the renal profile during the infusions without changing the hemodynamic profile.
Animals: Five conscious pony foals.
Methods: Each foal received norepinephrine (0.3 μg/kg/min), combined norepinephrine (0.3 μg/kg/min) and fenoldopam (0.04 μg/kg/min), and a control dose of saline in a masked, placebo-controlled study. Heart rate (HR), arterial blood pressure (direct), and cardiac output (lithium dilution) were measured, and systemic vascular resistance (SVR), stroke volume, cardiac index (CI), and stroke volume index were calculated. Urine output, creatinine clearance, and fractional excretion of electrolytes were measured.
Results: Norepinephrine and a combined norepinephrine and fenoldopam infusion increased arterial blood pressure, SVR, urine output, and creatinine clearance and decreased HR and CI compared with saline. The combination resulted in higher HR and lower arterial blood pressure than norepinephrine alone.
Conclusions and Clinical Importance: Norepinephrine might be useful for hypotensive foals, because in normal foals, this infusion rate increases SVR without negatively affecting renal function (creatinine clearance increased). Fenoldopam does not provide additional benefit to renal function. These findings warrant further investigation.  相似文献   

11.
OBJECTIVE: To assess the suitability of lithium dilution as a method for measuring cardiac output in anesthetized horses, compared with thermodilution and transesophageal Doppler echocardiography. ANIMALS: 6 horses (3 Thoroughbreds, 3 crossbreeds). PROCEDURE: Cardiac output was measured in 6 anesthetized horses as lithium dilution cardiac output (LiDCO), thermodilution cardiac output (TDCO), and transesophageal Doppler echocardiographic cardiac output (DopplerCO). For the LiDCO measurements, lithium chloride was administered i.v., and cardiac output was derived from the arterial lithium dilution curve. Sodium nitroprusside, phenylephrine hydrochloride, and dobutamine hydrochloride were used to alter cardiac output. Experiments were divided into 4 periods. During each period, 3 LiDCO measurements, 3 DopplerCO measurements, and 3 sets of 3 TDCO measurements were obtained. RESULTS: 70 comparisons were made between LiDCO, DopplerCO, and triplicate TDCO measurements over a range of 10 to 43 L/min. The mean (+/- SD) of the differences of LiDCO - TDCO was -0.86 +/- 2.80 L/min; LiDCO = -1.90 + 1.05 TDCO (r = 0.94). The mean of the differences of DopplerCO - TDCO was 1.82 +/- 2.67 L/min; DopplerCO = 2.36 + 0.98 TDCO (r = 0.94). The mean of the differences of LiDCO - DopplerCO was -2.68 +/- 3.01 L/min; LiDCO = -2.53 + 0.99 DopplerCO (r = 0.93). CONCLUSIONS AND CLINICAL RELEVANCE: These results indicate that lithium dilution is a suitable method for measuring cardiac output in horses. As well as being accurate, it avoids the need for pulmonary artery catheterization and is quick and safe to use. Monitoring cardiac output during anesthesia in horses may help reduce the high anesthetic mortality in this species.  相似文献   

12.
OBJECTIVE: To assess agreement between arterial pressure waveform-derived cardiac output (PCO) and lithium dilution cardiac output (LiDCO) systems in measurements of various levels of cardiac output (CO) induced by changes in anesthetic depth and administration of inotropic drugs in dogs. ANIMALS: 6 healthy dogs. PROCEDURE: Dogs were anesthetized on 2 occasions separated by at least 5 days. Inotropic drug administration (dopamine or dobutamine) was randomly assigned in a crossover manner. Following initial calibration of PCO measurements with a LiDCO measurement, 4 randomly assigned treatments were administered to vary CO; subsequently, concurrent pairs of PCO and LiDCO measurements were obtained. Treatments included a light plane of anesthesia, deep plane of anesthesia, continuous infusion of an inotropic drug (rate adjusted to achieve a mean arterial pressure of 65 to 80 mm Hg), and continuous infusion of an inotropic drug (7 microg/kg/min). RESULTS: Significant differences in PCO and LiDCO measurements were found during deep planes of anesthesia and with dopamine infusions but not during the light plane of anesthesia or with dobutamine infusions. The PCO system provided higher CO measurements than the LiDCO system during deep planes of anesthesia but lower CO measurements during dopamine infusions. CONCLUSIONS AND CLINICAL RELEVANCE: The PCO system tracked changes in CO in a similar direction as the LiDCO system. The PCO system provided better agreement with LiDCO measurements over time when hemodynamic conditions were similar to those during initial calibration. Recalibration of the PCO system is recommended when hemodynamic conditions or pressure waveforms are altered appreciably.  相似文献   

13.
OBJECTIVES: To determine agreement of cardiac output measured by use of lithium dilution cardiac output (LiDCO) and thermodilution cardiac output (TDCO) techniques in dogs and to determine agreement of low- and high-dose LiDCO with TDCO. ANIMALS: 10 dogs (7 males, 3 females). PROCEDURE: Cardiac output was measured in anesthetized dogs by use of LiDCO and TDCO techniques. Four rates of cardiac output were induced by occlusion of the caudal vena cava, changes in depth of anesthesia, or administration of dobutamine. Lithium dilution cardiac output was performed, using 2 doses of lithium chloride (low and high dose). Each rate of cardiac output allowed 4 comparisons between LiDCO and TDCO. RESULTS: 160 comparisons were determined of which 68 were excluded. The remaining 92 comparisons had values ranging from 1.10 to 12.80 L/min. Intraclass correlation coefficient (ICC) between low-dose LiDCO and TDCO was 0.9898 and between high-dose LiDCO and TDCO was 0.9896. When all LiDCO determinations were pooled, ICC was 0.9894. For determinations of cardiac output < 5.0 L/min, ICC was 0.9730. Mean +/- SD of the differences of TDCO minus LiDCO for all measurements was -0.084+/-0.465 L/min, and mean of TDCO minus LiDCO for cardiac outputs < 5.0 L/min was -0.002+/-0.245 L/min. CONCLUSIONS AND CLINICAL RELEVANCE: The LiDCO technique is a suitable substitute for TDCO to measure cardiac output in dogs. Use of LiDCO eliminates the need for catheterization of a pulmonary artery and could increase use of cardiac output monitoring, which may improve management of cardiovascularly unstable animals.  相似文献   

14.
Objective: Glucose metabolism is often deranged in septic animals. Bacteremia and sepsis are common in foals and clinical experience suggests that glucose metabolism is abnormal in some of these animals. The purpose of this study was to provide initial estimates of rates of glucose appearance, disappearance, and metabolic clearance rate in septic foals.
Series Summary: Rates of glucose entry, and exit from blood were determined by use of infusion of isotopically labeled glucose in 5 foals with confirmed sepsis. Serum concentrations of glucose, insulin, glucagon, and cortisol were measured concurrent with measurement of rates of glucose turnover. Median glucose turnover rate was 24 μmol/kg/min (range 17–53 μmol/kg/min), and median glucose metabolic clearance rate was 3.2 mL/kg/min (range 1.7–6.7 mL/kg/min). Median concentration of serum immunoreactive insulin was 55 pmol/L (range 36–190 pmol/L), median serum immunoreactive glucagon was 65 pmol/L (range 19–120 pmol/L), and median serum cortisol was 207 nmol/L (range 100–333 nmol/L).
New or unique information provided: These data, although limited in scope and by the lack of data in healthy foals, demonstrate the magnitude and variation in glucose appearance, disappearance, and metabolic clearance rate in septic foals, provide an estimate of rates of glucose utilization in sick foals, and will be useful in guiding future studies of energy metabolism in healthy and ill foals.  相似文献   

15.
Objective: To evaluate the efficacy and safety of biphasic (BP) defibrillation in toy breed dogs (<5 kg of body weight).
Design: Prospective, clinical experimental study.
Setting: Veterinary teaching hospital.
Animals: Five dogs (pilot study) and 10 dogs (comparison study of biphasic versus monophasic defibrillation).
Measurements and main results: The efficacy of defibrillation was compared by estimating E80 (80% probability of successful defibrillation) after biphasic (BP) and monophasic (MP) defibrillations. The E80 for BP defibrillation was 7.24±1.33 J (2.24±0.41 J/kg) and 10.24±1.34 J (3.18±0.12 J/kg) for MP defibrillation. BP waveform required 30% less shock energy for a successful defibrillation. In order to compare the safety of defibrillation, we evaluated changes in cardiac biomarkers, electrocardiogram, echocardiographical left ventricular index, and aortic pressure during and after BP and MP defibrillation. All dogs treated by either BP or MP defibrillation survived. Pulseless electrical activity occurred in 2 of 5 dogs during MP defibrillation. The levels of cardiac biomarkers were elevated and sustained for longer periods in the MP defibrillation group. Electrocardiographic changes (e.g., QT prolongation, the time to return to an isoelectric ST segment after shocks) were more severe and longer in the MP defibrillation group. In addition, overall left ventricular cardiac performance was severely depressed in the MP group compared with the BP group.
Conclusion: Our findings suggest that BP defibrillation is more effective and safer than MP defibrillation. We determined the acceptable shock energy to be 2–4 J/kg for toy breed dogs.  相似文献   

16.
Background: The basic and clinical implications of evaluating plasma atrial natriuretic peptide (ANP) concentration in calves are unknown.
Objective: To investigate the relationship between the plasma ANP concentration and left ventricular end-diastolic pressure (LVEDP) in healthy calves subjected to volume overload (Study 1), and to compare the plasma ANP concentration in calves with or without heart disease (Study 2).
Animals: Six healthy calves were used in Study 1; disease calves and sick calves with (n = 9) and without congenital heart disease (CHD) (n = 9) were used in Study 2.
Methods: In Study 1, LVEDP in anesthetized calves was manipulated by IV administration of acetated Ringer's solution (rate of 100 mL/kg/h for 20 minutes) and furosemide. In Study 2, disease calves were identified by blood examination and echocardiography or pathological examination. The plasma ANP concentration was determined by a chemiluminescence enzyme immunoassay for human α-ANP.
Results: In Study 1, preloading significantly increased the plasma ANP concentration (36 ± 20–185 ± 156, P < .01) and LVEDP (−11 ± 7–2 ± 12, P < .01) from the baseline. Furthermore, plasma ANP concentrations were strongly correlated with LVEDP ( r = 0.61). In Study 2, the plasma ANP concentration was significantly higher in the calves with CHD than in the calves without heart disease (220 [67–970] versus 31 [10–86]; mean [range], P < .001).
Conclusions and Clinical Importance: Measurement of plasma ANP concentrations in calves can provide additional information useful for predicting hemodynamic abnormalities.  相似文献   

17.
OBJECTIVES: To assess the effect of increasing serum lithium concentrations on lithium dilution cardiac output (LiDCO) determination and to determine the ability to predict the serum lithium concentration from the cumulative lithium chloride dosage. ANIMALS: 10 dogs (7 males, 3 females). PROCEDURE: Cardiac output (CO) was determined in anesthetized dogs by measuring LiDCO and thermodilution cardiac output (TDCO). The effect of the serum lithium concentration on LiDCO was assessed by observing the agreement between TDCO and LiDCO at various serum lithium concentrations. Also, cumulative lithium chloride dosage was compared with the corresponding serum lithium concentrations. RESULTS: 44 paired observations were used. The linear regression analysis for the effect of the serum lithium concentration on the agreement between TDCO and LiDCO revealed a slope of -1.530 (95% confidence interval [CI], -2.388 to -0.671) and a y-intercept of 0.011 (r2 = 0.235). The linear regression analysis for the effect of the cumulative lithium chloride dosage on the serum lithium concentration revealed a slope of 2.291 (95% CI, 2.153 to 2.429) and a y-intercept of 0.008 (r2 = 0.969). CONCLUSIONS AND CLINICAL RELEVANCE: The LiDCO measurement increased slightly as the serum lithium concentration increased. This error was not clinically relevant and was minimal at a serum lithium concentration of 0.1 mmol/L and modest at a concentration of 0.4 mmol/L. The serum lithium concentration can be reliably predicted from the cumulative lithium dosage if lithium chloride is administered often within a short period.  相似文献   

18.
Background: Hypothyroidism affects renal function in a manner opposite the effects of hyperthyroidism.
Objective: To evaluate the effects of experimentally induced hypothyroidism on glomerular filtration rate (GFR) and basal plasma creatinine concentration in dogs.
Animals: Sixteen anestrous, female dogs.
Methods: Hypothyroidism was induced by administration of 131I in 8 dogs, and 8 healthy euthyroid dogs acted as controls. Exogenous plasma creatinine clearance (an estimate of GFR) was measured in all dogs before (control period) and 43–50 weeks after induction of hypothyroidism (posttreatment period). Other pharmacokinetic parameters of creatinine were also determined.
Results: No significant difference was observed for basal plasma creatinine concentration and creatinine clearance between control and hypothyroid dogs in the control period. In the posttreatment period, mean ± SD creatinine clearance in the hypothyroid group (2.13 ± 0.48 mL/min/kg) was lower ( P < .001) than that of the control group (3.20 ± 0.42 mL/kg/min). Nevertheless, basal plasma creatinine concentrations were not significantly different between the hypothyroid and control groups (0.74 ± 0.18 versus 0.70 ± 0.08 mg/dL, respectively) because endogenous production of creatinine was decreased in hypothyroid dogs (22 ± 3 versus 32 ± 5 mg/kg/d, P =.001).
Conclusion and Clinical Importance: Hypothyroidism causes a substantial decrease in GFR without altering plasma creatinine concentrations, indicating that GFR evaluation is needed to identify renal dysfunction in such patients.  相似文献   

19.
The objectives of this study were to determine pharmacokinetics of intravenous (i.v.) ceftiofur in foals, to compare ultra-high performance liquid chromatography tandem mass spectometry (UPLC-MS/MS) and microbiologic assay for the measurement of ceftiofur concentrations, and to determine the minimum inhibitory concentration ( MIC ) of ceftiofur against common equine bacterial pathogens. In a cross-over design, ceftiofur sodium was administered i.v. to six foals (1–2 days-of-age and 4–5 weeks-of-age) at dosages of 5 and 10 mg/kg. Subsequently, five doses of ceftiofur were administered i.v. to six additional foals between 1 and 5 days of age at a dose of 5 mg/kg q 12 h. Concentrations of desfuroylceftiofur acetamide (DCA), the acetamide derivative of ceftiofur and desfuroylceftiofur-related metabolites were measured in plasma, synovial fluid, urine, and CSF by use of UPLC-MS/MS. A microbiologic assay was used to measure ceftiofur activity for a subset of plasma samples. Following i.v. administration of ceftiofur at a dose of 5 mg/kg to 1–2 day-old foals, DCA had a t ½ of 7.8 ± 0.1 h, a body clearance of 74.4 ± 8.4 mL/h/kg, and an apparent volume of distribution of 0.83 ± 0.09 L/kg. After multiple i.v. doses at 5 mg/kg, DCA concentrations in CSF were significantly lower than concurrent plasma concentrations. Ceftiofur activity using a microbiologic assay significantly underestimated plasma concentrations of DCA. The MIC of ceftiofur required to inhibit growth of 90% of isolates of Escherichia coli , Pasteurella spp, Klebsiella spp, and β-hemolytic streptococci was <0.5 μg/mL. Intravenous administration of ceftiofur sodium at the rate of 5 mg/kg every 12 h would provide sufficient coverage for the treatment of susceptible bacterial isolates.  相似文献   

20.
Objective – To evaluate the effect of 6% hydroxyethyl starch (HES) solution in vivo, with an average molecular weight of 670 kDa and degree of substitution of 0.75, on canine platelet function.
Design – Prospective, controlled-experimental study.
Setting – University of California, Davis, Veterinary Medical Teaching Hospital.
Animals – Seven healthy employee-owned dogs.
Interventions – Seven dogs were included in the treatment group. Four of these dogs also served as the control group. Platelet closure time (CT) was measured using a platelet function analyzer and collagen/ADP cartridges. Dogs were given 20 mL/kg of either sodium chloride 0.9% (control group, n =4) or HES (treatment group, n =7) IV over 1 hour. CT was measured before the infusion, and at 1, 3, 5, and 24 hours after the start of the infusion.
Measurements and Main Results – There was a significant change over time from 0 to 24 hours ( P <0.001), a significant difference between groups across time ( P <0.001), and a significant group-by-time interaction ( P =0.007). At 3 hours, mean CT for the treatment group was 122.3±18.1 seconds, which was significantly different ( P <0.001) from the control group (71.0±3.5 s). At 5 hours, mean CT for the treatment group was 142.7±33.9 seconds, which was significantly different ( P =0.001) from the control group (75.0±8.6 s). Mean CT at 24 hours was within the reference interval for both the control and treatment group (66.0±2.9 and 81.8±11.9 s, respectively); however, CT in 3 individual dogs in the treatment group at this time point remained prolonged.
Conclusions – A clinically relevant dose of HES 670/0.75 prolongs CT in dogs for up to 24 hours. This may be due to platelet dysfunction in addition to the effects of hemodilution, and therefore, may increase the risk of bleeding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号