首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Methamidophos (O,S-dimethylphosphoramidothioate, Monitor) is an organophosphorus, cholinesterase-inhibiting insecticide. The rate constant (ki) for inhibiting rat plasma cholinesterase (ChE) was 1.57 ± 0.03 × 103M?1 min?1, for rat erythrocyte ChE was 8.86 ± 1.10 × 103M?1 min?1, and for rat brain ChE was 6.58 ± 0.42 M?1 min?1. Brain and plasma cholinesterases spontaneously recovered from over 90% inhibition at 30 min to 50% inhibition in 4 and 14 hr, respectively. Pralidoxime increased the rate of reactivation in vitro. In vivo, rats poisoned with methamidophos exhibited signs of cholinergic stimulation. The LD50 of ip methamidophos in male rats was 15 ± 0.7 mg/kg. Pralidoxime (60 mg/kg) and atropine (10 mg/kg) given with the methamidophos increased the LD50 to 52 ± 4.9 mg/kg and 60 ± 0.4 mg/kg, respectively. In rats given 12.5 mg methamidophos (an LD20), ChE activity was depressed 95 ± 12.5% in plasma, 92 ± 0.6% in stomach, and 88 ± 1% in brain at 1 hr after injection. At 48 hr after injection ChE activity had returned to 60% or more of control values in each of the tissues. Administration of a single dose of 60 mg/kg of pralidoxime along with methamidophos did not increase ChE activities at the times and places it was measured.  相似文献   

2.
The toxicity (72 hr) of acephate and methamidophos to fourth-instar larvae of the tobacco budworm, Heliothis virescens (F.), was nearly equivalent. In contrast, toxicity (72 hr) of methamidophos to adult boll weevils, Anthonomus grandis grandis (Boheman), was substantially greater than that of acephate. The internal accumulation of acephate was greater for A. grandis grandis than for H. virescens at 24 and 48 hr post-treatment, as was excretion. Acephate was metabolized to methamidophos both in vivo and in vitro by H. virescens but not by A. grandis grandis. In vitro acetylcholinesterase inhibition by methamidophos was greater than that of acephate, but less than that of paraoxon for H. virescens, A. grandis grandis, and the electric eel. Treatment of H. virescens larvae with acephate resulted in increased in vivo acetylcholinesterase inhibition between 24 and 72 hr post-treatment, which was associated with a large increase in mortality. H. virescens treated with methamidophos showed greater mortality and greater acetylcholinesterase inhibition at earlier time periods than those treated with acephate. However, by 72 hr post-treatment, in vivo acetylcholinesterase inhibition by LD50 doses of acephate and methamidophos were approximately equivalent. These results indicate that, for H. virescens, toxicity of acephate is directly related to its metabolism to methamidophos and subsequent acetylcholinesterase inhibition. Likewise, the differential toxicity of acephate and methamidophos to A. grandis grandis adults appears to be due to their inability to metabolize acephate to methamidophos.  相似文献   

3.
The effect of 2,4-dichlorophenoxyacetic acid (2,4-D), 4-chloro-2-methylphenoxyacetic acid (MCPA), and their derivatives: phenol, 2,4-dichlorophenol (2,4-DCP), 2,4-dimethylphenol (2,4-DMP), and catechol on the activity of acetylcholinesterase (AChE, EC 3.1.1.7) in human erythrocytes was studied. Phenol, MCPA, and 2,4-DMP did not significantly change AChE activity in human erythrocytes (in vitro). Decrease of AChE activity was observed under the highest applied dose of 2,4-D—500 and 1000 ppm. Decrease of AChE activity exposed to 2,4-DCP and catechol was noted and depended on the doses of applied compounds. The relationship between activities and substrate concentrations (curves) was analyzed for reactions of acetylcholinesterase. Catalytic constants Km and Vmax were calculated from the Michaelis curve. Statistically significant decrease of Vmax and Km was observed in the activity of AChE incubated with 2,4-DCP and catechol, revealing mixed inhibition type of AChE inhibition (this compound may affect not only on enzyme but also on complex ES as well). 2,4-D decreases Vmax but do not change Km value, what reveals non-competitive type of AChE inhibition by this compounds. Non-competitive inhibition does not depend on the substrate concentrations but only on the inhibitor concentration and its Ki value, characterizes the affinity of inhibitors towards enzyme. In conclusion, changes of AChE activity upon 2,4-D, 2,4-DCP, and catechol are the consequences of direct interactions between compounds and the enzyme and indirect via membrane modification and increase of Reactive Oxygen Species.  相似文献   

4.
室内抗药性筛选表明,褐飞虱对甲胺磷的抗性呈"快-慢-快"的发展趋势:第1到第4代抗性上升缓慢;第5代到第15代迅速上升,其中又呈现2个发展阶段,以第9代为拐点;第15代后抗性上升变慢。羧酸酯酶在抗药性上升中可能起到十分重要的作用,与LD50变化存在很高的相关性,达到极显著水平,相关系数为0.990 6。乙酰胆碱酯酶不敏感性在抗性发展后期变化很大,第8代到第16代间,与LD50变化存在极显著相关性,相关系数为0.970 1。由此可见,羧酸酯酶可能在褐飞虱对甲胺磷抗性的持续发展中起十分重要的作用,而乙酰胆碱酯酶不敏感性在抗性发展的后期阶段可能起到很重要作用。  相似文献   

5.
The susceptibilities to methamidophos as well as the kinetic and inhibitory parameter of acetylcholinesterases (AChE) and the activities of carboxyestsrases (CarE) and glutathione-S-transferases (GST) were studied in 18 species field populations of insects collected in Fuzhou, China during April and May 2000 and 2001. The insect species included five hymenopteran endoparasitoids, one hymenopteran exoparasitoid, one hymenopteran hyperparasitoid, one dipteran predator, four coleopteran predator ladybirds, six herbivorous pest insects of lepidoptera, diptera, homoptera, and coleoptera, respectively. There existed significant correlations between the susceptibility to methamidophos and the ki values of AChE to methamidophos, dichlorvos, and carbofuran and between the ki and Vmax values of AChE among 18 species of insects. The six herbivorous pests and four ladybirds showed significantly low ki and Vmax values of AChE compared to the seven parasitoids and predator Epistrophe balteate. It was difficult to correlate the susceptibility to methamidophos or the ki values with the Km values of AChE, or with the activity of CarE and GST. The activities of CarE and GST varied depending on the different insect species. Significant synergisms of piperonyl butoxide (PB), triphenyl phosphate (TPP), and diethyl maleate (DEM) with methamidophos were observed in 14 pest insects and their natural enemies. Synergisms of PB were found to be the greatest. Reduced ki values suggested that insensitive AChE might play a critical role in the tolerance to methamidophos in the 18 insect species. The detoxification enzymes, mixed-function oxidase (MFO), CarE, and GST, were believed to be involved in the tolerance to methamidophos. MFO might play the most important role, and CarE or GST might be important in the tolerance in some insect species. Different models of tolerance to methamidophos and enzymatic potential were existed in parasitoids, predators, and herbivores based on the different selection of insecticide pressure (either directly by exposing to the spray in the field, or indirectly by the insecticides penetrated into the body of host insects) as well as different ecological and biological habitats.  相似文献   

6.
In apterous adults of the spirea aphid, Aphis citricola van der Goot, the optimum conditions for determining acetylcholinesterase (AChE) activity consist of reaction mixture of 0.1 M phosphate buffer (pH 7.5), 10?3M acetylthiocholine (ASCh), and enzyme extract equivalent to 80 ± 3 μg protein incubated for 15 min at 30°C. The Km value for ASCh (6.7 × 10?5M) was much lower than that of butyrylthiocholine (BuSCh) (1.25 × 10?2M). The enzyme activity was almost completely inhibited by 10?6M paraoxon or 10?5M eserine and was 84% inhibited by 10?5M BW284C51 (a specific AChE inhibitor). DTNB was found to inhibit the enzyme activity and was therefore added at the end of the reaction. AChE activity of A. citricola was inhibited in vitro and in vivo by dimethoxon > dimethoate, and aldicarb sulfoxide > aldicarb > aldicarb sulfone. The in vivo effect correlates well with the toxicity level of the various toxicants. A neurotoxicity index which combines both mortality and in vivo inhibition of the aphid AChE activity is suggested as a measure for determining the toxicity of organophosphorus and carbamate compounds toward aphids.  相似文献   

7.
8.
The inhibitory effects of a recently introduced series of the titled compounds on insect and mammalian acetylcholinesterase (AChE) activity were examined, where the median inhibition concentration (I50) and the inhibition kinetic parameters, bimolecular inhibition rate constant (ki), affinity constant (Ka), and phosphorylation rate constant (kp), were determined for each compound. Results indicated that all examined dioxaphospholenes had less inhibitory effects on mammalian AChE than fenitrothion, a commercial pesticide with moderate mammalian toxicity. The highest selectivity was obtained with compounds containing glutamic and leucine moieties (2.70 and 2.18, respectively) while selectivity of fenitrothion was 0.93. The low inhibitory effects of the examined dioxaphospholenes on mammalian AChE were attributed to their low phosphorylation rates (kp < 2.2 min−1) compared to that of fenitrothion (kp = 4.84 min−1). QSAR equations indicated that the inhibition process is controlled mainly by both the phosphorylation rate (direct effect) and the affinity of compounds toward the enzyme (inverse effect). Although the compounds’ hydrophobicity had no effects on the inhibition process, it affects the compounds’ toxicity since it affects the ability of compounds to penetrate insects to reach the enzyme active site.  相似文献   

9.
In this study, the acute toxicity of the organophosphorous pesticide (OP) dichlorvos and both in vitro and in vivo effects of dichlorvos on cholinesterase (ChE) activity of the European sea bass (Dicentrarchus labrax) were investigated. The characterisation of ChE and the “normal” range of activity in brain and muscle of non-exposed fish were determined in a first phase of the study. Acetylthiocholine was the substrate preferred of both brain and muscle ChE. Eserine sulphate and BW284C51 significantly inhibited the brain and muscle enzyme activity at low concentrations (μM range). Iso-OMPA had a significant effect in muscle, but not in brain tissue. These results suggest that acetylcholinesterase (AChE) is the predominant ChE form in brain tissue. In contrast, both acetylcholinesterase and butyrylcholinesterase seem to exist in muscle. Using acetylthiocholine as substrate, the “normal” range of fingerling head and muscle ChE were 58.05±2.11 and 118.03±8.67 U/mg protein, respectively. Corresponding values for juveniles were 43.32±4.42 and 19.44±2.44 U/mg protein for brain and muscle, respectively. Dichlorvos significantly inhibited the activity of ChE in the selected tissues, both in vitro and in vivo conditions. Differences in ChE sensitivity were found in relation to the age of the fish and the tissue analysed. The present study also showed that fingerlings of the European sea bass are relatively resistant to in vivo acute (96 h) dichlorvos exposure to concentrations between 0.125 and 1 mg/L, being able to tolerate high percentages of head ChE inhibition (37% and 76%) without lethal effects.  相似文献   

10.
In the present study toxic effects of active molluscicidal component of Areca catechu and Carica papaya was studied on certain enzymes in the nervous tissue of freshwater snail Lymnaea acuminata. In in vivo and in vitro exposure of arecoline (active component of Areca catechu seed) and papain (C. papaya latex and seed) significantly inhibited the acetylcholinesterase (AChE), acid and alkaline phosphatase (ACP/ALP) activity in the nervous tissue of L. acuminata. The inhibition kinetics of these enzymes indicate that arecoline and papain caused competitive and uncompetitive inhibition of AChE, respectively, whereas arecoline caused competitive-non-competitive inhibition of ACP/ALP and papain caused non-competitive inhibition of ACP/ALP. Thus the inhibition of AChE, ACP and ALP by arecoline and papain in the nervous tissue of L. acuminata may be the cause of molluscicidal activity of A. catechu and C. papaya, respectively.  相似文献   

11.
Decreased acetylcholinesterase (AChE) sensitivity and metabolic detoxification mediated by glutathione S-transferases (GSTs) were examined for their involvement in resistance to acephate in the diamondback moth, Plutella xylostella. The resistant strain showed 47.5-fold higher acephate resistance than the susceptible strain had. However, the resistant strain was only 2.3-fold more resistant to prothiofos than the susceptible strain. The resistant strain included insects having the A298S and G324A mutations in AChE1, which are reportedly involved in prothiofos resistance in P. xylostella, showing reduced AChE sensitivity to inhibition by methamidophos, suggesting that decreased AChE1 sensitivity is one factor conferring acephate resistance. However, allele frequencies at both mutation sites in the resistant strain were low (only 26%). These results suggest that other factors such as GSTs are involved in acephate resistance. Expression of GST genes available in P. xylostella to date was examined using the resistant and susceptible strains, revealing no significant correlation between the expression and resistance levels.  相似文献   

12.
TIA-230, O-[1-(4-chlorophenyl)-4-pyrazolyl] O-ethyl S-propyl phosphorothiolate, showed strong insecticidal activity against Spodoptera larvae, in spite of its weak in vitro anti-AChE activity. Head AChE of Spodoptera was, however, inhibited with the progress of TIA-230 intoxication. When the isolated central nerve cord was incubated with TIA-230, AChE in the tissue was strongly inhibited even by concentration (10?5M) lower than in vitro I50 against AChE (10?4M). The frequency of spontaneous firing of the nerve cord was increased by treatment of TIA-230 at low concentrations (10?6–10?5M) after a latent time of several minutes. The firing was increased by fenitroxon, but without the latent time. The length of the latent time agreed well with the time necessary for rising the inhibition of nerve cord AChE by TIA-230. AChE inhibition of TIA-230 in the nerve cord was reduced by the treatment of piperonyl butoxide, an inhibitor of mixed-function oxidases. From these results, TIA-230 was regarded as being activated oxidatively in the nerve cord to inhibit AChE. Profenofos was also activated in the nerve cord. It was concluded, therefore, that O-ethyl S-n-propyl phosphorothiolate insecticides were activated in the central nerve of the insect.  相似文献   

13.
Carbofuran occupational dermal toxicity, exposure and risk assessment   总被引:1,自引:0,他引:1  
BACKGROUND: Carbofuran is a carbamate insecticide that inhibits AChE. Although toxic by ingestion in mammals, it has low dermal toxicity, with relatively few confirmed worker illnesses. This risk assessment describes its time of onset, time to peak effect and time to recovery in rats using brain AChE inhibition in acute and 21 day dermal studies; in vitro rat/human relative dermal absorption for granular (5G) and liquid (4F) formulations; occupational exposure estimates using the Pesticide Handlers' Exposure Database and Agricultural Handlers' Exposure Database (PHED/AHED). RESULTS: The point of departure for acute risk calculation (BMDL10) was 6.7 mg kg?1 day?1 for brain AChE inhibition after 6 h exposure. In a 21 day study, the BMDL10 was 6.8 mg kg?1 day?1, indicating reversibility. At 75 mg kg?1 day?1, time of onset was ?30 min and time to peak effect was 6–12 h. Rat skin had ca tenfold greater dermal absorption of carbofuran (Furadan® 5G or 4F) than human skin. Exposure estimates for 5G in rice and 4F in ten crops had adequate margins of exposure (>100). CONCLUSION: Rat dermal carbofuran toxicity was assessed in terms of dose and time‐related inhibition of AChE. Comparative dermal absorption in rats was greater than in humans. Worker exposure estimates indicated acceptable risk for granular and liquid formulations of carbofuran. Copyright © 2011 Society of Chemical Industry  相似文献   

14.
A hydrophilic form of acetylcholinesterase (AChE) was purified from N-methyl carbamate susceptible (SA) and highly N-methyl carbamate-resistant (N3D) strains of the green rice leafhopper (GRLH), Nephotettix cincticeps Uhler. Both of purified AChE from SA and N3D strains displayed the highest activities toward acetylthiocholine (ATCh) at pH 8.5. In the SA strain, the optimum concentrations for ATCh, propionylthiocholine (PTCh), and butyrylthiocholine (BTCh) were about 1 × 10−3, 2.5 × 10−3, and 1 × 10−3 M, respectively. However, in the N3D strain, substrate inhibition was not identified for ATCh, PTCh, and BTCh to 1 × 10−2 M. The Km value in the SA strain was 51.1, 39.1, and 41.6 μM and that in the N3D strain was 91.8, 88.1, and 85.2 μM for ATCh, PTCh, and BTCh, respectively. The Km value in the N3D strain indicated about 1.80-, 2.25-, and 2.05-fold lower affinity than that of the SA strain for ATCh, PTCh, and BTCh, respectively. The Vmax value in the SA strain was 70.2, 30.5, and 4.6 U/mg protein and that in the N3D strain was 123.0, 27.0, and 14.5 U/mg protein for ATCh, PTCh, and BTCh, respectively. The Vmax value in the N3D strain was 1.75- and 3.15-fold higher for ATCh and BTCh than that in the N3D strain. However, it was 1.13-fold lower for PTCh. The increased activity of AChE in the N3D strain is due to the qualitatively modified enzyme with a higher catalytic efficiency. The bimolecular rate constant (ki) for propoxur was 27.1 × 104 and 0.51 × 104 M−1 min−1 in the SA and N3D strain and that for monocrotophos was 0.031 × 104 and 2.0 × 104 M−1 min−1 in the SA and N3D strain. AChE from the N3D strain was 53-fold less sensitive than SA strain to inhibition by propoxur. In contrast, AChE from the N3D strain was 65-fold more sensitive to inhibition by monocrotophos than AChE from the SA strain. This indicated negatively correlated cross-insensitivity of AChE to propoxur and monocrotophos.  相似文献   

15.
对甲胺磷敏感性的田间监测结果显示,绒茧蜂存在着抗性演化,毒力生物测定结果与AChE的K_i值的监测结果呈明显的相关性,每年9月至次年2月期间AChE敏感性最低,8月期间敏感性最高。甲胺磷可显著地抑制绒茧蜂AChE、CarE和GSTs的活性。PB和TPP对AChE的活体抑制率极低,但PB可强烈抑制CarE的活性,而TPP仅在高浓度时对CarE有较显著的抑制作用,PB对甲胺磷有显著的增效作用,而TPP对甲胺磷无增效作用。AChE的K_m、V_(max)及K_i值研究结果表明,田间绒茧蜂对有机磷和氨基甲酸酯的抗性与AChE对杀虫剂的不敏感性有关。由此认为,绒茧蜂对有机磷的抗性主要与其最重要的靶标酶AChE的敏感性改变及多功能氧化酶有关。  相似文献   

16.
Nile Tilapia (Oreochromis niloticus) juveniles were exposed to different concentrations of Folidol 600® in static toxicity tests. The 24, 48, 72 and 96 h LC50 values of Folidol 600® to O. niloticus were 17.82, 8.91, 4.00 and 2.70 mg L−1, respectively. The values of hematological parameters increased, and inhibition of cholinesterases activity (AChE, BChE and PChE) in plasma of fish exposed to the higher concentrations of pesticide reached 94%. Furthermore, the exposure of Tilapia to Folidol 600® caused an increase of 4%, 20% and 38.4% in oxygen consumption at 0.1, 0.5 and 1.0 mg L−1, respectively. However, exposure to 2.5, 5.0 and 10 mg L−1 caused a decrease of 33.6%, 35.2% and 42.4% in oxygen consumption relative to the control. The ammonium excretion of fish exposed to 0.0, 0.1, 0.5, 1.0, 2.5, 5.0 and 10.0 mg Folidol 600®/L was 0.12, 0.18, 0.30, 0.33, 0.37, 0.36 and 0.33 μg/g/min, i.e., 50%, 150%, 175%, 208%, 200% and 175% increase, respectively, relative to the control.  相似文献   

17.
In search for new local plant molluscicides for the control of the vectors of schistosomiasis, we compared the molluscicidal action of the extract of Ginkgo biloba sarcotesta by benzinum (EGSB) to that of arecoline (ARE) and niclosamide (NIC) against Oncomelania hupensis snails. NIC showed the highest toxicity on snails with 24 h LC50 vales of 0.12 mg/L and LC90 of 0.98 mg/L, while the LC50 and LC90 of EGSB were much lower than that of ARE. Sublethal in vivo 24 h exposure to 40% and 80% LC50 of NIC, EGSB and ARE altered the activities of different enzymes in different body tissues of snails. EGSB could significantly inhibit Choline esterase (ChE), Alanine aminotransferase (ALT), Alkaline phosphatase (ALP) and Malic dehydrogenase (MDH) activities both in the cephalopodium and liver. ARE could significantly cause a reduction in ChE, ALP activities in the cephalopodium and ChE, ALT, ALP, Succinodehydrogenase (SDH), MDH activities in the liver. NIC significantly altered activities of ChE, ALT, ALP, SDH, and MDH in the cephalopodium and ChE, ALT, ALP, SDH activities in the liver. All molluscicides could not affect Lactate dehydrogenase (LDH) activity in the cephalopodium and the liver. Maximum inhibition of ALT and MDH activities was found in the cephalopodium and liver of snails treated with 80% of 24 h LC50 of EGSB. However, NIC and ARE caused maximum reduction in ALP and SDH activities, respectively. The results indicated that molluscicidal action of EGSB was different to that of ARE and NIC in some extent.  相似文献   

18.
药剂对小菜蛾抗性及敏感品系乙酰胆碱酯酶抑制作用比较   总被引:5,自引:1,他引:4  
采用浸叶法测定了云南通海、元谋和澜沧的小菜蛾plutella xylostella田间种群对常用杀虫剂的抗药性。结果表明,云南上述地区小菜蛾田间种群对各类杀虫剂均产生了不同程度的抗性。对有机磷类药剂的抗药性为1.74~31.1倍;对菊酯类药剂的抗药性为7.41~764倍;对阿维菌素类药剂则产生了 5.60~4.06×104倍的抗性。通过离体和活体试验测定了药剂对小菜蛾头部乙酰胆碱酯酶(AChE)的抑制作用。敌敌畏和灭多威对通海抗性品系AChE离体和活体内的抑制中浓度(I50)分别是敏感品系的209、26.5倍和2.21、2.16倍;敌敌畏对通海小菜蛾种群的离体和活体内抑制中时间(IT50)小于敏感品系,分别是敏感品系的0.32和0.17倍;而灭多威对通海小菜蛾种群的离体和活体内抑制中时间(IT50)则大于敏感品系,分别是敏感品系的1.37和1.74倍。  相似文献   

19.
The in vitro inhibition potency of some organophosphates (OPs) and carbamates (CAs) which are widely used to control plant-parasitic nematodes on acetylcholinesterase (AChE) of Meloidogyne javanica, Heterodera avenae and Tylenchulus semipenetrans, the major pathogens responsible for the damage of a wide range of crops in Al-Qassim region, Saudi Arabia was examined. AChE of H. avenae activity was 1.58- and 1.51-fold greater than that of T. semipenetrans or M. javanica, respectively. The order of inhibition potency of the tested compounds against T. semipenetrans AChE was: carbofuran > paraoxon > oxamyl > fenamiphos > phorate-sulfoxide > aldicarb, where the corresponding concentrations that inhibited 50% of the nematode AChE activity (I50) were 5 × 10−8, 7 × 10−7, 7.5 × 10−7, 2 × 10−6, 2 × 10−4 and 2 × 10−3 M, respectively. Paraoxon, fenamiphos and carbofuran exhibited high inhibition potency against M. javanica AChE where the I50 values were below 1 nM. Phorate-sulfoxide and aldicarb were potent inhibitors of M. javanica AChE with I50 values of 3.8 and 8 nM, respectively, while oxamyl exhibited low inhibition potency with I50 of 15 nM. Fenamiphos and paraoxon showed the highest I50 values of <100 μM against H. avenae followed by oxamyl (I50 < 1 mM), whereas paraoxon, carbofuran and aldicarb showed low potency with I50 values >1 mM. All the tested compounds exhibited high inhibition potency to AChE of M. javanica than T. semipenetrans or H. avenae. Except phorate-sulfoxide in M. javanica the inhibition pattern and implied mechanism for all the tested compounds for the three nematodes is suggested to be a linear mixed type (a combination of competitive and non-completive type).  相似文献   

20.
两种蜜蜂头部乙酰胆碱酯酶对杀虫药剂敏感度比较   总被引:4,自引:0,他引:4  
张莹  黄建  高希武 《农药学学报》2005,7(3):221-226
通过对抑制动力学常数和抑制时间进程曲线的测定,比较了中华蜜蜂Apis cerana cerana Fabricius和意大利蜜蜂Apis mellifera ligustica Spinola头部乙酰胆碱酯酶(acetylcholinesterase,AChE)对几种有机磷和氨基甲酸酯类杀虫药剂的敏感度。抑制时间进程曲线显示,意大利蜜蜂头部AChE对毒扁豆碱、灭多威、敌敌畏的敏感度高于中华蜜蜂,而两种蜜蜂对残杀威、硫双灭多威、甲胺磷及久效磷的敏感度没有明显差异。意大利蜜蜂头部AChE对毒扁豆碱、残杀威、硫双灭多威、克百威以及丁硫克百威的双分子速率常数(Ki)值分别为4.003×106、5.744×104、5.249×104、1.986×106和5.492×104 (mol/L)-1 ·min-1,均高于中华蜜蜂对这几种杀虫药剂的Ki值,后者分别为3.403×106、4.633×104、4.233×104、1.262×106和5.072×104 (mol/L)-1 · min-1。但中华蜜蜂头部AChE对灭多威的Ki值却高于意大利蜜蜂,前者为10.408×104,后者为4.872×104(mol/L)-1 ·min-1。对AChE被抑制后恢复速率(K3)的测定结果表明,中华蜜蜂头部AChE被残杀威和硫双灭多威抑制后恢复的速率显著低于意大利蜜蜂,但两种蜜蜂被毒扁豆碱、灭多威、克百威和丁硫克百威抑制后恢复的速率差异不显著。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号