首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effect of polychlorinated biphenyles (PCBs) on viability and secretory function of luteal and granulosa cells from mature cows was studied. Luteal cells from corpora lutea of different developmental stages and granulosa cells from follicles of >1 cm< in diameter were used. Neither individual congeners (PCB-126, -77, -153) nor mixture of PCBs Aroclor Ar) 1248 at the dose of 1, 10 or 100 ng/ml affected the viability of cells (P>0.05) compared to control after 72 h of incubation. PCBs markedly increased (P<0.05-0.001) oxytocin (OT) secretion from granulosa cells. This effect was the most evident when granulosa cells from follicles <1 cm diameter was treated with PCB-77 which is assumed to stimulate both arylhydrocarbon receptor (AhR) and estradiol (E2) receptor. Even the lowest dose of this compound (1 ng/ml) outranged the effect produced by cortisol (10(-5)M) used as positive control. There was marked effect (P<0.05-0.001) of PCBs on luteal cells from days 6-15 of the estrous cycle. However, influence of PCBs on OT secretion from luteal cells on day 1-5 and 16-18 of the estrous cycle was less evident. Again, PCB-77 was the most efficient stimulator of OT secretion. While the lowest effect was found after treatment of cells with PCB-126 which has dioxin-like properties. It can be assumed that diverse effect of PCBs on female reproduction largely results from the influence of these compounds on ovarian OT secretion. Since both synthesis and secretion of ovarian OT in bovine do not markedly depend on estradiol, some alternative cellular pathways of PCBs on ovary function are suggested.  相似文献   

2.
The present studies were conducted: (1) to determine which beta-adrenoceptor subtypes are involved in progesterone and oxytocin (OT) secretion, (2) to examine whether noradrenaline (NA) acts directly on the cytochrome P-450scc and 3 beta-hydroxysteroid dehydrogenase (3 beta-HSD), and (3) to study the effect of prostaglandin F2 alpha (PGF2 alpha) on NA-stimulated steroidogenesis in luteal cells. The effect of NA on progesterone secretion from luteal slices of heifers on days 8-12 of the oestrous cycle was blocked by both atenolol (beta 1-antagonist) and ICI 118.551 hydrochloride (beta 2-antagonist). OT secretion was blocked only after treatment with ICI 118.551 hydrochloride (P < 0.05). Dobutamine (10(-4)-10(-6) M), a selective beta 1 agonist and salbutamol (10(-4)-10(-6) M), a selective beta 2 agonist, both increased progesterone production (P < 0.01) with an efficiency comparable to that produced by NA (P < 0.01). The increase of OT content in luteal slices was observed only after treatment with salbutamol at the dose of 10(-5) M (P < 0.01). Dobutamine had no effect on OT production at any dose. A stimulatory effect of NA on cytochrome P-450scc activity (P < 0.05) was demonstrated using 25-hydroxycholesterol as substrate. 3 beta-HSD activity also increased following NA (P < 0.01) or pregnenolone (P < 0.05) and in tissue treated with pregnenolone together with NA (P < 0.01). PGF decreased progesterone synthesis (P < 0.05) and 3 beta-HSD activity (P < 0.01) in tissue treated with NA. We conclude that NA stimulates progesterone secretion by luteal beta 1- and beta 2-adrenoceptors, while OT secretion is probably mediated only via the beta 2-receptor. NA also increases cytochrome P-450scc and 3 beta-HSD activity. PGF inhibits the luteotropic effect of NA on the luteal tissue.  相似文献   

3.
The current investigations were undertaken to study the mechanism of the adverse effect of phytoestrogens on the function of bovine granulosa (follicles >1< cm in diameter) and luteal cells from day 1–5, 6–10, 11–15, 16–19 of the oestrous cycle. The cells were incubated with genistein, daidzein or coumestrol (each at the dose of 1 × 10?6 m ). The viability and secretion of estradiol (E2), progesterone (P4) and oxytocin (OT) were measured after 72 h of incubation. Moreover, the expression of mRNA for neurophysin‐I/OT (NP‐I/OT; precursor of OT) and peptidyl‐glycine‐α‐amidating monooxygenase (PGA, an enzyme responsible for post‐translational OT synthesis) was determined after 8 h of treatment. None of the phytoestrogens used affected the viability of cells except for coumestrol. The increased secretion of E2 and P4 was only obtained by coumestrol (p < 0.05) from granulosa cells from follicles <1 cm in diameter and decreased from luteal cells on days 11–15 of the oestrous cycle, respectively. All three phytoestrogens stimulated (p < 0.05) OT secretion from granulosa and luteal cells in all stages of the oestrous cycle and the expression of NP‐I/OT mRNA in the both types of cells. The expression of mRNA for PGA was stimulated (p < 0.05) by daidzein and coumestrol in granulosa cells, and by genistein and coumestrol in luteal cells. In conclusion, our results demonstrate that these phytoestrogens can impair the ovary function in cattle by adversely affecting the synthesis of OT in follicles and in corpus luteum. However, their influence on the ovarian steroids secretion was less evident.  相似文献   

4.
Subluteolytic doses of prostaglandin F2alpha analogue (oestrophan) given i.m. and oxytocin (OT) antagonist (CAP) and noradrenaline (NA) infused into the abdominal aorta were used to test the importance of luteal OT in pulsatile secretion of prostaglandin F2alpha (PGF) during luteolysis in heifers (n = 17). In experiment 1, heifers were pre-infused for 30 minutes with saline on either day 17 of the oestrous cycle (group 1; n = 4) or on day 18 of the oestrous cycle (group 2; n = 3), and with CAP (8 mg per animal) on day 17 of the oestrous cycle (group 3; n = 4). Next, heifers were injected with oestrophan (30 microg per animal). Injection of oestrophan in Group 3 increased OT concentrations (P < 0.001) to values similar to those observed during spontaneous luteolysis (50 to 70 pg ml(-1)). PGFM concentrations in this group also increased (P < 0.001), but were lower (P < 0.05) than the values in groups 1 and 2, CAP given prior to oestrophan decreased both PGFM elevation (P < 0.06) and its area under the curve (P < 0.01), compared to the saline pretreated heifers. In experiment 2 NA (4 mg) was infused twice for 30 minutes at five hour intervals to release OT on day 17 of the oestrous cycle (n = 6). However, during hormone analysis it appeared that three of six heifers had elevated PGFM concentrations (group 1) and three others did not (group 2). NA caused the correlated increase of progesterone and OT secretion (r = 0.68; P < 0.05) in both groups but it only influenced PGF secretion in group 1 only (P < 0.05). We postulate that OT can amplify and modulate the course of induced luteolysis as a regulator of the amplitude of pulsatile PGF secretion. PGF analogue stimulates secretion of endogenous PGF from the uterus in cattle and this may be an important component of the luteolytic response to exogenous PGF.  相似文献   

5.
Occurrence of individual polychlorinated biphenyl (PCB) congeners in the environment, foodstuffs and other biological materials was assessed. Analysis of specific PCB congeners (28, 52, 101, 138, 153, 180), occurring in animal raw materials and foodstuffs most frequently, has been implemented. Sample processing, isolation of fat from milk, meat, organs, fat tissue and eggs, and separation of PCB from fats using the sorbents Florisil or Ekosorb (a new Czechoslovak sorbent based on modified silica gel, Kavalier Glassworks, Votice) are described in detail. Individual PCB congeners were determined by capillary gas chromatography (gas chromatograph Varian VISTA 6,000, equipped with a 63Ni ECD; silica capillary column SPB-5, 30 m x 0.32 mm I.D., 0.25 micron film; column temperature programme: 60 degrees C for 2 min, then to 250 degrees C at 20 degrees C/min and held for 13 min; splitless injection). Chromatograms of commercial chemicals Delor 103 and Delor 106 (corresponding to Aroclor 1242 and 1260, respectively), of a mixture of six specific PCB congener standards and of a PCB--containing milk sample are presented in Fig. 1-3. Methods of PCBs estimation, currently used in Czechoslovakia, and benefits of congeneric analysis of PCBs (reproducibility of results, quantification of individual congeners) are discussed. Analysis of specific PCB congeners is used for the assay of PCBs in foodstuffs and investigations of PCBs dynamics in food chains and distribution and accumulation of PCBs in animal organisms. Contents of specific PCB congeners in milk, pork and pig liver and kidney samples are given in Tab. II.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The hypothesis that epinephrine (noradrenaline, NA) enhances utilisation of high-density lipoproteins (HDL) by bovine luteal cells and that this process involves phospholipase (PL) C and protein kinase (PK) C intracellular pathway was tested. Luteal cells from days 2-4, 5-10 or 11-17 of the oestrous cycle were preincubated for 20 h. Subsequently DMEM/Ham's F-12 medium was replaced by fresh medium and the cells were treated for 6 h as follows: In Experiment I with HDL (5-75 micrograms cholesterol per ml), NA, isoprenaline (ISO) or luteinising hormone (LH). In Experiment II cells were incubated for further 24 h in deficient medium (without FCS) and next treated as in Experiment I. In Experiment III cells were stimulated with NA, ISO or LH alone and together with HDL. In Experiment IV cells were treated with PLC inhibitor (U-73122) or with PKC inhibitor (staurosporine) or stimulator (phorbol 12-myristrate 13-acetate) and with either NA, insulin or LH. Only luteal cells from days 5-10 of the cycle responded on HDL and beta-mimetics (P < 0.05). LH stimulated progesterone secretion from the luteal cells during all stages of the cycle (P < 0.001). Cells incubated in deficient medium and supplemented with HDL secreted as much progesterone as those stimulated by LH in all stages of the cycle. Beta-mimetics were unable to enhance the stimulatory effect of HDL. Blockade of PLC had no influence on progesterone secretion from cells treated with either NA or LH, but this did impair the stimulatory effect of insulin (P < 0.05). Similarly, blockade of PKC by staurosporine impaired (P < 0.05) the effect of insulin only but not that observed after LH or NA treatment. We suggest that: (a) noradrenergic stimulation does not enhance utilisation of cholesterol from HDL for progesterone secretion; (b) the fasting of luteal cells seems to activate enzymes responsible for the progesterone synthesis; (c) effect of NA on progesterone secretion from luteal cells does not involve the PLC-PKC pathway.  相似文献   

7.
Luteinizing hormone (LH)-stimulated steroidogenesis in luteal cells is known to be mediated through the activation of cyclic AMP (cAMP)-dependent protein kinase, and to be also modulated by calcium-dependent mechanisms. In the present study, we tested the hypothesis that LH stimulates progesterone (P4) production in bovine luteal cells through activation of phospholipase (PL) C by using a cell culture system. Bovine mid-luteal cells (Days 8-12 of the estrous cycle) were cultured for 24 h and then exposed to a PLC inhibitor (U-73122; 10 microM) with or without LH (10 ng/ml) for 4 h. U-73122 blocked LH-stimulated P4 production without affecting cAMP accumulation. Moreover, exposure of luteal cells to PLC increased P4 production in a dose-dependent manner. These results support the hypothesis that the luteotropic action of LH in bovine luteal cells is mediated not only by activation of adenylate cyclase but also by activation of PLC.  相似文献   

8.
The phytoestrogens genistein and daidzein had been found to affect the function of some tissues via oestrogen receptors (ER). In addition, genistein, but not daidzein, is considered to be a protein tyrosine kinase (PTK) inhibitor. Thus, the involvement of oestrogen receptors and PTK in phytoestrogen action on adrenocortical porcine steroidogenesis was examined in this study. The aims of the experiment were to test the effects of (i) ICI 182, 780 (ICI), an ER antagonist, on genistein- and daidzein-modulated cortisol and androstenedione (A4) secretion by adrenocortical cells isolated during the luteal and follicular phases of the porcine oestrous cycle; (ii) tyrphostin AG 957 (TAG), a nonsteroidal PTK inhibitor, on cortisol and A4 secretion by the cells and (iii) the phase of the porcine oestrous cycle on the mechanism of phytoestrogen action. Adrenals were harvested during the luteal (n = 5 animals) and follicular (n = 5 animals) phases of the oestrous cycle from locally slaughtered crossbred gilts. The isolated adrenocortical cells were incubated for 8 h (37 °C, 95% air, 5% CO2) with genistein (5 or 10 μM) or daidzein (5 or 10 μM) in the presence or absence of ICI (0.5 μM) or TAG (5 or 10 μM). Genistein and daidzein inhibited cortisol secretion and stimulated A4 secretion by porcine adrenocortical cells harvested during both the luteal and follicular phases of the oestrous cycle. The ER antagonist ICI did not eliminate phytoestrogen-induced changes in steroidogenesis. In contrast to genistein, TAG reduced the secretion of A4 and did not affect cortisol secretion. There was no observable effect due to the phase of the cycle. It is suggested that the mechanism of genistein and daidzein action in the adrenocortical cells of pigs is independent of ER and PTK. It is possible that PTK are involved in A4 secretion by porcine adrenocortical cells.  相似文献   

9.
The aim of this study was to examine whether active metabolites of phytoestrogens (equol and para-ethyl-phenol) inhibit sensitivity of bovine corpus luteum (CL) to luteinizing hormone (LH) and to auto/paracrine luteotropic factors (prostaglandin E2-PGE2 and prostaglandin F(2alpha)-PGF(2alpha)), and whether they influence pulsatile progesterone (P4) secretion by the bovine CL. In in vivo experiments, high levels of equol and para-ethyl-phenol were found in plasma and in the CL tissue of heifers and cows fed a soy bean diet (2.5 kg/animal/day), along with lower concentrations of P4 (P < 0.05). Both Prostaglandins (PG) and LH strongly stimulated P4 secretion in cultured pieces of CL that were collected from cows fed a standard diet (P < 0.01). There was no effect of PGs and LH on P4 stimulation in CLs obtained from cows fed a diet rich in soy bean. Finally, we examined whether active metabolites of phytoestrogens participated in regulation of pulsatile P4 secretion and LH-stimulated P4 secretion in vitro using a microdialysis system. Equol and para-ethyl-phenol had no effect on basic and pulsatile P4 secretion in CLs during 240 min of perfusion when compared to the control (P < 0.05). However, they inhibited LH-stimulated P4 secretion (P < 0.05). Phytoestrogens and their metabolites may disrupt CL function by inhibiting PG- and LH-stimulated P4 secretion.  相似文献   

10.
Interleukin-1β (IL-1β) may regulate ovarian physiology. In this study, the influence of IL-1β on secretory activity within the corpora lutea (CL) of cyclic and gravid pigs was determined in vitro during different stages of the CL lifespan, e.g. on Days 10-11, 12-13 and 15-16 of the oestrous cycle and pregnancy. IL-1β (10 ng/ml) increased prostaglandin E2 (PGE2) secretion from CL of the cyclic and gravid pigs during studied days of the oestrous cycle and pregnancy. Increase (P < 0.05) of prostaglandin F2α (PGF2α) in IL-1β-treated CL was demonstrated only on Days 10-11 of the oestrous cycle. More potent stimulatory effect of IL-1β on PGE2 than PGF2α secretion resulted in the enhancement of the PGE2:PGF2α ratio in cyclic and early pregnant CL. IL-1β increased (P < 0.05) progesterone (P4) secretion only in gravid CL and had no effect on oestradiol-17β (E2) release. Expression of cyclooxygenase-2 (COX-2) mRNA was stimulated (P < 0.05) in IL-1β-treated cyclic and gravid CL. Expression of prostaglandin synthase mRNAs in response to IL-1β did not increase. In conclusion, IL-1β modulates PGE2, PGF2α and P4 secretion from porcine CL, depending on luteal stage and the surrounding hormonal milieu. The cytokine may act locally in porcine CL for luteotrophic support throughout the PGE2-mediated synthesis and secretion.  相似文献   

11.
In the first experiment, minced luteal tissues from cyclic ewes (n = 5) were incubated for 6 h. Media conditioned by these luteal tissue explants stimulated proliferation and migration of endothelial cells. In a second experiment, corpora lutea (CL) from superovulated ewes (n = 12) were dissociated (two ewes/dispersion) and separated into three fractions: a non-elutriated fraction containing a mixed population of luteal cells, a fraction enriched with small steroidogenic luteal cells, and a fraction containing primarily large steroidogenic luteal cells. Fractions (2 X 10(5) viable steroidogenic luteal cells per milliliter of medium) were incubated with LH in doses of 0, .1, 1, 10, and 100 ng/ml for 7 d. Conditioned media were collected on d 1, 3, 5, and 7 of incubation. Across all days of incubation, media from small luteal cells stimulated proliferation of endothelial cells. Media from large luteal cell incubations, however, secreted an endothelial mitogen only on d 7 of culture. Mixed luteal cell cultures secreted mitogenic activity on d 3, 5, and 7 of incubation, but not on d 1. Luteinizing hormone did not influence release of mitogenic activity by any luteal cell fraction. Across all days of incubation, media from large luteal cells contained more progesterone than those from small luteal cells (528 +/- 137 vs 48 +/- 16 ng/ml with no LH). Mixed (non-elutriated) and small luteal cells increased progesterone secretion in response to LH, and this response was maintained during long-term culture. Large luteal cells did not increase progesterone secretion in response to LH. Steroidogenic activity of all cell types decreased as incubation time progressed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The timing of the post-ovulatory progesterone rise is critical to the embryonic development and survival. The aim of this study was to determine the underlying causes of delayed post-ovulatory progesterone rises. Two groups of non-lactating dairy cows with early (n = 11) or late (n = 9) post-ovulatory progesterone rises were created by inducing luteolysis in the presence of either a large (> 10 mm) or small (< 10 mm) follicle, respectively. LH pulses were measured on days 4 (all cows) and 7 (n = 7, early; n = 5, late) (day 1= ovulation). The cows were slaughtered on day 5 (n = 4 each group) or 8 (n = 7, early; n = 5, late). Immunohistochemical analysis for endothelial cells (von Willebrand Factor, VWF), steroidogenic cells (3beta-HSD) and proliferation marker (Ki67) were performed. The basal progesterone production and LH responsiveness (0.001-100 ng/ml) of dispersed luteal cells was investigated. The luteal concentrations of FGF-2 and VEGF were measured by ELISA and RIA, respectively. There were no differences in LH pulse characteristics, area of VWF staining, proliferation index, steroidogenic cell characteristics, basal or LH-stimulated progesterone production by luteal cells between cows with an early or late progesterone rise (P > 0.10). However, the area of VWF staining increased from days 5 to 8, while the proliferation index decreased (P < 0.05). Furthermore, the luteal cells were more responsive to LH on day 8 (P < 0.01). Luteal concentrations of FGF-2 were higher on day 5 (P = 0.05), while VEGF was greater on day 8 (P < 0.01). In conclusion, we have clearly shown that LH support, degree of vascularization or luteal cell steroidogenic capacity were not the major factors responsible for inadequate secretion of progesterone by the developing bovine CL.  相似文献   

13.
The aim of this study was to determine the level and duration of progesterone secretion during the sequential oestrous cycles in fat-tailed Tuj ewes following tactile and visual separation of rams during the breeding season. For these purposes, rams were separated from the main flock for 50 days starting from the beginning of the breeding season and 21 ewes were randomly selected for the current experiment. In order to assess luteal activity and the length of oestrous cycles, the ewes were blood-sampled thrice or twice weekly for the measurement of progesterone in plasma. The data showed that 3 +/- 0.2 oestrous cycles were observed in this time window, and the first oestrous cycle observed was shorter (P < 0.05) than the following cycles (mean +/- SEM, 14.6 +/- 0.82, 16.5 +/- 0.48 and 17.0 +/- 0.54 days, respectively, for cycles 1, 2 and 3). Progesterone production was significantly lower in the first oestrous cycle compared with the second and third cycles on days 9, 12 and 14 of the cycles. The follicular periods of ewes showed four accumulations (maximum values using a 3-day moving average technique) throughout the study and the percentages of ewes at each accumulation (peak day +/- 1 day) were 50, 35, 65 and 80% for the first, second, third and fourth accumulations, respectively (P < 0.05). It was concluded that progesterone production was lower and the oestrous cycles were shorter during the first oestrous cycle and that tactile and visual separation of rams at the beginning of the breeding season might enhance the synchronizing effect towards the end of the breeding season in the fat-tailed Tuj ewes.  相似文献   

14.
Previous studies indicate that reproductive prolificacy of obese swine breeds is markedly influenced by embryo losses in early pregnancy. In such period, adequate secretion of progesterone (P4) by the ovary is essential for pregnancy success. This study analyses the luteal functionality during the oestrous cycle and early pregnancy of Iberian sows and Large White x Landrace females, in terms of P4 secretion after in vitro culture of luteal tissue stimulated or not with luteinizing hormone (LH). The secretion of progesterone (expressed in ng/mg of luteal tissue or ng/mgLT) of the corpora lutea of obese Iberian swine was always hampered when compared to lean genotypes, either during early oestrous cycle (110.7 ± 37.8 vs 259.7 ± 10.2 ng/mgLT; p < 0.0001), late oestrous cycle (49.0 ± 3.5 vs 75.92 ± 7.14 ng/mgLT; p < 0.0001) or early pregnancy (38.4 ± 2.1 vs 70.7 ± 5.3 ng/mgLT; p < 0.0001). The differences in basal P4 secretion remained after stimulation with LH. Finally, P4 secretion during early pregnancy of Iberian sows decreased with age and, hence, with obesity features (46.6 ± 4.2 vs 65.5 ± 4.8 ng/mgLT; p < 0.001). In conclusion, the results of the present study provide convincing evidence of a reduced luteal function during oestrous cycle and early pregnancy of sows with obesity/leptin resistance like Iberian sows, which may contribute to the low reproductive efficiency reported in this breed.  相似文献   

15.
Gossypol, a polyphenolic aldehyde found in cottonseed, has been shown to perturb steroidogenesis in granulosa and luteal cells of rats, pigs and cattle. However, little is known about the direct effect of gossypol on theca cell functions in any species. The present study was conducted to investigate the effect of gossypol on the steroidogenesis and the expression of genes involved in it in cultured bovine theca cells. Theca cells were isolated from healthy preovulatory follicles and were cultured in the presence of luteinizing hormone (LH) for up to 7 days. During the culture period, main steroid products of the theca cells shifted from androstenedione (A4) at day 1 to progesterone (P4) from day 2 onward. At days 1 and 7, theca cells were treated with gossypol (0‐25 μg/mL) for 24 h. Gossypol inhibited LH‐stimulated theca cell A4 and P4 production in a dose‐dependent manner at both occasions. The viability of theca cells was not affected by gossypol at any doses used. Gossypol down‐regulated expressions of steroidogenic enzymes CYP11A1, HSD3B1 and CYP17A1, but not that of LHR. These results indicate that gossypol inhibits thecal steroidogenesis through down‐regulating gene expressions of steroidogenic enzymes but without affecting cell viability in cattle.  相似文献   

16.
17.
The ability of ovine placental lactogen (oPL) to stimulate progesterone secretion of porcine luteal cells isolated from ovaries in different stages of the oestrous cycle and to support the luteotropic action of PGE2 or to protect the corpus luteum (CL) against the luteolytic action of PGF2 alpha was investigated. oPL in all doses used had no effect on progesterone production of cells isolated from early developing corpora lutea while in doses of 1 and 10 ng/ml it increased oestradiol secretion by this type of cells. In doses of 1, 10 and 100 ng/ml it also increased progesterone secretion of cells isolated from mature corpora lutea in a dose-dependent manner. No influence on progesterone production of cells isolated from regressing corpora lutea was observed. oPL added to the culture media had no effect on PGE2-stimulated progesterone production by cells isolated from mature corpora lutea. However, it exerted a protective effect against the luteolytic action of PGF2 alpha observed in cultures treated with PGF2 alpha alone or in combination with PGE2 in a ratio of 4:1. These studies provide evidence that oPL is luteotropic and supports progesterone production in swine. The fact that oPL acted directly on ovarian steroidogenesis suggests that it may also play some role under non-pregnant physiological conditions. Future studies of structural and functional proteins secreted by the porcine conceptus will help resolve this uncertainty.  相似文献   

18.
In earlier in vitro experiments opioids affected steroidogenesis in porcine luteal and granulosa cells. The present studies were undertaken to examine the effects of FK 33-824 (opioid agonist) alone or in combination with LH, PRL or naloxone (NAL, opioid antagonist) on steroidogenesis in cultured porcine theca cells. Moreover, we have tested beta-endorphin-like immunoreactivity (beta-END-LI) concentrations in culture media under control conditions and following treatments of theca cells with LH, PRL, progesterone (P4), oestradiol (E2) or testosterone (T). FK 33-824 and NAL significantly increased P4 release by theca cells and inhibited stimulatory effect of LH on this steroid output. PRL-induced P4 secretion from the cells was blunted only by FK 33-824. Secretion of androstenedione (A4) and T was essentially elevated in the presence of FK 33-824 and this potentiation of both androgen release was completely abolished by PRL. NAL blocked stimulatory effect of the opioid agonist only in case of T. Secretion of oestradiol and oestrone was completely free from the influence of both the opioid agonist and antagonist. Pig theca cells were able to produce beta-END-LI but none of tested hormones (LH, PRL, P4, E2 and T alone or in combination) significantly affected this production. In conclusion, these data indicate that porcine theca cells may produce beta-END-LI and change their steroidogenesis in response to opioid peptides.  相似文献   

19.
The present studies were undertaken to examine the effect of tumour necrosis factor (TNF) alpha on prostaglandins (PGs) F(2alpha) and E(2) release by cultured porcine endometrial cells harvested on days 13-16 after oestrus in comparison to stimulation with oxytocin (OT) and luteinizing hormone (LH). A time-dependent effect of TNFalpha (10 ng/ml) on PGF(2alpha) release was observed in stromal and luminal epithelial cells. Moreover, TNFalpha increased PGF(2alpha) secretion from both endometrial cell types with effective concentrations of 1 (p < 0.05), 10 and 50 ng/ml (p < 0.01). The effect of TNFalpha (10 ng/ml) on endometrial PGF(2alpha) and PGE(2) release was compared with OT (100 nmol/l) and LH (100 ng/ml). All factors affected PGF(2alpha) secretion from stromal cells, however, the stimulation tended to be more potent after OT and LH (p < 0.01) than after TNFalpha (p < 0.05) treatment. In epithelial cells, only TNFalpha was able to stimulate PGF(2alpha) release (p < 0.001). PGE(2) secretion from stromal cells increased after incubation with TNFalpha and OT (p < 0.05). Only LH stimulated PGE(2) release from epithelium (p < 0.001), and its action was very effective when compared with TNFalpha or OT (p < 0.01). Summarizing, TNFalpha induces both PGs secretion from cultured porcine endometrium, but preferentially stimulates PGF(2alpha) release from luminal epithelial cells. Therefore, similarly to OT and LH, TNFalpha may be considered as a potential modulator of endometrial PGF(2alpha) production during luteolysis in the pig.  相似文献   

20.
There is increasing evidence that inflammatory cytokines regulate corpus luteum (CL) function in many species. The purpose of the present study was to determine whether interleukin (IL)-4 and IL-6 are expressed in the porcine CL, and whether these cytokines influence porcine luteal steroidogenesis. The gene expressions of IL-4, IL-6 and their specific receptors were determined in the CL of Chinese Meishan pigs during the estrous cycle. Moreover, the effects of these cytokines on progesterone (P(4)), estradiol-17beta (E(2)) and prostaglandin (PG) F2alpha secretion by cultured luteal cells were investigated. IL-4 and IL-6 mRNAs were detected in the CL at all luteal stages. Furthermore, mRNAs of the receptors for IL-4 and IL-6 were clearly expressed in the CL throughout the estrous cycle. Real-time PCR analysis revealed that IL-6 receptor (IL-6R) mRNA expression was higher in the regressed CL (days 19-21 after ovulation) than in the CL at other stages (P<0.01). Exposure of cultured luteal cells obtained from mid-stage CL (days 8-11) to IL-6 (1-100 ng/ml), it inhibited P(4) and E(2) secretion by the cells (P<0.05). Although IL-4 (1-100 ng/ml) did not significantly alter P(4) secretion, it inhibited E(2) secretion by the cells (P<0.05). Neither IL-4 nor IL-6 had any effect on PGF2alpha secretion by the cells. These results suggest that IL-4 and IL-6 are locally produced in the porcine CL, and that they inhibit steroid production from luteal cells via their specific receptors. Collectively, both IL-4 and IL-6 may play roles in regulating porcine CL function throughout the estrous cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号